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Abstract

I provide a minimal method for generating a mu term and positive
slepton masses within the framework of anomaly mediation. I intro-
duce a new operator involving a hidden sector U(1) gauge field which
is then canceled against a Giudice-Masiero-like µ term. No new flavor
violating operators are allowed. This procedure produces viable elec-
troweak symmetry breaking in the Higgs sector. Only a single pair
of new vector-like messenger fields is needed to correct the slepton
masses by deflecting them from their anomaly mediated trajectories.
This model is minimal but it requires fine-tuning.
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1 Introduction

Anomaly mediated supersymmetry breaking provides a flavor blind, UV in-
sensitive, predictive method of supersymmetry breaking. In this way it al-
most fulfills the long wish list of things we would want from the perfect model
of supersymmetry breaking [3][13]. However, it has two main problems; the
first is that it generates negative slepton mass squareds, the second is the µ

problem, or the generation of a weak scale mass for the Higgsinos. Within
the framework of anomaly mediation, we can generate a Giudice-Masiero-like
µ term that doesn’t require a singlet. However, the resulting B term will be
a loop factor too large to facilitate proper electroweak symmetry breaking.
This leads one to ignore this mu term and search for a fix elsewhere.

Clearly we need extra sources of SUSY breaking to create a viable model.
One can generate soft masses for fields through generic hidden sector super-
symmetry breaking; for example, contact terms with hidden sector fields that
have F term vevs

∫

d4θ
XX†

M2
QQ†. (1.1)

However, these operators may have unsuppressed flavor violation. Instead we
may add a new source of supersymmetry breaking, a U(1) gauge field which
acquires a D term vev in the hidden sector. This doesn’t allow for direct con-
tact terms with the scalar fields Q which would contribute to flavor violating
processes at leading order. This was explored in ref [17]. In the MSSM, a
single new operator can be generated which is an additional Bµ term for the
Higgs fields,

∫

d2θW
′

W
′

HuHd [10]. With this new term, we need not throw
out the Giudice-Masiero-like µ term but instead can keep it and tune the
Bµ term against it to get the correct electroweak vev. This mechanism is
a module which can be used in conjunction with several different methods
of fixing anomaly mediation’s slepton problem, for example the addition of
Fayet-Iliopoulos D-terms as in refs [4][9].

Another such method is the addition of extra chiral superfields, or messen-
gers, in a vector-like representation. Such fields have a nonsupersymmetric
mass threshold with mu-like and B-like terms generated by a Kahler poten-
tial operator, exactly like the Higgs fields. This mass threshold pushes the
gauginos off of their anomaly mediated trajectory, and adds to the scalar
masses at two loops. Multiple sets of these vector-like fields are typically
required to counteract the negative slepton masses from anomaly mediation,
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but with the enhanced B term the deflection becomes much greater. Thus
the slepton masses are driven positive with only one set of extra chiral su-
perfields. If the single messenger is in a complete SU(5) representation, then
perturbative unification is easily preserved. Since the mass thresholds are
set at only 10 TeV, UV insensitivity is preserved down to that scale. With
only a small number of new parameters, the theory remains predictive and
viable, but the trade off is for moderately heavy fine tuning.

This paper has the following outline: Section 2 provides an overview
of anomaly mediation and discusses how the new B term arises from the
addition of the new U(1). Section 3 discusses electroweak symmetry breaking
and minimal fixes to the slepton problem. In Section 4 viable spectra are
produced and discussed, and Section 5 is conclusions.

