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Abstract

Using the helicity method we derive complete formulas for the joint angular decay dis-

tributions occurring in semileptonic hyperon decays including lepton mass and polarization

effects. Compared to the traditional covariant calculation the helicity method allows one to

organize the calculation of the angular decay distributions in a very compact and efficient

way. In the helicity method the angular analysis is of cascade type, i.e. each decay in the

decay chain is analyzed in the respective rest system of that particle. Such an approach is

ideally suited as input for a Monte Carlo event generation program. As a specific example

we take the decay Ξ0 → Σ+ + l− + ν̄l (l− = e−, µ−) followed by the nonleptonic decay

Σ+ → p+π0 for which we show a few examples of decay distributions which are generated

from a Monte Carlo program based on the formulas presented in this paper. All the results

of this paper are also applicable to the semileptonic and nonleptonic decays of ground state

charm and bottom baryons, and to the decays of the top quark.

http://arxiv.org/abs/hep-ph/0511019v2


1 Introduction

Semileptonic hyperon decays have traditionally been analyzed in the rest frame of the

decaying parent hyperon using fully covariant methods based on either four-component

Dirac spinor methods [1, 2, 3, 4, 5, 6, 7] or on two-component Pauli spinor methods [8, 9, 10].

The latter method is particularly well suited for an implementation of a zero– [8] or a

near zero–recoil [9, 10] approximation. In the present paper we employ helicity methods

to analyze semileptonic hyperon decays. In the muonic mode it is quite important to

incorporate lepton mass effects in the analysis since e.g. in the decay Ξ0 → Σ+ + l− + ν̄l

the mass difference between the parent and daughter hyperon MΞ0 −MΣ+ = (1314.83 −
1189.37)MeV = 125.46MeV is comparable to the muon mass mµ = 105.658MeV. The

analysis proceeds in cascade fashion where every decay in the decay chain is analyzed in its

respective rest frame. For the semileptonic decays Ξ0 → Σ+(→ p+π0)+W−
off−shell(→ l−+ν̄l)

(l = e−, µ−) treated in this paper this means that the decay Ξ0 → Σ++W−
off−shell is analyzed

in the Ξ0 rest frame whereas the decays Σ+ → p+ π0 and W−
off−shell → l− + ν̄l are analyzed

in the Σ+ and W−
off−shell rest frames, respectively. In this way one obtains exact decay

formulas with no approximations which are quite compact since they can be written in a

quasi–factorized form.

Cascade–type analysis were quite popular some time ago in the strong interaction sector

when analyzing the decay chains of the strong interaction baryonic and mesonic resonances

(see e.g. [11, 12, 13, 14]). In the weak interaction sector cascade–type analysis were applied

before to nonleptonic decays [15, 16, 17, 18, 19, 20, 21, 22], to semileptonic decays of heavy

mesons and baryons [17, 18, 19, 23, 24, 25, 26, 27, 28, 29, 30], and to rare decays of heavy

mesons [30, 31] and heavy baryons [32]. A new feature appears in semileptonic decays

compared to nonleptonic decays when one includes lepton mass effects. In this case one

has new interference contributions coming from the time-components of the vector and

axial vector currents interfering with the usual three-vector components of the currents

(see e.g. [18, 24]).

The results for the angular decay distributions in the semileptonic decays of heavy

baryons given e.g. in [18, 28] can in fact be directly transcribed to the hyperon sector 1.

However, the presentation in [18, 28] is rather concise and concentrates on results for

angular decay distributions and their analysis rather than presenting the details of their

derivations. In order to make the results more reproducible we decided to include the details

of the derivations in this paper. This will enable the interested reader to e.g. convert the

results of [18], which were derived for the (l+, νl) case, to the (l−, ν̄l) case discussed in this

1Our approach is similar in spirit to the approach of [33] which also used a cascade–type helicity analysis
to analyze the semileptonic decay of a polarized hyperon using the lepton side as a polarization analyzer.
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paper, or, to derive angular decay formula involving the decay Σ+ → p + γ instead of the

decay Σ+ → p + π0 treated in this paper. At the same time we decided to recalculate all

relevant decay formulas in order to provide another independent check of their correctness.

In this way we discovered one error in [28] and two errors in [18].

In the simulation of semileptonic hyperon decays including the µ–mode it is important

to have a reliable and tested Monte Carlo (MC) program. Since hyperons are produced

with nonzero polarization the MC program should also include polarization effects of the

decaying parent hyperon. One of the motivations of starting this project was the fact

that such a general purpose MC event generator has not been available up to now. Such

an event generator should prove to be quite useful in the analysis of the huge amount of

data on semileptonic hyperon decays that has been collected by the KTeV and the NA48

collaborations. We wrote and tested such a MC event generator based on the formulas

written down in this paper. The present paper can be viewed as a documentation of

the theoretical spin-kinematical input that goes into the MC program and, for the sake

of reproducibility, the paper also describes how to derive the angular decay distributions

entering the MC.

Although we frequently refer to the specific semileptonic cascade decay Ξ0 → Σ+(→
p + π0) + W−

off−shell(→ l− + ν̄l) the spin–kinematical analysis presented in this paper is

quite general and can be equally well applied to the semileptonic decays of heavy charm

and bottom baryons, and for that matter, also to the semileptonic decay of the top quark.

In order to facilitate such further applications we have always included the necessary sign

changes when going from the (l−, ν̄l) case to the (l+, νl) case as occurs e.g. in the semilep-

tonic hyperon decay Σ+ → Λ + e+ + νe, in semileptonic c → s charm baryon decays or in

semileptonic top quark decays [34, 35, 36, 37]. When sign changes are indicated the upper

sign will always refer to the (l−, ν̄l) case, which is the main concern of this paper, whereas

the lower sign will refer to the (l+, νl) case. We also mention that we have always assumed

that the amplitudes are relatively real and have therefore dropped azimuthal correlation

contributions coming from the imaginary parts. Put in a different language this means

that we have not considered T–odd contributions in our angular analysis which could re-

sult from final state interaction effects or from truly CP–violating effects. By keeping the

imaginary parts in the azimuthal correlation terms one can easily write down the relevant

T–odd contributions if needed by using the formulas of this paper. This is discussed for a

specific example in Appendix C.

The paper is structured as follows. In Sec. 2 we introduce the helicity amplitudes and

relate them to a standard set of invariant form factors. In order to estimate the size of

the helicity amplitudes for the Ξ0 → Σ+ current–induced trasition we provide some simple

estimates for the invariant form factors and their q2–dependence which we shall refer to
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as the minimal form factor model. In Sec. 3 we derive the unpolarized decay rate written

in terms of bilinear forms of the helicity amplitudes. Sec. 4 contains some numerical

results on branching ratios, the rate ratio Γ(e)/Γ(µ) and a lepton–side forward-backward

asymmetry. In Sec. 5 we discuss single spin polarization effects including spin–momentum

correlation effects between the polarization of the parent baryon and the momenta of the

decay products. Sec. 6 treats momentum-momentum correlations between the momenta

of the decay products in the cascade decay Ξ0 → Σ+(→ p+ π0) +W−
off−shell(→ l− + ν̄l) for

an unpolarized Ξ0. In Sec. 7 we present a few sample distributions generated from the MC

program written by us. Sec. 8 contains our summary and our conclusions.

We have collected some technical material in the appendices. In Appendix A we re-

count how the two-body decay of a polarized particle is treated in the helicity formalism.

This two-body decay enters as a basic building block in our quasi-factorized master formu-

lae in the main text which describe the various cascade–type angular decay distributions

presented in this paper. In Appendix B we list explicit forms of the Wigner’s dJ–function

for J = 1/2 and J = 1, which are needed in the present application. In Appendix C we go

through a specific example and identify a specific T–odd term in the joint angular decay

distribution written down in Sec. 6. The example is easily generalized to other cases. In

Appendix D we finally list the full five–fold angular decay distribution for the cascade de-

cay Ξ0 → Σ+(→ p+π0)+W−
off−shell(→ l−+ ν̄l) for a polarized parent hyperon Ξ0. The full

five–fold angular decay distribution reduces to the decay distributions listed in the main

text after integration or after setting the relevant parameters to zero.

2 The helicity amplitudes

The momenta and masses in the semileptonic hyperon decays are denoted by B1(p1,M1) →
B2(p2,M2) + l(pl, ml) + νl(pν , 0). For the hadronic transitions described by the helicity

amplitudes it is not necessary to distinguish between the cases (l−, ν̄l) and (l+, νl). The

matrix elements of the vector and axial vector currents JV,A
µ between the spin 1/2 states

are written as

MV
µ = 〈B2|JV

µ |B1〉 = ū2(p2)

[

F V
1 (q2)γµ +

F V
2 (q2)

M1
σµνq

ν +
F V
3 (q2)

M1
qµ

]

u1(p1) , (1)

MA
µ = 〈B2|JA

µ |B1〉 = ū2(p2)

[

FA
1 (q2)γµ +

FA
2 (q2)

M1
σµνq

ν +
FA
3 (q2)

M1
qµ

]

γ5u1(p1) , (2)

where q = p1 − p2 is the four–momentum transfer. As in [7] we take σµν = 1
2
(γµγν − γνγµ)

and γ5 = −
(

0 1
1 0

)

. The other γ matrices are defined as in Bjorken-Drell.

