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Abstract

A group of transformations changing the phases of the elements of
the single-particle density matrix, but leaving unchanged the predic-
tions for identical particles concerning the momentum distributions,
momentum correlations etc., is identified. Its implications for the de-
terminations of the interaction regions from studies of Bose-Einstein
correlations are discussed.

PACS 25.75.Gz, 13.65.+i
Bose-Einstein correlations.

1 Introduction

Bose-Einstein correlations are helpful when trying to derive properties of
the interaction regions from the measured momentum distributions. In this
report we point out an ambiguity inherent in such derivations [1]. There are
many ways from the data to the inferred properties of the interaction regions
(cf. e.g. [2] and references given there). One can use density matrices,
Wigner functions, emission functions, distances between the pairs of points
where the identical particles are produced etc. The ambiguity seems to be
common to all of them.

We will not discuss here the evolution of the density matrix during the
freeze-out period. Formally, one can introduce the assumption that all the

1

http://arxiv.org/abs/hep-ph/0510231v1


hadrons have been produced instantaneously and simultaneously at some
time which we may choose as t=0. Then what one measures is the density
matrix (in the interaction representation) at freeze-out.

As is well known, the diagonal elements of the k-particle density matrix
in the momentum representation give, and are unambiguously given by, the
k particle momentum distribution. On the other hand, in most models these
elements can be expressed as symmetrized products of the single particle
density matrix elements [3]:

ρ(p1, . . . ,pk;p1, . . . ,pk) =
∑

P

k
∏

j=1

ρ1(pj;pPj), (1)

where the summation is over all the k! permutations of the momenta p1, . . . ,pk.
Thus, all the momentum distributions are unambiguously determined when
the single particle density matrix ρ1(p1;p2) is known.

Our main observation [1] is that the converse is not true. Given the
momentum distributions for all the sets of k = 1, 2, . . . particles, it is not
possible to find unambiguously the matrix ρ1. This trivial observation will
be seen to have very non trivial consequences. Since the matrix ρ1 is further
used the derive conclusions about the interaction region, the ambiguity affects
our capacity for making unambiguous statements about such regions.

2 Invariance group

Consider the transformation

ρ1(p;p’) → ρ1α(p;p’) ≡ eiα(p)ρ1(p;p
′)e−iα(p’), (2)

where α is any real-valued function of momentum. According to formula
(1) for k = 1, ρ1 is a single particle density matrix. Therefore, it must
be hermitian and have trace one. Also ρ1α, as seen from its definition, is
hermitian and has trace one. Consequently, it can be substituted for ρ1 on
the right-hand side of formula (1). This introduces on the right-hand side, for
every pi a term eiα(pi

) and a term e−iα(p
i
) which cancels it. Thus, the diagonal

matrix element on the left-hand side does not change. Experimentally, the
substitution of ρ1α for ρ1 is invisible. The transformations from ρ1 to ρ1α
form a local (in momentum space) U(1) invariance group.

There are several quantities related to the single particle density matrix in
the momentum representation and yielding information about the interaction
region. In order to get the space distribution of the sources one can use
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the diagonal elements of the single particle density matrix in the coordinate
representation

ρ̃1(x;x) =

∫

d3K
d3q

(2π)3
eiq·xρ1(p;p’), (3)

where

K =
1

2
(p+ p’); q = p− p’. (4)

In order to get an approximate phase-space distribution one can use the
Wigner function

W1(K,X) =

∫

d3q

(2π)3
eiq·Xρ1(p;p’), (5)

or the emission function

ρ1(p;p’) =

∫

d4XS(K,X)eiqX . (6)

In the last two formulae X = 1
2
(x + x′) and the approximation consists in

interpreting K and X as the energy-momentum and space-time position of
the particle. This approximation is not always good, but in a well-defined
sense [4] this is the best one can have without contradicting the principles
of quantum mechanics. In the last formula the four-vector K has the same
value on both sides of the equality. Since the momenta p and p’ are on
mass shell, for any q the value of q0 is fixed by the condition Kq = 0.
Thus, it is not possible to invert the Fourier transform and to express the
emission function S in terms of the density matrix ρ1. In fact, there is
an infinity of different emission functions, corresponding to various off mass
shell continuations of a given on mass shell function ρ1. We conclude that
the ambiguities when using the emission function formalism are more severe
than when using Wigner functions.

The point is that the transition from ρ1 to ρ1α, which has no effect on
the momentum distributions, changes the functions ρ̃1, W1 and S and con-
sequently changes the conclusions concerning the interaction region. In the
following section we will illustrate this fact by some examples.
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3 Examples

.
The class of transformations (2) is very rich. We will just discuss three

simple examples. Consider

α(p) = b · p ⇒ α(p)− α(p’) = b · q, (7)

where b is any vector. This gives

ρ̃1(x;x) =

∫

dK
dq

(2π)3
eiq·(x+b)ρ1(p;p’). (8)

The interaction region gets shifted by b. Similarly, replacing b and p by
four-vectors and using the emission function one can generate an arbitrary
shift in space-time. This result is of little interest. It is obvious that the
momentum distributions do not depend on where and when the experiment
was done.

