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Abstract

Our quasi-particle model is compared with recent latticeDQata at finite
temperature and baryon number density with emphasis oncsffiaients in
the Taylor series expansion of thermodynamic observaliibs. inclusion of
static critical end point effects into the equation of siatdiscussed.

1 Introduction

The QCD phase diagram exhibits an astonishingly rich phasetsre. The (pseudo-) critical line, which
separates the phase dominated by quark and gluon degreesddiin at large temperatufeand baryo-
chemical potential.z from the one dominated by hadrons and resonances, has bestigated by
means of lattice gauge theoly [1,[2]8, 4]. From theoretieakoning[]b,16] for finite quark masses, the
phase transition is of first order at finii¢ and largeu s ending in a critical point of second order. For
smalleru g, thermodynamic observables change rapidly but contiflydngicating a crossover regime.
There, the equation of state (EoS) has been computedfer 2 quark flavours([i,/8]. While the location
of the critical end point (CEP) showing a strong quark magseddencel]3.19] was determined by first
principle QCD evaluations [4, 10], the extension of theicait region is fairly unknown. Lattice QCD
studies of the volume dependence of the Binder cumulantlBintlicate that the CEP belongs to the
static universality class of the 3D Ising model. At presemny investigations aim to study implications
of such a fundamental issue of QCD. In particular, obsee/abhsequences of the occurrence of the CEP
as novel feature of QCD are discussed [12]. Heaving in miadtlitcessful hydrodynamical description
of the expansion stage in heavy-ion collisions, one intnigyproblem concerns the manner the EoS of
strongly interacting matter becomes modified by the CER iBhthe subject of the present contribution.

In B, the quasi-particle model is shortly reviewed and camgavith recent lattice QCD results.
We focus on the Taylor series expansion coefficients![7, 801, ICEP effects on the EoS are discussed
for a toy model and for our QCD based quasi-particle modeé fBisults are summarizedh 4.

2 Taylor series expansion of the EoS

Thermodynamic observables can be expressed as Taylos sgpansions in powers pfs /7. Accord-
ingly, the pressure is decomposed into

00 2n
p(T, nZ:% c2 < 3T >

wherecy(T) = p(T,pn = 0)/T* andcy,(T) = akp/a,uk’ OTk_4/k:! with ¢ = pp/3. In [4,[8], the
/J,:
Taylor expansion coefficients up ¢g(7") have been presented basing on first principle QCD evalusation

Achieving a flexible parametrization of the EoS, we formethd model which describes the quark-
gluon fluid in terms of quasi-particle excitations [L3] 14]

p(T,p) = Z pi(T, ) — B(T, ). 2)
i=qy9
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Fig. 1: Taylor expansion coefficients 2,4 (top
row, horizontal lines indicate corresponding co-
efficients for a non-interacting gas abo%g

as previously often used to describe the quark-
gluon plasma) ands (left panel in bottom row)

of (@) as a function ofl’/T.. Lattice QCD data
(symbols) from[[¥[B].
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Here,p; denote thermodynamic standard expressions for quarksaml/erse gluons with dynamically
generated self-energié; and a non-perturbative effective couplia® (T, 1) as essential input. Ther-
modynamic self-consistency is ensured through the seatilgrconditionsip/d11; = 0, imposing in turn
conditions ontaB (T, 11). From Maxwell’s relation fop, a flow equation folG? (T, 1) follows [13]
2 2