Next we express the vector and axial vector helicity amplitudes HV,A
λ2λW

(λ2 = ±1/2;

λW = t,±1, 0) in terms of the invariant form factors, where λW and λ2 are the helicity
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components of the Woff−shell and the daughter baryon, respectively. Since lepton mass

effects are taken into account in this paper we need to retain the time–component “t” of

the four-currents JV,A
µ . Concerning the transformation properties of the four components

of the currents one notes that, in the rest frame of the Woff−shell (~q = 0), the three space–

components λW = ±1, 0 transform as J = 1 whereas the time-component transforms as

J = 0. In this paper we use a short–hand notation λW = t,±1, 0 for λW = 0(J =

0);±1, 0(J = 1). Whenever we write λW = t this has to be understood as λW = 0(J = 0).

One then needs to calculate the expressions

HV,A
λ2λW

= MV,A
µ (λ2)ǭ

∗µ(λW ) . (3)

We do not explicitly denote the helicity (m–quantum number) of the parent hyperon λ1 in

the helicity amplitudes since λ1 is fixed by the relation λ1 = λ2−λW . It is very important

to detail the phase conventions when evaluating the expression in Eq. (3). This is because

the angular decay distributions to be discussed later on contain interference contributions

between different helicity amplitudes which depend on the relative signs of the helicity

amplitudes. We shall work in the rest frame of the parent baryon B1 with the daughter

baryon B2 moving in the positive z–direction. The baryon spinors are then given by [38]

ū2(±1
2
, p2) =

√

E2 +M2

(

χ†
±,

∓|~p2|
E2 +M2

χ†
±

)

,

u1(±1
2
, p1) =

√

2M1

(

χ±
0

)

, (4)

where χ+ =

(

1
0

)

and χ− =

(

0
1

)

are the usual Pauli two-spinors. For the four polar-

ization four-vectors of the currents we have [38]

ǭµ(t) =
1
√

q2
(q0; 0, 0,−p) ,

ǭµ(±1) =
1√
2
(0;±1,−i, 0) ,

ǭµ(0) =
1
√

q2
(p; 0, 0,−q0) , (5)

where qµ = (q0; 0, 0,−p) is the momentum four–vector of the off–shell gauge bosonWoff−shell

in the B1 rest frame. The energy of the off-shell W–boson q0 and the magnitude of three–

momentum of the daughter baryon B2 (or the off-shell W–boson) p in the rest system of

the parent baryon B1 are given by

q0 =
1

2M1
(M2

1 −M2
2 + q2) , (6)

p = |~p2| =
1

2M1

√

Q+Q− , (7)

4



where

Q± = (M1 ±M2)
2 − q2 . (8)

The bar over the polarization four-vectors reminds one that the m quantum numbers of

the currents are quantized along the negative z–direction. They are obtained from the

polarization four-vectors quantized along the positive z–axis by a 180◦ rotation around the

y–axis (see [38]). Using the spinors in Eq. (4) and the polarization vectors Eq. (5) one

obtains following vector helicity amplitudes (λ1 = λ2 − λW )

HV
1

2
t

=

√
Q+
√

q2

(

(M1 −M2)F
V
1 + q2/M1F

V
3

)

,

HV
1

2
1

=
√

2Q−

(

− F V
1 − (M1 +M2)/M1F

V
2

)

,

HV
1

2
0

=

√
Q−
√

q2

(

(M1 +M2)F
V
1 + q2/M1F

V
2

)

, (9)

and axial vector helicity amplitudes

HA
1

2
t

=

√
Q−
√

q2

(

− (M1 +M2)F
A
1 + q2/M1F

A
3

)

,

HA
1

2
1

=
√

2Q+

(

FA
1 − (M1 −M2)/M1F

A
2

)

,

HA
1

2
0

=

√
Q+
√

q2

(

− (M1 −M2)F
A
1 + q2/M1F

A
2

)

. (10)

From parity or from an explicit calculation one has

HV
−λ2,−λW

= HV
λ2,λW

HA
−λ2,−λW

= −HA
λ2,λW

(11)

When discussing the semileptonic transitions close to the zero recoil point it is ad-

vantageous to make use of the velocity transfer variable ω = v1 · v2 where vµ = pµ/M .

The velocity transfer variable can be expressed in terms of the usual momentum transfer

variable q2. One has

ω = (M2
1 +M2

2 − q2)/(2M1M2) , (12)

or

q2 = (M1 −M2)
2 − 2M1M2(ω − 1) . (13)

The maximal and minimal values of the velocity transfer variable ω are ωmax = (M2
1 +M2

2 −
m2

l )/(2M1M2) and ωmin = 1, respectively. The minimal value ωmin = 1 is referred to as the

zero recoil point since this is the point where the recoiling daughter baryon has no three–

momentum. For the variables Q± defined in Sec. 2 one finds Q± = 2M1M2(ω ± 1) which
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gives p = M2

√
ω2 − 1 where p is the momentum of the recoiling daughter baryon. The

relevant expansion parameter close to the zero recoil point is thus
√
ω − 1. For example,

at the zero recoil point only the helicity amplitudes HV
1

2
t
(allowed Fermi transition) and

HA
1

2
0
= −HA

1

2
1
/
√
2 (allowed Gamov–Teller transition) survive. In the LS–coupling scheme

with LS–amplitudes TLS, these correspond to the S–wave transition amplitudes T V
0 1

2

and

TA
0 1

2

, respectively, where the orbital angular momentum L is defined with respect to the

relative orbital motion of the baryon B2 and the W−
off−shell in the rest frame of the baryon

B1. In the literature one can find very ingenious approximation formulae for various decay

distributions and polarization observables which are based on a near zero recoil expansion

[9, 10]. These are usually referred to as effective theories of semileptonic hyperon decays. In

this paper we shall, however, not discuss zero recoil or near zero recoil approximations but

we always retain the full structure of the physical observables without any approximations.

In order to get a feeling about the size of the helicity amplitudes we make a simple

minimal ansatz for the invariant amplitudes at zero momentum transfer using SU(3) sym-

metry. The analysis is greatly simplified by the fact that the C.G. coefficients for the

(n → p)–transition are the same as those for the (Ξ0 → Σ+)–transition. One thus has

F V
1 (0) = 1 and FA

1 (0) = 1.267 where the vector form factor F V
1 (0) is protected from first

order symmetry breaking effects by the Ademollo-Gatto theorem [39, 40]. For the magnetic

form factor F V
2 (0) we take F V

2 (0) = MΞ0(µp − µn)/(2Mp) = 2.6 as in [7], where µp and µn

are the anomalous magnetic moments of the proton and neutron. The second class current

contributions are set to zero, i.e. we take F V
3 (0) = FA

2 (0) = 0. Note that a first class

quark current can in principle populate the second class form factors F V
3 and FA

2 when

M1 6= M2. For example, in the covariant spectator quark model calculation of [44, 45] one

finds F V
3 (0) = (M1 − M2)/(6M2) = 0.0176 and FA

2 (0) = 0. However, since we are not

including SU(3) symmetry breaking effects for the other form factors we set F V
3 and FA

2

to zero for consistency reasons since they vanish in the SU(3) symmetry limit. For FA
3 (0)

we use the Goldberger-Treiman relation FA
3 (0) = MΞ0(MΞ0 +MΣ+)FA

1 (0)/(mK−)2 = 17.1

(see e.g. [41]).

For the q2–dependence of the invariant form factors we take a Veneziano–type ansatz

which has given a good description of the q2–dependence of the electromagnetic form factors

of the neutron and proton [46]. We write

F V,A
i (q2) = F V,A

i (0)

ni
∏

n=0

1

1− q2

m2
V,A+nα′−1

≈ F V,A
i (0)

(

1 + q2
ni
∑

n=0

1

m2
V,A + nα′−1

)

. (14)

For F V
1 (q2) and F V

2 (q2) we use mV = mK∗(892) = 0.892 GeV which is the lowest lying

strange vector meson with JP = 1− quantum numbers. Correspondingly we use mA =

mK∗(1.270) = 1.273GeV (JP = 1+) for FA
1 (q2) and mA = mK = 0.494GeV (JP = 0−) for

6



0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

T(A)

-L(A)

S(V)

-S(A)

L(V)

-T(V)

q

2

[GeV

2

℄

m

2

e

m

2

�

(m

�

0

�m

�

+

)

2

p

q

2

�

h

e

l

i



i

t

y

a

m

p

l

i

t

u

d

e

s

[

G

e

V

2

℄

Figure 1: The q2–dependence of the six independent helicity amplitudes S(V,A) :=
√

q2HV,A
1

2
t
, T (V,A) :=

√

q2HV,A
1

2
1

and L(V,A) :=
√

q2HV,A
1

2
0

multiplied by
√

q2 for the e-mode

(full range) and for the µ–mode (to the right of the vertical line q2 = m2
µ). We also display the

corresponding helicity amplitudes with the contributions of F V
2 (q2) and FA

3 (q2) switched off (dashed
lines).