2 SUSY Breaking

To allow anomaly mediation to dominate and prevent arbitrary flavor vi-
olation, one must forbid contact terms between the MSSM and the hidden
sector. One way this can be achieved is by using a 5-D setup with two bound-
aries separated by the extra dimension. The standard MSSM fields inhabit
one boundary and hidden sector fields inhabit the other, with only gravity
propagating in the extra dimension. Supersymmetry is broken on the hidden
sector boundary and is communicated to the visible sector as the F term of
the conformal compensator Φ = 1 + θ2m3/2. The conformal compensator is
the spurion of broken scale invariance and appears in the Lagrangian next to
any explicit mass scale. Thus after rescaling fields and regulating, the confor-
mal compensator appears with Λ, the cutoff of the theory. The Lagrangian
for the set of fields Qi is

L =

∫

d4θ[Zi(
µ√

ΦΦ†Λ
)Q†

ie
−2VQi] +

∫

d2θ
1

2
g−2(

µ

ΦΛ
)Tr[W αWα] + h.c.

−
∫

d2θ[λijkQiQjQk + ΦmijQiQj + Φ2vi
2Qi] + h.c.(2.1)

where µ is the renormalization scale. Expanding the functions of Φ in terms
of θ2 yields gaugino masses

mλi
=

β(gi)

gi
m3/2. (2.2)

2



and scalar masses and trilinear terms

m2

i = −1

4
γ̇m2

3/2 Aijk = −1

2
(γi + γj + γk)m3/2 (2.3)

For mass thresholds that are supersymmetric, the soft masses at low
energy depend only on the value of the β functions at that energy. Thus
we call the theory UV insensitive. Also, a single scale parameter m3/2 sets
the masses of the superpartners, therefore this form of SUSY breaking is
highly predictive. Only scalars that participate in the strong force get large
positive contribution to their anomaly mediated masses. The sleptons have
only non-asymptotically free couplings, thus due to their β functions their
anomaly mediated mass squareds are negative. Any complete model employ-
ing anomaly mediation will have to address this issue.

On a more positive note, we can generate a mu term using a Giudice-
Masiero-like operator without introducing a singlet [2][12]. We may write
down a term in the Kahler potential

λh

∫

d4θφ†φHuHd (2.4)

We can then rescale the fields H → φH to get

λh

∫

d4θ
φ†

φ
HuHd. (2.5)

Inserting for the conformal compensator φ = 1+m3/2θ
2 and expanding gives

λh

∫

d2θm3/2HuHd − λhm
2
3/2huhd (2.6)

The first term is a mu term for the Higgsinos. The second term is a B term
for the scalar Higgs. The scale m3/2 is ∼ 10 TeV, so that with a choice of
small coupling, λh ∼ 1

16π2 , we may have a mu term that is of order the weak

scale. However in this case, the B term is of order
m2

3/2

4π
. With such a B term,

the dynamics of electroweak symmetry breaking would generate a Higgs vev
at the scale m3/2 which is a loop factor too large. A new mechanism is needed
to create a viable µ term.

In this model, there is one additional source of SUSY breaking. We have
a U(1) gauge symmetry; in our 5-D setup it propagates in the bulk and
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is broken on the hidden sector boundary. The gauge field gets a D term
vev by some dynamical mechanism in the hidden sector. Since we want a
D term that is the same size as the overall SUSY breaking scale, we may
deduce that the D term vev is itself closely connected to, and possible even
required for supersymmetry breaking. For examples of such models see refs.
[21],[10]. With the addition of this extra U(1) gauge field, there are only two
new operators that we may write down with all Lorentz and gauge indices
contracted.

One operator is
ch

M2

∫

d2θW
′

W
′

HuHd. (2.7)

When the D term is set to it’s vev this term becomes

chm
2
DHuHd (2.8)

with D
Mcut

≡ mD, and mD ∼ O(m3/2). This is an additional B term which we
can cancel against the Giudice-Masiero-like B term. The entire Bµ term is
now an adjustable parameter which need not be of order λhm

2
3/2. A one per-

cent tuning between the scales λm2

3/2 and chm
2
D is enough to give the correct

electroweak physics. The new operator only adds one more parameter to the
theory, the scale chmD, so the mu problem can be solved while maintaining
an economy of parameters.

