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Marcus Bluhm1 and Burkhard K̈ampfer1,2
1 Institut für Kern- und Hadronenphysik, Forschungszentrum Rossendorf, PF 510119, 01314 Dresden,

Germany
2 Institut für Theoretische Physik, TU Dresden, 01062 Dresden, Germany

Abstract
Our quasi-particle model is compared with recent lattice QCD data at finite
temperature and baryon number density with emphasis on the coefficients in
the Taylor series expansion of thermodynamic observables.The inclusion of
static critical end point effects into the equation of stateis discussed.

1 Introduction

The QCD phase diagram exhibits an astonishingly rich phase structure. The (pseudo-) critical line, which
separates the phase dominated by quark and gluon degrees of freedom at large temperatureT and baryo-
chemical potentialµB from the one dominated by hadrons and resonances, has been investigated by
means of lattice gauge theory [1, 2, 3, 4]. From theoretical reasoning [5, 6] for finite quark masses, the
phase transition is of first order at finiteT and largeµB ending in a critical point of second order. For
smallerµB, thermodynamic observables change rapidly but continuously indicating a crossover regime.
There, the equation of state (EoS) has been computed forNf = 2 quark flavours [7, 8]. While the location
of the critical end point (CEP) showing a strong quark mass dependence [3, 9] was determined by first
principle QCD evaluations [4, 10], the extension of the critical region is fairly unknown. Lattice QCD
studies of the volume dependence of the Binder cumulant [3, 11] indicate that the CEP belongs to the
static universality class of the 3D Ising model. At present,many investigations aim to study implications
of such a fundamental issue of QCD. In particular, observable consequences of the occurrence of the CEP
as novel feature of QCD are discussed [12]. Heaving in mind the successful hydrodynamical description
of the expansion stage in heavy-ion collisions, one intriguing problem concerns the manner the EoS of
strongly interacting matter becomes modified by the CEP. This is the subject of the present contribution.

In 2, the quasi-particle model is shortly reviewed and compared with recent lattice QCD results.
We focus on the Taylor series expansion coefficients [7, 8]. In 3, CEP effects on the EoS are discussed
for a toy model and for our QCD based quasi-particle model. The results are summarized in 4.

2 Taylor series expansion of the EoS

Thermodynamic observables can be expressed as Taylor series expansions in powers ofµB/T . Accord-
ingly, the pressure is decomposed into

p(T, µB) = T 4

∞
∑

n=0

c2n(T )

(

µB

3T

)2n

, (1)

wherec0(T ) = p(T, µ = 0)/T 4 andck(T ) = ∂kp/∂µk
∣

∣

∣

µ=0
T k−4/k! with µ = µB/3. In [7, 8], the

Taylor expansion coefficients up toc6(T ) have been presented basing on first principle QCD evaluations.

Achieving a flexible parametrization of the EoS, we formulated a model which describes the quark-
gluon fluid in terms of quasi-particle excitations [13, 14]

p(T, µ) =
∑

i= q,g

pi(T, µ)−B(T, µ). (2)
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Fig. 1: Taylor expansion coefficientsc0,2,4 (top

row, horizontal lines indicate corresponding co-

efficients for a non-interacting gas aboveTc

as previously often used to describe the quark-

gluon plasma) andc6 (left panel in bottom row)

of (1) as a function ofT/Tc. Lattice QCD data

(symbols) from [7, 8].

Here,pi denote thermodynamic standard expressions for quarks and transverse gluons with dynamically
generated self-energiesΠi and a non-perturbative effective couplingG2(T, µ) as essential input. Ther-
modynamic self-consistency is ensured through the stationarity conditionsδp/δΠi = 0, imposing in turn
conditions ontoB(T, µ). From Maxwell’s relation forp, a flow equation forG2(T, µ) follows [13]

aµ
∂G2

∂µ
+ aT

∂G2

∂T
= b. (3)