FA
3 (q2), respectively. The slope of the Regge trajectory is taken as α′ = 0.9GeV−2. The

number of poles in Eq. (14) is determined by the large q2 power counting laws. One thus

has n1 = 1 and n2,3 = 2. For the slopes of the form factors we thus have 1.781, 2.113,

0.983 and 5.241 GeV−2 for F V
1 , F V

2 , FA
1 and FA

3 , respectively. These values correspond to

(“charge”) radii 〈r2〉 of 0.416, 0.494, 0.230 and 1.224 fm2, respectively, for the four above

form factors. The (“charge”) radii of the F V
1 and FA

1 form factors are close to the radii

calculated in [47] using chiral input and a relativistic constituent quark model. The q2–

dependence of the form factors introduces only small effects since the range of q2 is so small

for the Ξ0 → Σ+ transitions. For the largest q2–value q2max = (M1 −M2)
2, the form factors

have only increased by 2.8% (F V
1 ), 3.3% (F V

2 ), 1.5% (FA
1 ) and 8.2% (FA

3 ) from their q2 = 0

values.

Based on these estimates for the invariant form factors we show in Fig. 1 a plot of the

q2–dependence of the six helicity amplitudes. For easier comparability we have plotted

the quantities
√

q2HV,A
λ2λW

. Close to the lower boundary q2 = m2
e the longitudinal and

scalar helicity amplitudes dominate, with HV
1

2
0
≈ HV

1

2
t
and HA

1

2
0
≈ HA

1

2
t
. Close to the upper

boundary at the zero recoil point q2 = (M1 − M2)
2, which is the relevant region for the

µ–mode, the orbital S–wave contributions HV
1

2
t
and HA

1

2
1
= −

√
2HA

1

2
0
are the dominant

amplitudes with HV
1

2
t
= −(F V

1 /FA
1 )HA

1

2
0
when F V

3 = FA
2 = 0. In Fig. 1 we also show

plots of the helicity amplitudes where the contributions of the form factors F V
2 (q2) and

FA
3 (q2) have been switched off. The difference is not discernible at the scale of the plot

for the helicity form factors HV
1

2
0
, HV

1

2
t
, HA

1

2
1
and HA

1

2
0
and is small for HA

1

2
t
. The difference

is, however, sizeable for HV
1

2
1
. This can be understood from Eq. (9) which shows that,

7



even though HV
1

2
1
is small because it is proportional to

√
Q− and thus of overall order

O((M1 −M2)/M1), the relative contribution of F V
2 to HV

1

2
1
is not suppressed by a factor of

O((M1 −M2)/M1) as it is in the other helicity form factors. Thus a measurement of the

helicity form factor HV
1

2
1
would be ideally suited to determine the strength of F V

2 . In fact,

in Sec. 4 we shall discuss a forward-backward asymmetry measure which is proportional

to HV
1

2
1
and is thus well suited for a measurement of F V

2 .

We caution the reader that our ansatz for the form factors is only meant to implement

the gross features of the dynamics of the semileptonic hyperon decays Ξ0 → Σ+ + l− + ν̄l

which will eventually be superseded by the results of a careful analysis of the decay data.

We shall nevertheless use the above minimal model for the Ξ0 → Σ+ form factors to

calculate branching rates, the rate ratio Γ(e)/Γ(µ) and a forward-backward asymmetry in

Sec. 4, the longitudinal and transverse polarizations of the daughter baryon and the lepton

in Sec. 5 and a mean azimuthal correlation parameter in Sec. 6 for this decay. In Sec. 7

we also show some Monte Carlo plots which are again based on the minimal form factor

model.

In the subsequent sections the rate and the angular decay distributions will mostly be

written in terms of bilinear products of the sum of the vector and axial vector helicity

amplitudes

Hλ2λW
= HV

λ2λW
+HA

λ2λW
, (15)

since it is this combination which appears naturally in the master formulas describing the

rate and the various decay distributions. One can of course rewrite the rate and the decay

distributions in terms of bilinear products of the vector and axial vector helicity amplitudes

HV
λ2λW

and HA
λ2λW

. For the decay distributions this can be quite illuminating if one wishes

to identify the overall parity nature of the observables that multiply the angular terms in

the angular decay distributions.

3 Unpolarized decay rate

The differential decay rate is given by (see e.g. [24])

dΓ

dq2dEl

=
G2

F

(2π)3
|Vus|2

1

8M2
1

LµνH
µν , (16)

where Lµν is the usual lepton tensor (ε0123 = +1)

Lµν = pµl p
ν
ν + pνl p

µ
ν −

q2 −m2
l

2
gµν ± iεµναβpl,αpν,β . (17)

As stated in the introduction the upper sign refers to the (l−, ν̄l) case, whereas the lower

sign refers to the (l+, νl) case.
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The hadron tensor Hµν is given by the tensor product of the vector and axial vector

matrix elements defined in Eqs. (1) and (2), cf.

Hµν = (MV +MA)µ (MV +MA)†ν . (18)

Eq. (16) shows that LµνH
µν determines the dynamical weight function in the (q2, El) Dalitz

plot (see e.g. the discussion in [43]). In a Monte Carlo generator one would thus have to

generate events according to the weight LµνH
µν in the (q2, El) Dalitz plot.

The differential q2–distribution can be obtained from Eq. (16) by El–integration, where

the limits are given by (see e.g. [24])

E±
l =

1

2q2

(

q0(q
2 +m2

l )± p(q2 −m2
l )
)

. (19)

Finally, in order to get the total rate one has to integrate over q2 in the limits m2
l 6

q2 6 (M1 −M2)
2.

On reversing the order of integrations, the differential lepton energy distribution can be

obtained from Eq. (16) by q2–integration. The relevant integration limits can be obtained

from the inverse of Eq. (19). One obtains (see e.g. [24])

q2± =
1

a
(b±

√
b2 − ac) , (20)

where

a = M2
1 +m2

l − 2M1El ,

b = M1El(M
2
1 −M2

2 +m2
l − 2M1El) +m2

lM
2
2 ,

c = m2
l

(

(M2
1 −M2

2 )
2 +m2

lM
2
1 − (M2

1 −M2
2 )2M1El

)

.

Using El(max) := Emax = (M2
1 − M2

2 + m2
l )/(2M1) and El(min) := Emin = ml one can

simplify Eq. (20) to write

q2± =
2M2

1

2M1(Emax −El) +M2
2

(

(Emax − El)
(

El ±
√

E2
l −E2

min

)

+
m2

lM
2
2

2M2
1

)

. (21)

Finally, in order to get the total rate, one has to integrate over the lepton energy in the

limits ml 6 El 6 (M2
1 −M2

2 +m2
l )/2M1.

As it turns out the two–dimensional integration becomes much simpler if one considers

the two–fold differential rate with respect to the variables q2 and cos θ instead, where θ is

the polar angle of the lepton in the (l, νl) c.m. system relative to the momentum direction

of the Woff−shell. El and cos θ are related by (see e.g. [24])

cos θ =
2q2El − q0(q

2 +m2
l )

p(q2 −m2
l )

. (22)

9



Differentiating Eq. (22) one has

d cos θ

dEl
=

2q2

p(q2 −m2
l )

, (23)

which leads to the differential decay distribution

dΓ

dq2d cos θ
=

G2
F

(2π)3
|Vus|2

(q2 −m2
l )p

16M2
1 q

2
LµνH

µν . (24)

It is clear from comparing Eqs. (16) and (24) that, when writing a Monte Carlo program,

one should not generate events in the (q2, cos θ) Dalitz plot according to the weight LµνH
µν .

The cos θ dependence of LµνH
µν can be easily worked out by following the methods

described in [24] which is based on the completeness relation for the polarization four–

vectors
∑

m,m′=t,±,0

ǭµ(m)ǭ∗ν(m′)gmm′ = gµν . (25)

The tensor gmm′ = diag(+,−,−,−) is the spherical representation of the metric tensor

where the components are ordered in the sequence m,m′ = t,±1, 0. One can then rewrite

the contraction of the lepton and hadron tensors LµνH
µν as

LµνH
µν = Lµ′ν′gµ′µgν′νH

µν =
∑

m,m′,n,n′

Lµ′ν′ ǭµ′(m)ǭ∗µ(m
′)gmm′ ǭ∗ν′(n)ǭν(n

′)gnn′Hµν

=
∑

m,m′,n,n′

(

Lµ′ν′ ǭµ′(m)ǭ∗ν′(n)

)(

Hµν ǭ∗µ(m
′)ǭν(n

′)

)

gmm′gnn′ . (26)

We shall refer to the second and third lines of Eq. (26) as the semi-covariant representation

of the angular decay distribution.

One has to remember that Eq. (26) refers to the differential rate of the decay of an

unpolarized parent hyperon into a daughter baryon whose spin is not observed. This means

that one has to take into account the additional conditions λ1 = λ′
1 and λ2 = λ′

2 in Eq. (26).

Angular momentum conservation then implies that not all index pairs m = m′ and n = n′

in Eq. (26) can be realized. Taking angular momentum conservation into account one has

diagonal contributions m = m′ = n = n′ = t,±1, 0 as well as nondiagonal contributions

with m = m′ = t and n = n′ = 0 and vice versa.

The point of writing LµνH
µν in the factorized form of Eq. (26) is that each of the two

factors in the second line of Eq. (26) is Lorentz invariant and can thus be evaluated in

different Lorentz frames. The leptonic part will be evaluated in the (l, νl) center–of–mass

(c.m.) frame (or Woff−shell–rest frame) bringing in the decay angle θ, whereas the hadronic

part will be evaluated in the Ξ− rest frame bringing in the helicity amplitudes defined in

Sec. 2.
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Turning to the (l, νl) c.m system the lepton momenta in the (x, y, z)–system read (see

Fig. 3)

pµl = (El ; pl sin θ, 0,−pl cos θ) , (27)

pµν = pl (1,− sin θ, 0, cos θ) .

