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Abstract
Recently, out-of-equilibrium field theory has been studiedusing approxima-
tions based on truncations of the 2PI effective action. Although results are
promising, the convergence of subsequent orders of the approximation is diffi-
cult to get a handle on, mainly because, generically, only the lowest non-trivial
order is currently numerically tractable. We study one specific case, the broken
phase of theφ4 model, where the existence of an effective three point vertex
makes it possible to compare a lowest and next-to-lowest non-trivial order.

1 Introduction

Out-of-equilibrium quantum fields can be treated using real-time equations of motion based on trun-
cations of the 2PI effective action [1, 2] (based on the formalism of [3, 4]). The equations are writ-
ten in terms of the (connected) propagator〈φ̂(x, t)φ̂(0, t)〉c = G(x, t, t′) = F (x, t, t′) − sign(t −
t′)iρ(x, t, t′)/2, the mean field〈φ̂(0, t)〉 = φ(t) and the self-energiesΣ(x, t, t′) = Σloc(0, t)δ(t −
t′)δ(x) + ΣF (x, t, t′)− sign(t− t′)iΣρ(x, t, t′), and read

[

−∂2
t + ∂2

x
+M2

eff(t)
]

F (x, t, t′) =

∫ t

0

dt′′
∫

d3zΣρ(z, t, t′′)F (x− z, t′′, t′) (1)

−

∫ t′

0

dt′′
∫

d3zΣF (z, t, t′′)ρ(x− z, t′′, t′),

[

−∂2
t + ∂2

x
+M2

eff(t)
]

ρ(x, t, t′) =

∫ t

t′
dt′′

∫

d3zΣρ(z, t, t′′)ρ(x− z, t′′, t′),

[

−∂2
t +M2

eff (t)−
λ

3
φ3
t

]

φt =
δΦ[φ,G]

δφ(t)
. (2)

with M2
eff
(t) = m2 + Σloc(0, t). A Φ-derivable approximation results from specifying a truncation of

the infinite set of 2PI diagramsΦ contributing to the self energy through,

Σ(x, t, t′) = −2
δΦ[φ,G]

δG(x, t′, t)
. (3)

Initial conditions are set by specifying an initial gaussian density matrix through

〈{φ̂0(k), φ̂0(−k)}〉 = (nk+1/2)/ωk, 〈{π̂0(k), π̂0(−k)}〉 = (nk+1/2)ωk, 〈{π̂0(k), φ̂0(−k})〉 = 0,
(4)

for some choice of distribution functionnk and dispersion relationωk, and implementing the relations
〈[φ̂0(k), φ̂0(−k)]〉 = 0, 〈[π̂0(k), φ̂0(−k)]〉 = 1.

Two expansions are on the market; one in theO(N) model in powers of1/N [5, 2, 6, 7] which has
now become commonly used, and one in the coupling [1, 8, 9], which we will use here. Although it may
potentially be less broadly applicable, it is straightforward to use and easy to understand. It is important
to stress that the equations are self-consistent in a similar way to a gap equations, and that they resum
infinite sets of diagrams.
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Fig. 2: The included diagrams toO(λ2) in the effective action (first line). Lines are full propagatorsG, small circles the mean

field φ. In the symmetric phase (φ = 0) the first, second and fourth diagram vanish. In the broken phaseφ ∝ λ−1/2, they are

all there, as well as two more atO(λ2) (in parenthesis), which we do not include . Below, the derived self-energy contributions

for the mean field (second line) and propagator (third line).

2 This work

We study truncations of the coupling expansion ofφ4 theory, with the action

S = −

∫

dt d3x

(

1

2
∂µφ̂(x, t)∂

µφ̂(x, t) +
m2

2
φ̂2(x, t) +

λ

24
φ̂4(x, t)

)

, (5)

The model has two phases: the “symmetric” (m2 > 0), where〈φ̂〉 = 0, and the “broken” (m2 < 0),
with 〈φ̂〉 = v =

√

6m2/λ. Figure 1 shows the diagrams at the level of the action and theresulting
contributions to the self-energies in orders ofλ in either phase. The expansion is truncated at the order
which is currently numerically tractable; including further vertices leads to additional nested space-time
“memory integrals” on the right hand side of the equations ofmotion (2). AtO(λ2), two additional
diagrams exist for non-zero mean field. They are also not numerically tractable, and we consider the one
(Basketball) diagram included here to represent the effectof the full O(λ2) contribution. The aim is to
determine whether one order dominates the next.