As our second example consider

α(p) =
1

2
cp2 ⇒ α(p)− α(p’) = cK · q, (9)

where c is any real number. Then

W1α(K,X) =

∫

d3q

(2π)3
eiq·(X+cK)ρ1(p;p’). (10)

This time the shift is proportional to K with a proportionality coefficient
which is unconstrained by momentum measurements. The corresponding
distribution in space is

ρ̃1α(x;x) =

∫

d3KW1α(K,x) (11)

Suppose now that for c = 0 there are no position-momentum correlations.
Then for each K the interaction region occupies the same portion of space
and when averaged over K coincides with that for any given K. For c 6= 0,
the interaction regions corresponding to different values of K are shifted
with respect to each other and the averaged size of the interaction region
gets bigger. Its increase with respect to the situation at c = 0 depends
on the value of |c|. Since this is unconstrained by the data on momentum
distributions, the radius can be made as large as one wishes.
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For instance, for the Gaussian

ρ1(p;p’) =
1

(
√
2π∆2)3

exp

[

− K2

2∆2
− 1

2
R2q2

]

(12)

one obtains ρ̃1α(x;x) also Gaussian with root mean square width

R2
α = R2 + c2∆2. (13)

In order to see that this broadening is due to the averaging over K it is
enough to have a look at the corresponding Wigner function

W1α(K,X) =
1

(2πR∆)3
exp

[

− K2

2∆2
− (X+ cK)2

2R2

]

. (14)

The conclusion from this example is that without further assumptions one
can at best obtain a lower limit for the radius of the interaction region. In
practice, everybody uses, more or less consciously, a model which supplies
the necessary additional assumptions. The problem how to choose the best
model among those which give exactly the same fit to all the data is an
interesting open problem. In order to show that this problem is not purely
academic let us consider the following example from the literature.

Some models [5], [6] assume correlations between position in space-time
and energy-momentum of the type1

Kµ = λXµ. (15)

A convenient notation is

X2
0 −X2

‖ = τ 2; K2
0 −K2

‖ = M2
T ⇒ λ =

MT

τ
. (16)

Note that here MT is a temporal-longitudinal variable. Let us assume that
[6]

S = S‖ST (17)

where

ST = exp

[

−X2
T

2r2T
− (KT − λXT )

2

2δ2T

]

. (18)

This is a possible quantum-mechanical rendering of the transverse part of
the classical relation (15). The only information about S‖ important for our

1Sometimes called Hubble flow
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purpose is that it depends neither on KT nor on XT . The distribution of
sources in the transverse plane is obtained by integrating ST over KT . The
result is a Gaussian with constant root mean square width rT . On the other
hand ST can be rewritten in the form

ST = exp

[

− φ2
T

2R2
D

− (XT − φT )
2

2R2
φ

]

, (19)

where

Rφ =
rT

√

1 + µ2
; RD = µRφ; µ =

rT
τδT

MT ; φT = rT
µ

1 + µ2

KT

δT
.

(20)
This can be considered2 as a transform with α(p) = 1

2
cp2 and

c =
rTµ

δT (1 + µ2)
(21)

of

SαT = exp

[

−K2
T

2δ2T
− X2

T

2R2
φ

]

. (22)

Performing the integration of SαT over KT one finds for the distribution of
sources in the transverse plane a Gaussian with root mean square width

R2
Tα = R2

φ =
r2T

1 + µ2
, (23)

which exhibits the familiar decrease of the transverse radius with the trans-
verse mass as reported by so many experimental papers. Let us summarize
the situation: if our prejudice is in favor of a Hubble flow as interpreted in
[6], we conclude that the transverse radius does not depend on MT ; if our
prejudice is against correlations between position in the transverse plane and
transverse momentum, we conclude that the transverse radius decreases with
increasing MT ; experimental data on momentum distributions will not help
us to decide which of these two prejudices is the right one.

Our last example is one dimensional. It could e.g. apply to one transverse
component. We choose the Gaussian density matrix (12) and

α(p) =
4

3a3
p3 ⇒ α(p)− α(p′) =

4

3a3
q

(

K2 +
q3

3

)

. (24)

2This is an approximation, because c depends on MT , it is , however, good enough for
our qualitative discussion; compare [6], where the full calculation can be found
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A simple calculation [1] yields

Sα =
a√
2π∆

exp

[

− K2

2∆2
+B

]

Ai(A), (25)

where Ai(. . .) is the Airy function and

A = aX̃ +
ω4

4
; B =

ω2

2

[

A− ω4

12

]

; ω = aR; X̃ = X − 4

a3
K2.

(26)
For large values of a the emission function is almost Gaussian. A numerical
calculation shows that a = 2/R is already large enough. For smaller values of
a, however, at negative X̃ the emission function develops big wiggles, oscillat-
ing between positive and negative values. Its shape in the positive X̃ region
also significantly changes [1]. This example shows how the transformations
discussed in the present report can lead to changes of the interaction region
which are much more complicated than just momentum dependent shifts.

4 Conclusions

The experimental data about momentum distributions tell us little about
the interaction regions, unless additional assumptions are made. The usual
recommendations: reduce the experimental errors, include more particle cor-
relations etc. are not enough. Exactly the same fit can be obtained from
widely different models, differing in these additional assumptions and giving
conflicting information about the interaction region. The caveat for model
users is that only some of the assumptions of the model are being tested by
comparison with the data, while others, which may be very important for
drawing inferences about the interaction region, are unconstrained by the
data.
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