The angle θ is always measured with respect to the direction of the lepton l, regardless

of whether we are dealing with the (l−, ν̄l) or the (l+, νl) case. Since the orientation in

the (x, y)–plane need not be specified in the present problem we have chosen the lepton

momenta to lie in the (x, z)–plane. El and pl are the energy and the magnitude of the

three-momentum of the charged lepton in the (l, νl) c.m system, respectively, given by

El = (q2 + m2
l )/2

√

q2 and pl = (q2 − m2
l )/2

√

q2. The longitudinal and time-component

polarization four–vectors take the form ǭµ(0) = (0; 0, 0,−1) and ǭµ(t) = (1; 0, 0, 0) whereas

the transverse parts are unchanged from Eq. (5). Using the explicit form of the lepton

tensor Eq. (17) it is then not difficult to evaluate Eq. (26) in terms of the helicity amplitudes

Hλ2λW
of Sec. 2. One obtains

LµνH
µν =

2

3
(q2 −m2

l )

[

3

8
(1∓ cos θ)2|H 1

2
1|2 +

3

8
(1± cos θ)2|H− 1

2
−1|2

+
3

4
sin2 θ(|H 1

2
0|2 + |H− 1

2
0|2)

+
m2

l

2q2

{3

2
(|H 1

2
t|2 + |H− 1

2
t|2) +

3

4
(|H 1

2
1|2 + |H− 1

2
−1|2) sin2 θ

+
3

2
cos2 θ(|H 1

2
0|2 + |H− 1

2
0|2)− 3 cos θ(H 1

2
tH 1

2
0 +H− 1

2
tH− 1

2
0)
}

]

, (28)

where the Hλ2λW
are the sums of the corresponding vector and axial vector helicity am-

plitudes defined in Eq. (15). We mention that the helicity flip factor ml/2q
2 does not give

rise to a singularity since q2 ≥ m2
l .

By explicit verification, or by hindsight, one can show that Eq. (26) can be written very

compactly in terms of Wigner’s dJ–functions. One has what we shall refer to as our first

master formula

LµνH
µν =

1

8

∑

λl,λ2,λW ,λ′
W ,J,J ′

(−1)J+J ′|hl
λlλν=± 1

2

|2×

× δλ2−λW ,λ2−λ′
W
dJ
λW ,λl∓ 1

2

(θ)dJ
′

λ′
W ,λl∓ 1

2

(θ)Hλ2λW
H∗

λ2λ′
W

. (29)

Except for the phase factor (−1)J+J ′

the master formula can in fact be derived by repeated

application of the basic two–body decay formula in Appendix A. The Kronecker δ-function

δλ2−λW ,λ2−λ′
W

in Eq. (29) expresses the fact that we are dealing with the decay of an

11



unpolarized parent hyperon. One has to remember that λW = 0 and λW = t both refer

to the helicity projection 0 (see Sec. 2). Therefore there are nondiagonal interference

contributions between J = 1, λW = 0 and J = 0, λW = t because they are allowed by the

angular momentum conservation condition λ2 − λW = λ2 − λ′
W implying λW = λ′

W . The

interference contributions carry an extra minus sign as can be seen from the phase factor

(−1)J+J ′

in Eq. (29). The phase factor (−1)J+J ′

comes in because of the pseudo–Euclidean

nature of the spherical metric tensor gmm′ defined after Eq. (25).

The sign change in the first line of Eq. (28) going from the (l−, ν̄l) to the (l+, νl) case

can now be seen to result from the products of the relevant elements of the Wigner’s d1–

functions. For example, for λ2 = 1/2, λW = 1 the nonflip contributions (λl = −λν = ∓1/2)

are proportional to (d11,∓1)
2 = (1

2
(1∓ cos θ))2. There are no corresponding sign changes in

the other lines of Eq. (28).

The hλlλν are the helicity amplitudes of the final lepton pair in the (l, ν) c.m. system.

For example, for the (l−, ν̄) case with ~pl− along the positive z-axis, they can be worked

out by using Eq. (4), the negative energy spinor of the massless antineutrino with helicity

λν̄ = 1
2
given by

vν̄(
1
2
) =

√

Eν

(

χ+

−χ+

)

, (30)

and the SM form of the lepton current (λW = λl− − λν̄)

hλl−=∓ 1

2
,λν̄=

1

2
= ūl−(∓1

2
)γµ(1 + γ5)vν̄(

1
2
)

{

ǫµ(−1)

ǫµ(t), ǫµ(0)

}

. (31)

We shall refer to the upper case λl− = −1
2
as the nonflip transition and to the lower case

λl− = 1
2
as the flip transition. Note the unconventional form of the SM lepton current

which is due to the γ5 definition in Sec. 2. The polarization four–vectors are given by

ǫµ(t) = (1; 0, 0, 0), ǫµ(0) = (0; 0, 0, 1) and ǫµ(±1) = (0;∓1,−i, 0)/
√
2. The flip contribution

is identical for λW = t and λW = 0. A similar expression can be written down for the case

(l+, νl) which we shall not work out in explicit form. For the moduli squared of the helicity

amplitudes one finally obtains

nonflip (λW = ∓1) : |hλl=∓ 1

2
,λν=± 1

2
|2 = 8(q2 −m2

l ) , (32)

flip (λW = t, 0) : |hλl=± 1

2
,λν=± 1

2
|2 = 8

m2
l

2q2
(q2 −m2

l ) . (33)

The notation in Eqs.(32) and (33) (and elsewhere in the paper) is such that the upper and

lower signs refer to the configurations (l−, ν̄l) and (l+, νl), respectively. In Eq. (29) the sum

over J, J ′ runs over 0 and 1 and the index λW , λ′
W runs over the four components t,±1, 0.

As remarked on before one has to remember to include the interference contribution from

(J = 0;λW = t) and (J = 1;λW = 0) giving an extra minus sign. The matrix d1mm′ , finally,

is Wigner’s d1–function (d0mm′ = 1 for m,m′ = t) listed in Appendix B.
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The form Eq. (29) readily affords a physical interpretation. Hλ2λW
H∗

λ2λ′
W

determines

the density matrix of the Woff−shell (which happens to be block-diagonal in the present

application). The density matrix is then “rotated” into the direction of the lepton in the

(l, νl) c.m. system with the help of the d1–functions whence the squared helicity amplitudes

|hλlλν |2 determine the helicity dependent rates into the lepton pair.

Performing the sum in Eq. (29) (λl = ±1/2;λW = t,±1, 0; J = 0, 1; J ′ = 0, 1;λ2 =

±1/2) one recalculates Eq. (28). Note that the flip contribution proportional to m2
l /2q

2

and nonflip contributions are clearly separated in Eq. (28). This separation facilitates the

determination of the longitudinal polarization of the lepton to be discussed in Sec. 5.

The differential rate dΓ/dq2 is obtained from Eqs. (24) and (28) by cos θ–integration

which, in a sense, is trivial. One obtains

dΓ

dq2
=
1

3

G2
F

(2π)3
|Vus|2

(q2 −m2
l )

2p

8M2
1 q

2

[

|H 1

2
1|2 + |H− 1

2
−1|2 + |H 1

2
0|2 + |H− 1

2
0|2

+
m2

l

2q2

{

3
(

|H 1

2
t|2 + |H− 1

2
t|2
)

+ |H 1

2
1|2 + |H− 1

2
−1|2 + |H 1

2
0|2 + |H− 1

2
0|2
}

]

. (34)

The remaining q2–integration (m2
l 6 q2 6 (M1−M2)

2) has to be done numerically because

of the nontrivial q2–dependence of the invariant form factors.

A check on Eq. (34) is afforded by recalculating the Standard Model (SM) formula for

semileptonic free quark decay q1 → q2 + l + ν setting F V
1 (q2) = FA

1 (q
2) = 1 and F V,A

2,3 = 0

in Eq. (34). One obtains

dΓSM

dq̂2
= Γ0

(q̂2 − η2)2

q̂4
4p̂

(

− 2q̂4 + q̂2(1 + ρ2) + (1− ρ2)2

+
η2

2q̂2

{

− 2q̂4 − 2q̂2(1 + ρ2) + 4(1− ρ2)2
}

)

, (35)

where we have introduced scaled variables according to p̂ = p/M1, q̂
2 = q2/M2

1 , ρ2 =

M2
2 /M

2
1 and η2 = m2

l /M
2
1 , and where p̂ = 1

2
(1+ ρ4+ q̂4−2ρ2−2q̂2−2ρ2q̂2)1/2 is the scaled

magnitude of the daughter baryon’s three momentum in the rest frame of the parent baryon.

Also we have introduced the Born term rate

Γ0 =
G2

F |Vus|2M5
1

192π3
, (36)

which represents the Standard Model decay of a massive parent fermion into three massless

fermions, i.e. M1 6= 0 and M2, ml, mν = 0. The result Eq. (35) agrees with the SM result

given e.g. in [42].