We generate one additional operator that could potentially cause prob-
lems in this model:

∫

d2θWYW
′

(2.9)

which is a tadpole term for the hypercharge D term. One cannot forbid this
new term through boundary conditions as the new U(1) lives in the bulk and
must communicate with at least some fields on the standard model brane.
However, if we choose not to write down this operator in the first place it will
not be generated by radiative corrections. For those who worry that whatever
operator can be written down must be included, one could try to forbid this
term with symmetries. For example one can introduce charge conjugation
under which only W

′

is odd, and which is broken only on the hidden sector
boundary. Once the extra dimension is integrated out, operators with charge
conjugation violation will be communicated to the standard model brane but
will be suppressed at the least by powers of the SUSY breaking scale over
the compactification radius.
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Scalar masses for squarks and sleptons cannot be generated through di-
rect contact terms with the hidden sector gauge field. Holomorphy prevents
us from writing such a term in the superpotential. Instead the lowest dimen-
sion mass term we may write is 1

M6

∫

d4θW
′

W
′

W
′†W

′†QQ†, which is highly
suppressed and not generated by any divergent diagrams.

There is a correction to the Wino mass and slepton mass due to loop
effects from the Higgsinos. The Wino mass is corrected at one loop in a way
similar to gauge mediation ([14][15][21]), with the overall contribution going
like

gy
2

16π2

Bµ

µ
(2.10)

Generically this correction is of order 1

16π2µ. The masses of the sleptons
are corrected at two loops with diagrams involving the Winos, Higgs’ and
Higgsinos. These corrections are of order

m2

sl ∼
Bµ

µ

2
(

g2

16π2

)2

(2.11)

For a weak scale µ term however, this correction is not nearly enough to fix
the negative slepton masses from anomaly mediation; additional structure
will have to be added to complete the model.

3 Deflected Anomaly Mediation

One method of fixing the slepton problem involves changing the anomaly
mediated trajectories of the scalars and gauginos by adding chiral superfields
in a vector like representation [6] [2] [1]. These fields are known as messengers.
The messengers Ψ will have a term in the Kahler potential

∫

d4θφ†φΨΨ. This

can be rescaled as
∫

d2θ
λ1m3/2

φ
ΨΨ giving rise to mu-like and B-like terms

analogous to those of the Higgs sector. The effect of the new fields is to
change the anomaly mediated contribution of the gauginos in a way similar
to gauge mediation. Like the example of the Higgs loops contributing to
gaugino masses in Section 2, the new messenger loops contribute a mass
roughly the size g2

16π2µ. However, in this case there are no further constraints
from electroweak symmetry breaking requiring the µ-like term, which we will
call M , to be of order the weak scale. M can then be it’s more natural value
of order m3/2. The gaugino contribution is now free to be of order 1

16π2m3/2.
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The slepton masses are then corrected as the running is pushed off of its
anomaly mediated trajectory.

We will first derive the masses of the gauginos and scalar superpartners
which are deflected by the µ-like and B-like thresholds of the Kahler potential
operator alone. This formalism is worked out in refs [1][6][16][18]. We define
the mu-like term M ≡ λm3/2 and the B-like term F ≡ −λm2

3/2. Thus the

mass of the messengers is defined to be X ≡ M + θ2F . We can look directly
at the gauge couplings and extract the mass of the gauginos. Note that
we will be looking at non-holomorphic gauge couplings. The holomorphic
gauge couplings may be expressed as functions of the real gauge couplings as
discussed in ref [1]. For the mass threshold X we see

α−1(µ,X) = α−1(Λ) +
b−N

4π
ln

(

XX†

ΛΛ†ΦΦ†

)

+
b

4π
ln

(

µ2

XX†

)

(3.1)

where N is the number of sets of messengers [1][7]. The low energy beta
function coefficient b is just the beta function coefficient above the new mass
threshold minus the number of extra chiral superfields, or

bUV = b−N. (3.2)