Knowing G2 on an arbitrary curve in theT - µ plane, (3) can be solved as a Cauchy problem. For
convenience, we adjustG2(T, µ = 0) to lattice data atµ = 0 enabling a mapping into the finite chemical
potential region via (3). The Taylor expansion coefficientsfollow straightforwardly from (2) as integral
expressions involvingG2 and higher order derivatives of the effective coupling at vanishing chemical
potential. The latter can be computed by exploiting the flow equation (3) (cf. [14] for details). In Fig. 1,
a fairly good agreement between Taylor expansion coefficients from the quasi-particle model and lattice
results is shown. In particular, the peak inc4(T ) and the dipole structure inc6(T ) are reproduced.
Adjusting the parametrization of the effective coupling onto c0(T ) dictates a change inG2(T, µ = 0)
atTc = 170 MeV from a regularized logarithmic dependence (resemblingthe perturbative behaviour at
largeT ) into a linear dependence. This change in the curvature ofG2 can be considered as implemented
phase transition and is responsible for the pronounced structures inc4,6(T ). In fact, these structures
disappear when neglecting higher order derivatives of the effective coupling in the integral expressions
of c4,6(T ) serving for a test of the flow equation (3).

3 Critical end point

Starting from a thermodynamic potential, e. g. Gibbs free enthalpy, it can be decomposed into an analytic
and a non-analytic part where the latter is related to phase transitions and critical phenomena [15]. Ac-
cordingly, the EoS formulated in terms of the entropy density is given throughs = sa+sn. Here, the an-
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Fig. 2: Isentropic trajectories of the toy model (4) depending on the strength parameterA for s/nB = 50, 28. Dashed, thin

and solid lines exhibit results forA = 0., 0.5, 1.0 respectively. Dotted lines represent the tangent on the estimated (pseudo-)

critical line at the CEP. Left panel:∆T = 100 MeV, ∆µB = 200 MeV, D = 0.15 ; right panel:∆T = 10 MeV, ∆µB = 10

MeV, D = 0.06.

alytic contributionsa has to be adjusted to the known EoS outside of the critical region. The non-analytic
partsn should embody the feature of being continuous left to the CEP(i. e. at small chemical potentials)
whereas on the right (at large chemical potentials) it generates a first order phase transition. A convenient
parametrization ofsn for the 3D Ising model characterized by a set of critical exponents is given in [16].
Still, the corresponding variables employed usually in condensed matter physics including the order pa-
rameter need to be mapped into theT - µB plane in the vicinity of the CEP. Details of this mapping and a
useful formulation of the entropy density contribution canbe found in the pioneering work [17] we rely
on. In the following, we estimate the phase border line to be given byTc(µB) = Tc

(

1 + 1

2
d(µB/3Tc)

2

)

with d = −0.122 according to [1, 3] and locate the CEP atµB,c = 360 MeV in agreement with [4].

As a simple toy model, let us employ the first terms in (1), however, with constant expansion
coefficients. The entropy density contributions are given by

sa(T, µB) = 4c̄0T
3 +

2

9
c̄2µ

2

BT , sn(T, µB) =
2

9
c̄2µ

2

BT A tanh (Sc(T, µB)) (4)

with c̄0 = (32 + 21Nf )π
2/180, c̄2 = Nf/2 andNf = 2. nB follows from (4) via standard thermo-

dynamic relations (cf. [17]) with integration constantnB(0, µB) = 4

3
c̄4(µB/3)

3 wherec̄4 = Nf/4π
2.

The ansatz forsn has been chosen such thatsn → 0 for T → 0 and the net baryon density vanishes at
µB = 0. The parameterA describes the strength of the non-analytic contribution inthe EoS. We apply
the sameSc(T, µB) as in [17] assuming a fairly large critical region parametrized by∆T = 100 MeV,
∆µB = 200 MeV and a stretch factorD = 0.15. Hence, CEP effects on the EoS and in particular on
isentropic trajectoriess/nB = const in theT - µB plane can be demonstrated. In Fig. 2, the influence of
the strength parameterA on the behaviour of isentropic trajectories is exhibited. For increasingA > 0,
the trajectories for larges/nB tend to be attracted towards largerµB due to the presence of the CEP. In
fact, the CEP acts as an attractor on trajectories on the leftwhereas on the right a repulsive impact is
found. Evidently, the curves on the right side of the CEP display the existence of the first order phase
transition. By shrinking the critical region to∆T = 10 MeV, ∆µB = 10 MeV andD = 0.06, the
influence of the CEP decreases (right panel of Fig. 2) in comparison with the results obtained for a large
critical region (left panel of Fig. 2). In particular, the sections on the hadronic side become less affected
when decreasing the extension of the critical region.