The q̂2–integration of Eq. (35) can now be done analytically. One obtains
(

η2 6 q̂2 6
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(1− ρ)2
)

ΓSM =Γ0

[

L
(1

2
− 7ρ2 − 7ρ4 + ρ6 + 6η2ρ2 − 7η4ρ2

)

− 24ρ4(1− η4) ln
(1 + ρ2 − η2 − L

2ρ

)

+ (ρ ↔ η)

]

, (37)

where L = (1+ ρ4 + η4− 2ρ2 − 2η2− 2ρ2η2)1/2. Eq. (37) again agrees with the result given

in e.g. [42]. The symmetrization ρ ↔ η in Eq. (37) must be done for both the logarithmic

and nonlogarithmic terms. The symmetry of the rate expression in Eq. (37) under the

exchange (ρ ↔ η) reflects the simple Fierz property of the SM (V − A) coupling. We

mention that a less symmetric form of Eq. (37) has been written down in [48].

We conclude this section with a comment on the relative merits of the two equivalent

decay formulas in Eqs. (26) and (29). In the semi–covariant representation Eq. (26) the

origin of the phase factor (−1)J+J ′

is clearly identified. Also, Eq. (26) does not depend on

the phase conventions chosen for the polarization four-vectors since they always enter in

squared form. This is different in the master formula in Eq. (29) and the master formulas

written down in the following sections. They depend on the correct choice of phases for the

polarization four-vectors and for the matrix elements of Wigner’s dJ–functions. Judging

from the fact that there exist different conventions for these phases in the literature the

reader can appreciate what a hazardous enterprise it can be to get all the signs correct

in the angular decay distributions if one has to rely solely on master formulas without

explication of phase conventions. Whereas the signs of the polar correlations can usually

be checked by angular momentum considerations there is no easy way to check on the signs

of the azimuthal correlations to be discussed in the subsequent sections. In fact, we have

repeatedly used the semi–covariant representation Eq. (26) to check on the correctness of

the phase conventions for the polarization four-vectors and Wigner’s dJ–functions used in

the different master formulas in this paper.

4 Some numerical results

4.1 Total semileptonic rates

In order to obtain the total semileptonic rate we numerically integrate the differential rate

Eq. (34) over q2 in the range m2
l 6 q2 6 (M1−M2)

2 using the minimal model form factors

described in Sec. 2. For the e-mode one obtains

Γ(Ξ0 → Σ+ + e− + ν̄e) = |Vus|2 1.169 · 10−17GeV (38)

This translates into a branching ratio of

BR(Ξ0 → Σ+ + e− + ν̄e) = 2.513 · 10−4 (39)
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where we have used central PDG values for the lifetime of the Ξ0 (τ(Ξ0) = 2.90 · 10−10s)

and the CKM matrix element Vus (Vus = 0.2255) [49]. The branching ratio (39) agrees very

well with the experimental branching ratio BR(Ξ0 → Σ+ + e− + ν̄e) = (2.53± 0.08) · 10−4

[49].

For the µ–mode we obtain

Γ(Ξ0 → Σ+ + µ− + ν̄µ) = |Vus|2 9.893 · 10−20GeV , (40)

which corresponds to a branching ratio of

BR(Ξ0 → Σ+ + µ− + ν̄µ) = 2.127 · 10−6 . (41)

In the PDG listings one finds BR(Ξ0 → Σ+ + µ− + ν̄µ) = (4.6 +1.8
−1.4

) · 10−6 [49]. The

NA48 collaboration has published a preliminary result on this branching ratio which reads

(2.2 ± 0.3 ± 0.2) · 10−6 (102 events) [50, 51] using a much larger data sample than that

of the KTeV Collaboration (nine events) [52] on which the PDG value is based on. Our

branching ratio (41) nicely agrees with the NA48 value but disagrees with the KTeV value

by more than one standard deviation.

As it turns out one can get quite close to the exact results on the total semileptonic rates

in a simplified setting. The resulting formulas are quite useful for a first assessment of the

dominant dynamics of semileptonic hyperon decays. First, one neglects the contributions of

the form factors F V,A
2,3 since they contribute at most atO((M1−M2)/M1). For the remaining

two form factors F V
1 and FA

1 we neglect the q2–dependence since their q2–variation in the

allowed q2–range is is only of O(2%) (see Sec. 2). With these simplifying assumptions the

q2–integration of the differential rate in Eq. (34) can be done analytically. The result is

again written in terms of the scaled variables ρ2 = M2
2 /M

2
1 and η2 = m2

l /M
2
1 , and the form

L = (1 + ρ4 + η4 − 2ρ2 − 2η2 − 2ρ2η2)1/2. One has

Γ/Γ0 =
1

2

(

|F V
1 |2R(ρ, η) + |FA

1 |2R(−ρ, η)

)

, (42)

where

R(ρ, η) = L
(

A+ A(ρ ↔ η)− B
)

−24ρ3
(

(1− η2)2 + ρ2 + ρ(1− η4)
)

lnE

−24η4(1− ρ2)(1− ρ+ ρ2) lnE(ρ ↔ η) , (43)

and where we have used the abbreviations

A =
1

2
− 7ρ2 − 7ρ4 + ρ6 + 6η2ρ2 − 7η2ρ4 ,

B = 2ρ(1− 5η2 − 2η4 + 10ρ2 − 5ρ2η2 + ρ4) ,

E =
1 + ρ2 − η2 − L

2|ρ| . (44)
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Upon setting F V
1 = FA

1 = 1 in Eq. (42) one reproduces the SM rate in Eq. (37).

Numerically, one has BR(Ξ0 → Σ+ + e− + ν̄e) = 2.451 · 10−4 and BR(Ξ0 → Σ+ + µ− +

ν̄µ) = 2.061 · 10−6 using the approximate result Eq. (42) which is off the exact result in

Eqs. (39) and (41) by −2.4% and −3.1%, respectively. These deviations from the exact

model figures provide a measure of the importance of the form factors F V
2 and FA

3 , and

the q2–dependence of the form factors.

Considering the fact that (M1−M2) is small compared to (M1+M2) we expand Eq. (42)

in the variable δ = (M1 −M2)/(M1 +M2) = (1− ρ)/(1 + ρ) where δ = 0.0501 in the case

discussed in this paper. One obtains (see also [54])

Γ/Γ0 =
512

5

1

(1 + δ)8

[

|F V
1 |2

(

1 + 3
|FA

1 |2
|F V

1 |2
)

r(x) δ5 +O(δ7)

]

=
2

5
(1− ρ)5(1 + ρ)3|F V

1 |2
(

1 + 3
|FA

1 |2
|F V

1 |2
)

r(x) +O
(

(1− ρ)7
)

. (45)

The coefficient of the remaining δ7–term and the higher order terms in the small δ

expansion Eq. (45) do not have as simple a structure as the remaining terms in Eq. (45)

but can be calculated to be quite small (0.1% and 0.3%, respectively, in the e– and µ–mode

in the present case). It is curious that the next-to-next correction to Eq. (45) is O(δ9).

The function r(x) in Eq. (45) is given by

r(x) =

√
1− x2

2

(

2− 9x2 − 8x4
)

− 15

2
x4 ln

1−
√
1− x2

x
, (46)

where x = η/(1 − ρ). The overall factor (1 + δ)−8 in Eq. (45) can be seen to arise from

power counting in Eq. (43) considering the fact that ρ and η are proportional to (1+ δ)−1.

The small δ–expansion Eq. (45) is quite remarkable on two accounts. First, it is quite

accurate since the corrections to Eq. (45) set in only at O(δ7) and not at O(δ6) as one

would naively expect, i.e. the corrections to Eq. (45) are only of O(δ2 = 0.00251). From

Eq. (45) one can quickly appreciate that the rate measurement is quite sensitive to the

ratio FA
1 /F

V
1 . Second, it is quite remarkable that Eq. (45) factorizes into a lepton mass

independent and lepton mass dependent term. This will be very useful for a quick estimate

of the rate ratio Γ(e)/Γ(µ) to be discussed in the next subsection.

4.2 The rate ratio Γ(e)/Γ(µ)

Of interest is the rate ratio Γ(e)/Γ(µ) which has been measured by the KTeV collaboration.

Dividing the e-mode rate in Eq. (38) by the µ–mode rate in Eq. (40) we obtain

Γ(e)/Γ(µ) = 118.13 (55.6+22.2
−16.7 [52]) . (47)

We have added the corresponding published experimental rate ratio and its errors from

the KTeV collaboration in brackets. The KTeV value is off by more than two standard
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deviations from the calculated value in Eq. (47). We mention that the NA48 Collaboration

cites a preliminary value of 114.1 ± 19.4 for the rate ratio Γ(e)/Γ(µ) [50, 51] which is in

very good agreement with the calculated result in Eq. (47).

Using the simplified form in Eq. (42) we calculate Γ(e)/Γ(µ) = 118.96 which is quite

close to the full model value in Eq. (47).

Finally, we consider the small δ–approximation of Eq. (42) given by Eq. (45). Since

the small δ–approximation factors into a lepton mass independent part and a lepton mass

dependent part r(x) the rate ratio Γ(e)/Γ(µ) is simply given by the ratio r(xe)/r(xµ). In

particular this shows that, at this level of approximation, the rate ratio does not depend

on the actual values of F V
1 (0) and FA

1 (0). This in turn implies that a measurement of the

rate ratio Γ(e)/Γ(µ) does not reveal much of the dynamics of semileptonic hyperon decays

except for a test of e–µ–universality. Numerically, one obtains

Γ(e)/Γ(µ) = r(xe)/r(xµ) = 118.71 , (48)

which is quite close to the corresponding ratio of 118.96 calculated in the simplified set-

ting according to formula Eq. (42) as one would expect from the quality of the small

δ–approximation Eq. (45).