A supersymmetric mass threshold M comes with one power of the con-
formal compensator, as the Lagrangian of Equation 2.1 demonstrates, which
cancels the powers of the Φ that appear with the cutoff. In this way, the
first term in the equation above contributes nothing to the gauge coupling.
The only contribution comes from the second term, which when we expand
gives us just the contribution we expect from anomaly mediation. Thus the
high energy running is wiped out and only the low energy anomaly mediated
trajectory remains. In this way the low energy theory is insensitive to the
UV physics. However, in our case we have a nonsupersymmetric mass scale
X = λ

m3/2

Φ
so the gauge coupling becomes

α−1(µ,X) = α−1(Λ) +
b−N

4π
ln

(

λ2m2

3/2

Λ2(ΦΦ†)2

)

+
b

4π
ln

(

µ2ΦΦ†

λ2m2
3/2

)

, (3.3)

If we expand in terms of θ2 contained in the conformal compensator, Φ →
1 + θ2m3/2, we see that the gaugino masses go like

mλi
=

αi
2

4π
(bi − 2N)m3/2. (3.4)
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Since the gaugino masses have changed, the running of the scalar masses is
deflected from its anomaly mediated trajectory.

For the scalars, we may expand the wave function renormalization in
terms of θ2. After rescaling fields we can extract the θ2θ2 component, just
like we do in anomaly mediation. This gives scalar masses

m2
s = −1

4
m2

3/2

(

∂2

∂2lnµ
− d

∂2

∂2lnX

)2

ln(Z) (3.5)

with

Zi(µ,X) = Zi(Λ)

(

α(Λ)

α(X)

)

2ci
bi−N

(

α(X)

α(µ)

)

2ci
bi

. (3.6)

We define the deflection parameter d such that F
M

−m3/2 = dm3/2. The
square of the first term is just the anomaly mediated contribution, and the
running from the threshold is contained in the rest. For the case of a super-
symmetric mass threshold we have F

M
= m3/2 or d = 0. This just reproduces

the anomaly mediated mass for scalars. We see that d parameterizes the
difference between the anomaly mediated mass threshold and the new mass
threshold we have added. Differentiating, we get a scalar mass of

m2
s = Σi

2cibi
16π2

((

N

bi
α2
Ψ − N2

b2i
[α2

Ψ − α2
µ]

)

d2 + 2
N

bi
α2
µd

)

m2
3/2+Σi

2cibi
16π2

α2
µm

2
3/2

(3.7)
In our case, F

M
= −m3/2 so we have d = −2. This gives positive slepton

masses for N ≥ 5.
However, in this case there is one additional operator that can be written

down, a new B term that comes from the operator
∫

d2θcW
′

W
′

ΨΨ, in exact
analogy to the Higgs sector. This is an addition of cm2

D to the scalar mes-
senger mass squared. We will now rederive the gaugino and scalar masses
with this new contribution. We define cm2

D ≡ −κm2

3/2 ≡ B. Now we have

X ≡ M + θ2F + θ2B. so α−1 becomes

α−1(µ,X) = α−1(Λ) +
b−N

4π
ln

(

(M + θ2F + θ2B)(M + θ2F + θ2B)

Λ2ΦΦ†

)

+
b

4π
ln

(

µ2

(M + θ2F + θ2B)(M + θ2F + θ2B)

)

(3.8)
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and the gaugino masses become

mλi
=

αi

4π
(bi − 2N)m3/2 −

αi

4π
N
κ

λ
m3/2. (3.9)

The the scalar masses are still given by Equations (3.5) and (3.7) but
we have now changed the deflection parameter to d = −2 − κ

λ
Notice that

dm3/2 = 2F+B
M

. We may now use κ to adjust the B term such that the
number of necessary copies of messenger multiplets is only one. To do this
we need the coupling κ to be greater than 1. In this case we may think of
the greater than 1 coupling arising from picking the cutoff to be Mcut√

κ
. Thus

instead of having a cutoff at, say, the Planck scale, the theory requires new
physics at MPl

afew
. Notice that at the threshold in the limit that B gets very

large and the deflection parameter becomes very negative, and the dominant
contribution to scalar masses comes from our new source of SUSY breaking.