a“% + aT%% =b. (3)
Knowing G2 on an arbitrary curve in th& - ;. plane, [B) can be solved as a Cauchy problem. For
convenience, we adjust?(T, 1 = 0) to lattice data at: = 0 enabling a mapping into the finite chemical
potential region vial{3). The Taylor expansion coefficidotiow straightforwardly from[(R) as integral
expressions involving=? and higher order derivatives of the effective coupling atiskhing chemical
potential. The latter can be computed by exploiting the flowation [B) (cf.[[14] for details). In Fig. 1,
a fairly good agreement between Taylor expansion coeftieiieam the quasi-particle model and lattice
results is shown. In particular, the peakdn(T) and the dipole structure ins(7") are reproduced.
Adjusting the parametrization of the effective couplingaey (') dictates a change i6?(T', 1 = 0)
at7T,. = 170 MeV from a regularized logarithmic dependence (resembitfiregperturbative behaviour at
largeT) into a linear dependence. This change in the curvatuf&afan be considered as implemented
phase transition and is responsible for the pronouncedtstes inc,6(7"). In fact, these structures
disappear when neglecting higher order derivatives of tfeetave coupling in the integral expressions
of ¢4 6(T") serving for a test of the flow equatidd (3).

3 Critical end point

Starting from a thermodynamic potential, e. g. Gibbs frabapy, it can be decomposed into an analytic
and a non-analytic part where the latter is related to phassitions and critical phenomeria]15]. Ac-
cordingly, the EoS formulated in terms of the entropy derisigiven throughs = s, + s,,. Here, the an-
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Fig. 2: Isentropic trajectories of the toy modEl (4) depegddn the strength parametérfor s/np = 50, 28. Dashed, thin
and solid lines exhibit results fot = 0., 0.5, 1.0 respectively. Dotted lines represent the tangent on thmatgd (pseudo-)
critical line at the CEP. Left paneAT = 100 MeV, Aup = 200 MeV, D = 0.15 ; right panel:AT = 10 MeV, Aup = 10
MeV, D = 0.06.

alytic contributions, has to be adjusted to the known EoS outside of the criticabned he non-analytic
parts,, should embody the feature of being continuous left to the CEP at small chemical potentials)
whereas on the right (at large chemical potentials) it ggeera first order phase transition. A convenient
parametrization of,, for the 3D Ising model characterized by a set of critical exgas is given in[16].
Still, the corresponding variables employed usually indersed matter physics including the order pa-
rameter need to be mapped into fhie 5 plane in the vicinity of the CEP. Details of this mapping and a
useful formulation of the entropy density contribution denfound in the pioneering work [l17] we rely
on. In the following, we estimate the phase border line toibergby 7. (5) = T, (1 + %d(uB/3Tc)2)
with d = —0.122 according to[[ll,13] and locate the CEPaf . = 360 MeV in agreement with(4].

As a simple toy model, let us employ the first terms[ih (1), havewith constant expansion
coefficients. The entropy density contributions are given b

2 2
sa(T, pp) = 460T° + §E2MZBT, sp(T,puB) = §EZNZBTA tanh (Sc(T, uB)) 4)

with &y = (32 + 21Ny)7?/180, &, = N;/2 and Ny = 2. np follows from (@) via standard thermo-
dynamic relations (cf[[17]) with integration constant (0, up) = %64@3/3)3 wherec, = Ny /4m?,

The ansatz fok,, has been chosen such that— 0 for T — 0 and the net baryon density vanishes at
up = 0. The parameter describes the strength of the non-analytic contributiothenEoS. We apply
the sameS,. (T, u) as in [17] assuming a fairly large critical region paranestd by AT = 100 MeV,
App = 200 MeV and a stretch factob = 0.15. Hence, CEP effects on the EoS and in particular on
isentropic trajectories/np = const intheT - up plane can be demonstrated. In Fig. 2, the influence of
the strength parametet on the behaviour of isentropic trajectories is exhibitedr iRcreasingAd > 0,

the trajectories for large/n z tend to be attracted towards largeg due to the presence of the CEP. In
fact, the CEP acts as an attractor on trajectories on thevledteas on the right a repulsive impact is
found. Evidently, the curves on the right side of the CEP ldisphe existence of the first order phase
transition. By shrinking the critical region tA7 = 10 MeV, Aup = 10 MeV and D = 0.06, the
influence of the CEP decreases (right panel of Fig. 2) in coimmawith the results obtained for a large
critical region (left panel of Fig. 2). In particular, thecsi®ns on the hadronic side become less affected
when decreasing the extension of the critical region.