The parameters in the non-analytic entropy density contribution and in particularA have to be
chosen such that standard thermodynamic consistency conditions are satisfied [17]. Accordingly, during
the adiabatic expansion of the system and its related cooling, bothnB ands must decrease. ForA < 0
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Fig. 3: Isentropic trajectories in the truncated quasi-particle model adjusted to lattice QCD [7, 8] without CEP (left panel)

and with CEP effects included (right panel) parametrized by∆T = 10 MeV, ∆µB = 10 MeV, D = 0.06 andA = 0.5 for

s/nB = 200, 100, 50, 33 (from left to right). Dotted line represents the estimated phase border line, long-dashed lines in the

left panel depict resonance gas trajectories with corresponding chemical freeze-out points from [18].

with trajectories for larges/nB bent to smallerµB due to the CEP inclusion, however, these conditions
are violated in the vicinity of the first order transition line. Therefore, the pattern of the isentropic
trajectories as exhibited in Fig. 2 seems to be generic (cf. [17] for a different model with CEP which
involves a hadronic low-temperature and a partonic high-temperature phase). Clearly, this statement
decisively depends ons in the hadronic phase where the simple toy model cannot account for QCD.

In contrast, being inspired by lattice QCD we construct the EoS as truncated Taylor series ex-
pansion including the coefficientsc0,2,4,6(T ) of Fig. 1. These lattice based trajectories are shown in
Fig. 3 (left panel) where the pattern differs notably from the observations made in the above toy model.
Although first principle evaluations still suffer from too heavy quark masses and deviate consequently
from the resonance gas trajectories in the low-temperaturephase, the valuess/nB on these lattice QCD
deduced curves agree with the values at the according nearbychemical freeze-out points inferred from
data [18]. Furthermore, in the deconfined phase lattice results are trustable due to convergence radius
studies [8] at least up toµB = 300 MeV. Therefore, adjusting the analytic contribution of theEoS known
from the lattice data by our quasi-particle model, criticalend point effects should become visible only for
largerµB implying a small critical region. We include the CEP in line with the procedure outlined above
in our quasi-particle model replacinḡc2 by c2(T ) in sn and considering a small critical region character-
ized by∆T = 10 MeV, ∆µB = 10 MeV andD = 0.06 with strength parameterA = 0.5. As exhibited
in Fig. 3 (right panel), CEP effects on isentropic trajectories are significant only for largeµB with neg-
ligible impact on the hadronic sections. Nonetheless, the baryon number susceptibilityχB = ∂2p/∂µ2

B

being a measure for baryon number fluctuations diverges forµB > µB,c (Fig. 4 right panel) due to the
discontinuity evolving innB in contrast to the analytic behaviour (Fig. 4 left panel) stemming from the
quasi-particle model not containing CEP effects.

4 Conclusion

Our quasi-particle model without implemented CEP was successfully compared with recent lattice QCD
results of the Taylor series expansion coefficientsc0(T ) andc2,4,6(T ). Accordingly, our extrapolation
procedure into the finite chemical potential region was tested. We considered simple models including
phenomenologically the QCD critical end point and studied the effects on isentropic trajectories. We
followed [17] and looked for indications of the CEP acting generically as attractor or repulsor. In fact,
this is of interest with respect to the question whether CEP effects show up in heavy ion experiments only
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Fig. 4: Scaled baryon number susceptibility of the quasi-particle model neglectingc6(T ) without CEP (left panel) and with

CEP inclusion (right panel) as function ofT/Tc for µB = 450, 330, 300, 150 MeV (from top to bottom).

in a very narrow beam energy range. Clearly, appropriate dynamical simulations are needed to account
properly for such questions. The study of the pattern of isentropic trajectories is only a first step towards
elucidating possible implications of the very existence ofthe CEP in QCD.

Inspiring discussions with M. Asakawa and F. Karsch are greatfully acknowledged. The work is
supported by BMBF, GSI, EU-I3HP.
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