4 Electroweak Symmetry Breaking and Spec-

trum

The Higgs potential for the neutral scalars looks exactly like that of the
MSSM,

V = (µ2 +m2

Hu)|Hu|)2 + (µ2 +mHd)|Hd|)2 − ((
µ2

λh

− cm2

D)HuHd + h.c.)

+
1

8
(g22 + g2y)(|Hu|2 − |Hd|2)2 (4.1)

The conditions for finding the minimum are

mZ
2 = −m2

Hu −m2
Hd

cos 2β
− (m2

Hu +m2

Hd + 2µ2) (4.2)

sin 2β = − 2B

m2
Hu +m2

Hd + 2µ2
. (4.3)

It was previously noted that for µ = λm3/2 ∼ weak scale with B fixed
at λm2

3/2, no solution exists, as we can see from the second condition [8][5].
However, in this new model with an adjustable B term there are two regions
of parameter space where we find viable solutions. One region has large values
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of the mu term, µ ∼ m3/2 with a coupling λh greater than 1. Such values
could possibly fix the slepton mass problem without adding any messengers
at all. In this case, the correction to the slepton mass squareds would be

of order
(

1

16π2

)2 B2

µ
. From the first condition we see that these solutions are

only valid for cos 2β → 0, or tanβ → 1. Looking at the second equality we
see that we must then have µ2 ∼ B. Such points give positive slepton masses
for the choice λh of order 5. All scalar masses get large contributions from
the deflection, therefore we may shift down the entire spectrum by picking a
small m3/2, just at 10 TeV or so. Unfortunately, such points are significantly
fine-tuned. In addition, such a low tanβ requires a large top Yukawa coupling
that gets a Landau pole far below the unification scale. These points allow
a very minimal model with a single new parameter, but the fine-tuning and
top Yukawa problems leads us to search for solutions in other regions of
parameter space.

Instead we may pick parameters such that the µ term is of order the
weak scale. This will allow large values of tanβ. In order to satisfy equation
(4.2) we must pick µ2 such that it cancels the large anomaly mediated Higgs
masses down to the Z mass. This requires a tuning of a little better than
one percent. We may then look at equation(4.3) and see that we must cancel
the two large contributions to the B term down to the scale µ2. This is a
tuning of a little worse than one percent. So we see that parameters in the
Higgs sector involve a total sensitivity of 10−4, which means that this model
is highly constrained but not impossible. A sample point for this parameter
space is given in Table 1.

We must also avoid getting a vev for the scalar messengers Ψ. Thus the
mass matrix

M2

Ψ = m2

3/2

(

λ2 λ+ κ

λ+ κ λ2

)

(4.4)

must have positive determinant. We then have the constraint λ2 > λ + κ,
which gives the upper bound on the B term for a fixed λ. We may now
calculate the lower bound on B; for example with λ ∼ 4 and κ = 0, one
extra vector-like multiplet falls short of making the slepton mass positive by
about a factor of 8. Thus we can estimate B, using equation (3.7) which
tells us we must have B > 1.75F . Unlike those of the Higgs sector, these
constraints are not very strict, so the spectrum is viable for a large range of
couplings. One feature of the spectrum is that for moderate values of λ (less
than 10) the Wino mass falls naturally at a few hundred GeV. The slepton
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Point 1 Point 2

inputs:
m3/2

16π2 200 100
mD .5m3/2 .5m3/2

Higgs sector couplings: λh .015 .026
ch .0598 .1029

Messenger sector couplings: λ 4 20
κ 11.9 379

Higgs Sector: µ 474 415
tan β 7.24 1.20

sleptons: mẽL 446 1162
mẽR 126 426

Gauginos: mW̃ 510 936
mB̃ 407 407

Squarks: ms̃qR 1235 3707

Table 1: Two possible spectra, all masses given in GeV.

masses are small, so that the wino is now in the middle of the anomaly
mediated mass spectrum. Thus the right handed sleptons become the LSPs.
Table 1 contains such a point.