The parameters in the non-analytic entropy density cantidh and in particularA have to be

chosen such that standard thermodynamic consistencytmmsdare satisfied [17]. Accordingly, during
the adiabatic expansion of the system and its related gpdiothn g ands must decrease. Fot < 0
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Fig. 3: Isentropic trajectories in the truncated quastipi@ model adjusted to lattice QCDI[I7} 8] without CEP (le&inel)
and with CEP effects included (right panel) parametrized\dy = 10 MeV, Aup = 10 MeV, D = 0.06 and A = 0.5 for
s/np = 200, 100, 50, 33 (from left to right). Dotted line represents the estimatbdge border line, long-dashed lines in the
left panel depict resonance gas trajectories with cormedipg chemical freeze-out points from[18].

with trajectories for large/n bent to smalley:z due to the CEP inclusion, however, these conditions
are violated in the vicinity of the first order transition din Therefore, the pattern of the isentropic
trajectories as exhibited in Fig. 2 seems to be generic[1af} for a different model with CEP which
involves a hadronic low-temperature and a partonic highpterature phase). Clearly, this statement
decisively depends onin the hadronic phase where the simple toy model cannot atéouQCD.

In contrast, being inspired by lattice QCD we construct tleS B&s truncated Taylor series ex-
pansion including the coefficients 2 4 6(7") of Fig. 1. These lattice based trajectories are shown in
Fig.[3 (left panel) where the pattern differs notably frora tthservations made in the above toy model.
Although first principle evaluations still suffer from to@&vy quark masses and deviate consequently
from the resonance gas trajectories in the low-temperatioase, the values/n s on these lattice QCD
deduced curves agree with the values at the according nebdoyical freeze-out points inferred from
data [18]. Furthermore, in the deconfined phase latticdtseate trustable due to convergence radius
studies|[|8] at least up top = 300 MeV. Therefore, adjusting the analytic contribution of th&S known
from the lattice data by our quasi-particle model, critieatl point effects should become visible only for
largeru g implying a small critical region. We include the CEP in linglwthe procedure outlined above
in our quasi-particle model replacirag by co(7") in s,, and considering a small critical region character-
ized byAT = 10 MeV, Aup = 10 MeV and D = 0.06 with strength parametet = 0.5. As exhibited
in Fig.[3 (right panel), CEP effects on isentropic trajei@srare significant only for large with neg-
ligible impact on the hadronic sections. Nonetheless, #tgdn number susceptibility s = 9%p/ou%
being a measure for baryon number fluctuations divergeg for- 1.5 . (Fig. 4 right panel) due to the
discontinuity evolving i in contrast to the analytic behaviour (Fig. 4 left paneljrst@ng from the
quasi-particle model not containing CEP effects.

4 Conclusion

Our quasi-particle model without implemented CEP was ssgfaly compared with recent lattice QCD
results of the Taylor series expansion coefficien{d") andcz 4 6(7"). Accordingly, our extrapolation

procedure into the finite chemical potential region wasetksiWe considered simple models including
phenomenologically the QCD critical end point and studieel éffects on isentropic trajectories. We
followed [17] and looked for indications of the CEP actinghggcally as attractor or repulsor. In fact,
this is of interest with respect to the question whether Ciiges show up in heavy ion experiments only
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Fig. 4: Scaled baryon number susceptibility of the quasiigda model neglectings(7") without CEP (left panel) and with
CEP inclusion (right panel) as function ®¥/T.. for ug = 450, 330, 300, 150 MeV (from top to bottom).

in a very narrow beam energy range. Clearly, appropriateusjral simulations are needed to account
properly for such questions. The study of the pattern oftis@it trajectories is only a first step towards
elucidating possible implications of the very existencéhef CEP in QCD.
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