4.3 Forward-backward asymmetry

A very useful measure is the forward-backward asymmetry of the lepton in the W−
off−shell

rest frame (or (l, νl) c.m. frame) defined by

AFB(q
2) =

dΓ/dq2(forward)− dΓ/dq2(backward)

dΓ/dq2(forward) + dΓ/dq2(backward)

:=
N(q2)

D(q2)
. (49)

The numerator factor can be calculated from Eqs. (24) and (28) and reads

N(q2) =
G2

F

(2π)3
|Vus|2

(q2 −m2
l )

2p

8M2
1 q

2

[

∓HV
1

2
1
HA

1

2
1
− 2

m2
l

2q2
(HV

1

2
t
HV

1

2
0
+HA

1

2
t
HA

1

2
0
)

]

.

The denominator factor is simply given by the differential rate Eq. (34), i.e. D(q2) =

dΓ/dq2.

For ml = 0 (which is realized for the e–mode for all practical purposes) the forward-

backward asymmetry can be seen to be directly proportional to the helicity amplitude HV
1

2
1

and is thus very sensitive to the ratio of form factors F V
2 /F V

1 as discussed in Sec. 2. In the

µ–mode there is in addition some sensitivity to the helicity amplitude HA
1

2
t
which implies

a certain sensitivity to the form factor ratio FA
3 /FA

1 . Looking at the size and signs of the
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helicity amplitudes in Fig. 1 one finds that the forward-backward asymmetry is positive

for the Ξ0 → Σ+ transition in the e–mode and negative for the µ–mode.

When averaging AFB(q
2) over q2 the q2 integration has to be done separately in the

numerator and the denominator of Eq. (49). Using again the minimal form factor model

of Sec. 2 we obtain

〈AFB〉(e−mode) = 0.081 (0.014) , (50)

where we have added the corresponding value with F V
2 switched off in brackets. The big

difference between the two numbers in Eq. (50) underscores the sensitivity of the forward–

backward measure to the form factor ratio F V
2 /F V

1 . For the µ–mode one obtains

〈AFB〉(µ−mode) = −0.082 (−0.115;−0.087) , (51)

where the two figures in brackets refer to F V
2 and FA

3 , respectively, being switched off.

There still is a sensitivity to the ratio F V
2 /F V

1 , but at a much reduced level compared to

the e–mode. The second number in the brackets of Eq. (51) indicates that there is a very

small sensitivity to the ratio FA
3 /FA

1 .

5 Single spin polarization effects

5.1 Polarization of the daughter baryon

The lepton-hadron contraction LµνH
µν given in Eqs. (28) and (29) can be separated into

contributions of positive and negative helicities of the daughter baryon denoted by LµνH
µν
±±.

They are given by

LµνH
µν
++(θ) =

2

3
(q2 −m2

l )

[

3

8
(1∓ cos θ)2|H 1

2
1|2 +

3

4
sin2 θ|H 1

2
0|2

+
m2

l

2q2

{

3

2
|H 1

2
t|2 +

3

4
|H 1

2
1|2 sin2 θ

+
3

2
cos2 θ|H 1

2
0|2 − 3 cos θH 1

2
tH 1

2
0

} ]

, (52)

LµνH
µν
−−(θ) =

2

3
(q2 −m2

l )

[

3

8
(1± cos θ)2|H− 1

2
−1|2 +

3

4
sin2 θ|H− 1

2
0|2

+
m2

l

2q2

{

3

2
|H− 1

2
t|2 +

3

4
|H− 1

2
−1|2 sin2 θ

+
3

2
cos2 θ|H− 1

2
0|2 − 3 cos θH− 1

2
tH− 1

2
0

} ]

. (53)

This allows one to compute the component Pz of the polarization vector along the

direction of ~p2 in the rest system of B1. One obtains

Pz(θ) =
LµνH

µν
++ − LµνH

µν
−−

LµνH
µν
++ + LµνH

µν
−−

. (54)
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On average2 one has 〈Pz〉 = −0.65 and 〈Pz〉 = −0.33, respectively, for the e−–mode and

µ−–modes.

In a similar vein the polarization of the daughter baryon in the x–direction can be

obtained from Eq. (29) by leaving the helicity label λ2 unsummed. The product of helicity

amplitudes now reads Hλ2λW
H∗

λ′
2
λ′
W

and the Kronecker δ turns into δλ2−λW , λ′
2
−λ′

W
because,

again, the parent baryon is taken to be unpolarized. As before, λW = t and λW = 0 have

zero helicity but transform as J = 1 and J = 0, respectively. One obtains

Px(θ) =
2LµνH

µν
+−

LµνH
µν
++ + LµνH

µν
−−

, (55)

where

2LµνH
µν
+−(θ) =− 2

3
(q2 −m2

l )

[

3

2
√
2
sin θ(±1− cos θ)H 1

2
1H− 1

2
0

+
3

2
√
2
sin θ(±1 + cos θ)H 1

2
0H− 1

2
−1

+
m2

l

2q2

{ 3√
2
sin θ cos θ(H 1

2
1H− 1

2
0 −H 1

2
0H− 1

2
−1)

− 3√
2
sin θ(H 1

2
1H− 1

2
t −H 1

2
tH− 1

2
−1)
}

]

. (56)

Of course, if one does not define a transverse reference direction the specification of Px

does not make physical sense per se. Such a transverse reference direction is e.g. provided

by the transverse momentum of the lepton in the semileptonic decay. In fact, we shall see

in Sec. 6 how the density matrix of the daughter baryon enters the joint angular decay

distribution of the cascade decay Ξ0 → Σ+(→ p + π+) + l− + ν̄l where the transverse

reference direction is defined by the decay Σ+ → p+π+. The polarization component Py is

zero because we assume that the invariant amplitudes and thereby the helicity amplitudes

are relatively real. On average one has 〈Px〉 = −0.57 and 〈Px〉 = −0.17, respectively, for

the e−–mode and µ−–modes.

5.2 Polarization of the lepton

The lepton–side flip– and nonflip–contributions to LµνH
µν are clearly identifiable as can

be seen by an inspection of Eqs. (29) and (34). One can thus directly write down the

longitudinal polarization of the lepton for the decay of an unpolarized parent hyperon at

no extra cost. One has

P (l)
z = ±LµνH

µν(flip)− LµνH
µν(nonflip)

LµνHµν(flip) + LµνHµν(nonflip)
. (57)

2When averaging Pz over q2 one has to separately integrate the numerator and denominator of Eq. (54)
after restoring the factor p(q2 −m2

l
)/q2 in both the numerator and the denominator.
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For the decay Ξ0 → Σ++l−+ν̄l the longitudinal polarization of the electron is ≈ −100%

over most of the range of q2 because me ≈ 0. This changes only for q2–values very close to

the threshold q2 = m2
e. For the µ−–mode the longitudinal polarization is quite small and

negative and remains smaller than ∼ 30% in magnitude over the whole q2–range as Fig. 2

shows. On average one has 〈P (µ−)
z 〉 = −0.18. Judging from the fact that P

(µ−)
z is small the

helicity flip and nonflip contributions are of almost equal importance for the µ−–mode.

It is important to realize that the longitudinality of the polarization P
(l)
z is defined with

respect to the momentum direction of the lepton in the (l, νl) c.m. system and not with

respect to the momentum direction of the lepton in the rest system of the parent baryon

Ξ0. If one needs to avail of the longitudinal polarization in the latter frame this can also

be done using the helicity method as has been shown in [27].

As before, the transverse polarization of the lepton can also be obtained from Eq. (29)

by leaving the helicity label λl in Eq. (29) unsummed. One then obtains the density matrix

of the lepton which we write as (LµνH
µν)λlλl′

. This allows one to extract also the transverse

polarization of the lepton P
(l)
x . One obtains (see also [42])

P (l)
x (θ) =

2(LµνH
µν)+−

(LµνHµν)++ + (LµνHµν)−−
. (58)

In order to evaluate Eq. (58) for the (l−, ν̄) case one needs the relation h 1

2

1

2
=

√

m2
l /2q

2 h− 1

2

1

2
. In Fig. 2 we show the q2–dependence of the transverse polarization of the

µ− in the decay Ξ0 → Σ++l−+ν̄l. The transverse polarization starts off at rather high pos-

itive values close to q2min = m2
µ and drops to zero at the zero recoil point q2max = (M1−M2)

2.

For the e− the transverse polarization is practically zero over the whole q2–range. Because

of the lack of structure in the e−–case we do not show a plot of the polarization of the

electron.
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Figure 2: Longitudinal and transverse polarization of the µ− in the (µ−, ν̄µ) c.m. system.
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Figure 3: Definition of the polar angles θ and θP , and the azimuthal angle χ describing the decay
of a polarized Ξ0 using the lepton side as polarization analyzer. ~P denotes the polarization vector of
the Ξ0. The coordinate system (xl, yl, zl) is obtained from the coordinate system (x, y, z) by a 180◦

rotation around the y–axis.