This model differs from minimal anomaly mediation most in its heavier
wino mass. In fact, for the moderate values of couplings that yield positive
slepton masses, we always have the wino heavier than the bino. The squarks
are also much heavier than the minimal model, with masses of a few TeV,
due to deflection from their large SU(3) coupling. We have a heavy and
light scalar messenger. The light mass eigenvalue is around 10 TeV. For
these moderate values of the couplings λ and κ the spectrum looks like some
combination of anomaly mediation and low energy gauge mediation, with
each contributing effects of the same order; other models employ similar
combinations of SUSY breaking sources giving different spectra [19] [20] [11].

For the case of very large couplings κ and λ we see that the new B

terms dominate the anomaly mediated contributions. The spectrum looks
like gauge mediation, and in fact for N = 1 we see that the bino can be made
lighter than the sleptons. This requires the choice of large coupling, λ > 19
and κ > 350. If we then pick a moderate sized µ term for the Higgs, the bino
is the lightest superpartner. At these large values of the messenger couplings
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the entire spectrum becomes heavy. We can drop the entire spectrum by
making m3/2 smaller. However, in order to maintain the bino as the LSP, we
must pick the couplings in the Higgs sector such that the µ term is larger
than the bino mass as we drop m3/2. These larger couplings drive tanβ
lower as was discussed above. For points with a light overall scale we have
tanβ ∼ 1.2 which is still not as large as we would like. If we instead pick large
values of m3/2 ≥ 75 TeV, we need not have large Higgs sector couplings to
maintain the bino LSP. We then have more viable values of tanβ. However,
the entire spectrum has masses at the TeV scale. The prospect of a bino LSP
is exciting, but we would have to accept a scale of new physics at Mcut ∼ MPl

19

and a choice between low tanβ or a heavy spectrum.

5 Conclusions

Anomaly mediated SUSY breaking provides a UV insensitive flavor blind
method of generating superpartner masses. A mass term for Higgsinos can
be generated employing a Giudice-Masiero-like mechanism, however it also
generates a Bµ term which is two orders of magnitude too large. A new
fix to the µ problem employs anomaly mediation with an new broken U(1)
which generates a single new operator, an additional B term. The new
term may be tuned against the anomaly mediated term and generate viable
electroweak symmetry breaking. This mechanism adds a minimal number of
new parameters to the theory and thus maintains a high level of predictivity.
Several fixes to the slepton problem may be used in conjunction with our
new µ term.

One viable model is the addition of N copies of messenger fields which
change the running of the gauginos and hence the scalar masses at two loops.
By adding an extra B term for these fields, in analogy to what was done with
the Higgs sector, the slepton masses may be driven positive with just one
extra set of vector-like fields instead of five. The result N > 5 destroys
the possibility of perturbative unification. Unification may occur for N=5,
however our result of N = 1 allows for unification to be easily preserved.

The spectrum allows for two interesting but possibly dangerous results.
By sacrificing large values of tanβ in the Higgs sector, we may achieve positive
slepton masses and viable µ terms without adding any messenger fields at
all. This is the most minimal model, but it results in perturbative breakdown
well below the unification scale. Alternatively, keeping the messengers and
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allowing the cuttoff of the theory to be lowered by a factor or 19 or so
from the Plank scale, we produce a spectrum with the bino as the LSP.
Though this has interesting cosmological implications, we would still need to
contend with a heavy spectrum or questionable values tanβ. The safest points
in parameter space produce a spectrum with light sleptons, middle weight
winos and possibly a scalar messenger lurking just above the squark masses
at 10TeV. The model generates viable electroweak symmetry breaking, a
weak scale mu term, positive slepton mass squareds and a viable spectrum
while maintaining UV insensitivity, flavor blindness, and a minimal number
of extra parameters. This is a predictive model, though the parameter space
available is very small and thus the theory is fine tuned.
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