In the symmetric phase, only the “leaf” diagram contributesat O(λ), leading to the Hartree ap-
proximation. We will consider this a trivial approximation, since it is simply a (time-dependent) con-
tribution to the effective mass (ReΣ = Σloc(0, t)), and it is included in the quantityM2

eff
(t). Mode

damping, equilibration and thermalization, processes of interest in out-of-equilibrium field theory, are
the result of a non-zeroimaginarypart of the self-energy and in the symmetric phase, this appears at
O(λ2), in the last (Basketball) diagram. Detailed study of thermalization and equilibration in this trun-
cation in 1, 2 and 3+1 dimensions can be found in [1, 9, 10]. In particular, the damping rate can be
calculated in perturbation theory, the result being qualitatively compatible with the 2PI resummed result
[10]. Apparently, the resummation has only a small, quantitative effect in this case.

In the broken phase, the mean field leads to an effective threepoint vertex, and because〈φ̂〉 is
formally O(λ−1/2), an additional 2-loop diagram appears at orderO(λ) (Two-loop) in the effective
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Fig. 3: Distribution functionnk + 1/2 at various times. Around timemt = 500, the curve is smooth and approaching a

Bose-Einstein distribution.

action. Although in perturbation theory it does not lead to on-shell damping [10], resummation from the
self-consistent evolution equations leads to a non-zero ImΣ. In this case, we are able to compare two
successive truncations of ImΣ and estimate the quality of the expansion.

3 Results

Figure 2 shows the evolution of the effective particle number nk+1/2 =
√

F (k, t, t′)∂t∂t′F (k, t, t′)t=t′

in time. We start with a “top-hat” (T1) initial condition which is very out-of-equilibrium, and we can
see a progression to a smooth Bose-Einstein-like distribution at timemt ≃ 500. The dark (black) dots
areO(λ2), the light (green)O(λ). It is clear, that not only does the resummation lead to a quantitative
effect (the non-zero ImΣ atO(λ)), but the time scales of equilibration are also very similar. Here,λ = 1.
This constituteskinetic equilibration, and will (at small coupling) lead to a Bose-Einstein distribution
with an effective temperature and chemical potential. Theφ4 model has no conserved charges, and the
asymptotic equilibrium state has zero chemical potential.To reach it requireschemicalequilibration to
take place as well.

Figure 3 showsln(1 + 1/nk) vs. ωk =
√

∂t∂t′F (k, t, t′)/F (k, t, t′)t=t′ atmt = 1000. A Bose-
Einstein distribution is then a straight line with slopeT−1 and interceptµch/T . Overlaid are the results
for Bose-Einstein distributions with zero chemical potential. Clearly, the low-momentum range has
equilibrated kinetically, but not (yet) chemically. It is well known that atO(λ2), chemical equilibration
takes place (see for instance [11, 9, 10]). In figure 4 we plot the total particle numberNtot =

∫

d3knk

normalized to the initial value. In both approximations, there is a change of particle number. Although
the behaviour is not the same, presumably they will both leadto chemical equilibration.
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Fig. 4: The distribution functionln(1+1/nk) at timemt = 1000. The low momentum range has kinetically equilibrated. The

straight line are Bose-Einstein distributions at various temperatures and zero chemical potential.

4 Conclusions

Successive, non-trivial truncations of the coupling expansion of the 2PI/Φ-derivable approximation have
been compared. In the broken phase ofφ4 theory, kinetic and chemical equilibration is included atO(λ),
at a rate very close to what we find atO(λ) + O(λ2). At this moderate coupling, the expansion seems
to be well behaved. In addition, we found that the relevant diagram atO(λ), which perturbatively does
not lead to on-shell damping, becomes the dominant contribution when resummed by the self-consistent
evolution equations.

Further investigation of the convergence of expansions of the 2PI effective action is needed. Be-
cause of the numerical effort required, it may be necessary to consider simpler systems, such as quantum
mechanics, as a testing ground. For further details and a study of equilibration in the symmetric phase,
see [10].
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