5.3 Decay of a polarized parent baryon

In this subsection we consider the decay of a polarized parent baryon and in turn determine

the angular decay distributions of the leptonic side and the hadronic side relative to the

polarization of the parent baryon. The polarization of the parent baryon is described by

the density matrix

ρλ1λ
′

1
(θP) =

1

2

(

1 + P cos θP P sin θP
P sin θP 1− P cos θP

)

, (59)

where we have assumed that the polarization vector of the parent baryon lies in the (x, z)–

plane with positive x–component as shown in Figs. 3 and 4. The rows and columns of the

matrix in Eq. (59) are labeled in the order (1/2,−1/2).

5.3.1 Lepton side as polarization analyzer

The angular decay distribution is a straightforward generalization of Eq. (28) where one

now has to include the density matrix of the decaying parent baryon B1. Also, the rotation

of the density matrix of the Woff−shell into the direction of the lepton now involves also the

azimuthal angle χ. This brings in the phase factor ei(λW−λ′
W )(π−χ). The appropriate angle

entering the phase factor is (π − χ) since the azimuthal angle has to be specified in the

leptonic (xl, yl)–plane (see Fig. 3). Using Appendix A, one obtains the master formula

W (θ, χ, θP ) ∝
∑

λl,λ2,λW ,λ′
W ,J,J ′

ρλ2−λW ,λ2−λ′
W
(θP )(−1)J+J ′|hl

λlλν=±1/2|2ei(λW−λ′
W )(π−χ)×

× dJλW ,λl−λν
(θ)dJ

′

λ′
W ,λl−λν

(θ)Hλ2λW
H∗

λ2λ′
W
, (60)

where λν = ±1/2 (λν = 1/2 for (l−, ν̄l) and λν = −1/2 for (l+, νl)).

Doing the helicity sums and putting in the correct normalization one obtains

dΓ

dq2d cos θdχd cos θP
=

1

6

G2
F

(2π)4
|Vus|2

(q2 −m2
l )

2p

8M2
1 q

2
×
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×
[

3

8
(1∓ cos θ)2|H 1

2
1|2(1− P cos θP ) +

3

8
(1± cos θ)2|H− 1

2
−1|2(1 + P cos θP )

+
3

4
sin2 θ

(

|H 1

2
0|2(1 + P cos θP ) + |H− 1

2
0|2(1− P cos θP )

)

± 3

2
√
2
P sin θ cosχ sin θP

(

(1∓ cos θ)H 1

2
1H 1

2
0 + (1± cos θ)H− 1

2
−1H− 1

2
0

)

+
m2

l

2q2

{

3

2
|H 1

2
t|2(1 + P cos θP ) +

3

2
|H− 1

2
t|2(1− P cos θP )

− 3 cos θ
(

H 1

2
tH 1

2
0(1 + P cos θP ) +H− 1

2
tH− 1

2
0(1− P cos θP )

)

+
3

2
cos2 θ

(

|H 1

2
0|2(1 + P cos θP ) + |H− 1

2
0|2(1− P cos θP )

)

+
3

4
sin2 θ

(

|H 1

2
1|2(1− P cos θP ) + |H− 1

2
−1|2(1 + P cos θP )

)

− 3√
2
P sin θ cosχ sin θP (H 1

2
1H 1

2
t −H− 1

2
−1H− 1

2
t)

+
3√
2
P sin θ cos θ cosχ sin θP (H 1

2
1H 1

2
0 −H− 1

2
−1H− 1

2
0)

}]

. (61)

A similar result was published in [33]. However, our result in Eq. (61) does not agree with

the corresponding result in [33].

5.3.2 Hadron side as polarization analyzer

Following the familiar procedure of building up the cascade decay in a quasi-factorized

form one obtains the master formula

W (θB, φB, θP ) ∝
∑

λl,λW ,λ′
W ,J,J ′,λ2,λ′

2
,λ3

(−1)J+J ′

ρλ2−λW ,λ′
2
−λ′

W
(θP )Hλ2λW

H∗
λ′
2
λ′
W
×

×
∫ 2π

0

dφl

∫ 1

−1

d cos θ |hl
λlλν=±1/2|2ei(λW−λ′

W )φl×

× dJλW ,λl−λν
(θ)dJ

′

λ′
W ,λl−λν

(θ)ei(λ2−λ′
2)φBd

1

2

λ2λ3
(θB)d

1

2

λ′
2
λ3
(θB) |hB

λ30|2 , (62)

where the hB
λ30

are the helicity amplitudes of the decay B2 → B3 + π. Latter decay is as

usual characterized by the asymmetry parameter

αB =
|hB

1

2
0
|2 − |hB

− 1

2
0
|2

|hB
1

2
0
|2 + |hB

− 1

2
0
|2 . (63)

The asymmetry parameter for the nonleptonic decay Σ+ → p+π0 relevant to this paper is

given by αB = −0.980+0.017
−0.015

[49]. Note that the phase factor in Eq. (62) now is exp[i(λ2 −
λ′
2)φB] which is appropriate for the azimuthal angle φB measured relative to the (x, z)–plane

(see Fig. 4).
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Figure 4: Definition of the polar angles θB and θB and the azimuthal angle φB in the cascade decay
of a polarized Ξ0 using the hadron side as polarization analyzer.

Doing the helicity sum and the integration in Eq. (62), and putting in the correct

normalization one obtains

dΓ

dq2dcos θBdφBdcos θP
=B(B2 → B3 + π)

1

12

G2
F

(2π)4
|Vus|2

(q2 −m2
l )

2p

8M2
1 q

2
× (64)

×
[

(1 +
m2

l

2q2
)(1 + αB cos θB)(1− P cos θP )|H 1

2
1|2

+ (1 +
m2

l

2q2
)(1− αB cos θB)(1 + P cos θP )|H− 1

2
−1|2

+ (1 +
m2

l

2q2
)(1 + αB cos θB)(1 + P cos θP )|H 1

2
0|2

+ (1 +
m2

l

2q2
)(1− αB cos θB)(1− P cos θP )|H− 1

2
0|2

+ 2PαB sin θB cos φB sin θPH 1

2
0H− 1

2
0

+
m2

l

2q2

{

(1 + αB cos θB)(1 + P cos θP ) 3 |H 1

2
t|2

+ (1− αB cos θB)(1− P cos θP ) 3 |H− 1

2
t|2

+ 2PαB sin θB cos φB sin θP (H 1

2
0H− 1

2
0 + 3H 1

2
tH− 1

2
t)

}]

, (65)

where B(B2 → B3 + π) is the branching fraction of the nonleptonic decay B2 → B3 + π.

6 Joint angular decay distribution

Following the familiar procedure the joint angular decay distribution for the semileptonic

cascade decay B1 → B2(→ B3 + π) + l + νl of an unpolarized parent baryon B1 can be
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Figure 5: Definition of the polar angles θ and θB , and the azimuthal angle χ in the joint angular
decay distribution of an unpolarized Ξ0 in the cascade decay Ξ0 → Σ+(→ p + π0) + l− + ν̄l. The
coordinate system (xl, yl, zl) is obtained from the coordinate system (x, y, z) by a 180◦ rotation around
the y–axis.

derived from the master formula3

W (θ, χ, θB) ∝
∑

λl,λW ,λ′
W ,J,J ′,λ2,λ′

2
,λ3

(−1)J+J ′|hl
λlλν=±1/2|2ei(λW−λ′

W )(π−χ)δλ2−λW ,λ′
2
−λ′

W
×

× dJλW ,λl−λν
(θ)dJ

′

λ′
W ,λl−λν

(θ)Hλ2λW
H∗

λ′
2
λ′
W
d

1

2

λ2λ3
(θB)d

1

2

λ′
2
λ3
(θB)|hB

λ30|
2 . (66)

The polar angles θ, θB and the azimuthal angle χ are defined in Fig. 5. The Kronecker δ

in Eq. (66) expresses the fact that we are dealing with the decay of an unpolarized parent

hyperon which implies λ2 − λW = λ′
2 − λ′

W .

When writing down the corresponding normalized decay distribution we shall as before

assume that the helicity amplitudes are relatively real. One obtains

dΓ

dq2d cos θdχd cos θB
= B(B2 → B3 + π)

1

6

G2
F

(2π)4
|Vus|2

(q2 −m2
l )

2p

8M2
1 q

2
×

×
[

3

8
(1∓ cos θ)2|H 1

2
1|2(1 + αB cos θB) +

3

8
(1± cos θ)2|H− 1

2
−1|2(1− αB cos θB)

+
3

4
sin2 θ

(

|H 1

2
0|2(1 + αB cos θB) + |H− 1

2
0|2(1− αB cos θB)

)

± 3

2
√
2
αB sin θ cosχ sin θB

(

(1∓ cos θ)H− 1

2
0H 1

2
1 + (1± cos θ)H 1

2
0H− 1

2
−1

)

+
m2

l

2q2

{

3

2
|H 1

2
t|2(1 + αB cos θB) +

3

2
|H− 1

2
t|2(1− αB cos θB)

− 3 cos θ
(

H 1

2
tH 1

2
0(1 + αB cos θB) +H− 1

2
tH− 1

2
0(1− αB cos θB)

)

+
3

2
cos2 θ

(

|H 1

2
0|2(1 + αB cos θB) + |H− 1

2
0|2(1− αB cos θB)

)

(67)

3Much to the embarrassment of one of the present authors (JGK) there was a sign mistake in the
azimuthal correlation term of the corresponding joint angular decay distribution written down in [28] for
the semileptonic decay Λc → Λ(→ p + π−) + l+ + νl (ml = 0). The source of this error was that in
[28] we used the phase factor exp [i(λW − λ′

W)(−χ)] instead of the correct form exp [i(λW − λ′

W)(π − χ)]
to determine the sign of the azimuthal correlation term. This error was discovered and rectified through
experimental evidence [55].
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+
3

4
sin2 θ

(

|H 1

2
1|2(1 + αB cos θB) + |H− 1

2
−1|2(1− αB cos θB)

)

− 3√
2
αB sin θ cosχ sin θB(H− 1

2
tH 1

2
1 −H 1

2
tH− 1

2
−1)

+
3√
2
αB sin θ cos θ cosχ sin θB(H− 1

2
0H 1

2
1 −H 1

2
0H− 1

2
−1)

}]

. (68)

We have performed several checks on the correctness of the signs of the azimuthal

correlation terms by using the semi–covariant representation Eq. (26) and even doing a

full-fledged covariant calculation4. The overall sign of the nonflip azimuthal correlation

terms (sixth and seventh line in Eq. (67)) corrects the sign mistake in [28]. Note the

reciprocity of the angular decay distributions Eq. (61) and Eq. (67). One obtains Eq. (67)

from Eq. (61) by the substitutions (1+ sign{λ2 −λW}P cos θP → (1+ sign{λ2}αB cos θB)

for the polar correlation terms and P sin θPHλ2λW
Hλ2λ′

W
→ αB sin θBHλ2λW

H−λ2λ′
W

in the

azimuthal correlation terms.

Eq. (67) can be cast into a form where the dependence on the polarization vector of

the daughter baryon becomes explicit. One has

dΓ

dq2d cos θdχd cos θB
=B(B2 → B3 + π)

1

4

G2
F

(2π)4
|Vus|2

(q2 −m2
l )p

8M2
1 q

2
LµνH

µν×

× (1 + PzαB cos θB + PxαB cos(π − χ) sin θB) , (69)

where LµνH
µν , Pz and Px are given in Eqs. (28), (54) and (55), respectively. When

integrating Eq. (69) over cos θ, cos θB and q2 one can define a mean azimuthal correlation

parameter 〈γ 〉 through the relation Γ ∼ 1+〈γ 〉 cosχ. Using again the minimal form factor

model of Sec. 2 one finds the numerical values 〈γ 〉 = −0.44 and 〈γ 〉 = −0.13 in the e– and

µ–modes, respectively, for the mean azimuthal correlation parameter.

At zero–recoil one finds a rather simple expression for the above azimuthal correlation

parameter. It reads

γzero recoil =
αBπ

2

16

1− 2
√
2
m2

l

2q2
HV

1

2
t
/HA

1

2
1

1 +
m2

l

2q2
(1 + 2|HV

1

2
t
|2/|HA

1

2
1
|2)

. (70)

which gives γ = −0.61 and γ = −0.17, respectively, in the e– and µ–mode in the minimal

form factor model described in Sec. 2. Eq. (70) shows that, in the e–mode and at zero

recoil, the azimuthal correlation parameter is independent of the form factors as stated

before in [28]. In the µ–mode, however, the azimuthal correlation parameter at zero recoil

does depend on the form factors through the ratioHV
1

2
t
/HA

1

2
1
. Since HV

1

2
t
/HA

1

2
1
= F V

1 /(
√
2FA

1 )

4It is fair to say that the transcription of the results of a covariant calculation into the helicity frame
results used in this paper takes considerable amount of calculational effort.
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at zero recoil (assuming F V
3 = FA

2 = 0) this would afford the opportunity to determine

the ratio F V
1 /FA

1 through a zero recoil or near zero recoil measurement of the azimuthal

correlation parameter in the µ–mode.

7 Monte Carlo event generation and sample plots

In this section we present a few sample distributions generated from our event generator in

order to demonstrate the viability of our generator. As dynamical input for the form factors

we used the minimal form factor model described at the end of Sec. 2, or slight variations on

it. Of course, any other dynamical model can be used as input in the event generator. For

the angular decay distribution we used the full five-fold decay distribution from Appendix D

describing the full decay chain Ξ0(↑) → Σ+(→ p+ π0) +W−
off−shell(→ l− + ν̄l). Masses and

the decay asymmetry parameter are taken from [49].

ν -eΘcos 
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

ar
bi

tr
ar

y 
un

it
s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(0) = 1.001
A(0) / FV

1F
(0) = 1.261

A(0) / FV
1F

(0) = 1.501
A(0) / FV

1F

Figure 6: Angle between the electron and the neutrino in the Ξ0 rest frame for different values of
the ratio FA

1 (0)/F V
1 (0).

  [GeV]eE

0.02 0.04 0.06 0.08 0.1 0.12

ar
bi

tr
ar

y 
un

it
s

0

0.02

0.04

0.06

0.08

0.1

(0) = 1.31
V(0) / F2

VF
(0) = 2.61

V(0) / F2
VF

(0) = 3.91
V(0) / F2

VF

Figure 7: Energy spectrum of the electron for different values of the ratio F V
2 (0)/F V

1 (0) in the Ξ0

rest frame.

26



/xΣΘcos 

-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

ar
bi

tr
ar

y 
un

it
s

0

0.05

0.1

0.15

0.2

0.25

0.3

 =  -100%xP

 =  0%xP

 =  +100%xP

p/xΘcos 

-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

 =  -100%xP

 =  0%xP

 =  +100%xP

Figure 8: Left: Angle between Σ+ and x axis in the Ξ0 rest frame. Right: Angle between proton
and x axis in the Σ+ rest frame for different initial state polarizations of the Ξ0 hyperon.

  [GeV]lE

0.02 0.04 0.06 0.08 0.1 0.12

ar
bi

tr
ar

y 
un

it
s

0

0.005

0.01

0.015

0.02

0.025

0.03  decay mode-µ

 decay mode-e

Figure 9: Comparison of lepton spectra for the e– and µ–mode

The implementation was done as follows. We first generated the 3-body phase space

of the primary decay Ξ0 → Σ+ +W−
off−shell using the widely used function genbod from the

CERNLIB [72] library. Without loss of generality, the axis of the initial state polarization

of the parent baryon was chosen to point along the lab x–axis. The momenta of the decay

products of the secondary decays Σ+ → p + π0 and W−
off−shell → l− + ν̄l were generated

with uniformly distributed directions. Since the secondary decays are two-body decays, the

moduli of the respective momenta are fixed. The resulting momentum vectors were used

to obtain the angles and momenta needed to calculate the value of the matrix element.

This result was multiplied by the phase space factor of the primary decay returned by

the genbod routine. Applying an acceptance-rejection method, the whole procedure was

repeated until a generated event was no longer discarded.

In Fig. 6 we show a plot of the dependence of the rate on the angle between the

electron and the neutrino in the Ξ0 rest frame. In order to exhibit the sensitivity of this
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distribution to the form factor ratio FA
1 (0)/F V

1 (0) we also show corresponding distributions

with slightly varied form factor ratios. We mention that the distribution Fig. 6 and the

following distributions are normalized to unity.

In Fig. 7 we show the electron energy spectrum and its dependence on the form factor

ratio F V
2 (0)/F V

1 (0). In Fig. 8 we show plots of the angular dependence of the angle between

the Σ+ and the x axis in the Ξ0 rest frame (left) and between the proton and the x axis in

the Σ+ rest frame (right) for different polarizations of the parent Ξ0 hyperon. In order to

demonstrate the dependence on lepton mass effects, in Fig. 9 we show the energy spectra

of the electron and the muon in the rest frame of the parent Ξ0.

8 Summary and conclusions

We have worked out the angular decay distributions that govern the semileptonic cascade

decay Ξ0 → Σ+(→ p + π0) + W−
off−shell(→ l− + ν̄l) using a cascade-type analysis. The

cascade-type analysis has certain advantages, the main advantage being that one obtains

the decay distributions in a compact quasi-factorized form. This leads to rather compact

forms for the decay distributions. In our analysis we have included lepton mass effects as

well as polarization effects of the decaying parent hyperon. We have always indicated the

necessary sign changes when going from the (l−, ν̄l) case to the (l+, νl) case. Our angular

decay formulae are thus applicable also to the semileptonic hyperon decay Σ+ → Λ+e++νe,

or to semileptonic charm baryon decays induced by the transition c → s+ l+ + νl and also

to the decays t → b + l+ + νl . It should be clear that our angular decay formula are

also applicable to the corresponding nonleptonic baryon decays involving vector mesons

(λW = ±, 0) or pseudoscalar mesons (λW = t). In this case one has to omit the interference

contributions between the time-component and the space-components of the currents.

Of interest are also the corresponding semileptonic antihyperon decays. The angular

decay distributions of semileptonic antihyperon decays can be obtained from the corre-

sponding angular decay distributions of the semileptonic hyperon decays by the replace-

ments Hλ2λW
(B) → Hλ2λW

(B̄), αB → αB̄ and changing from the (l−, ν̄l) to the (l+, νl)

case (or vice versa). Neglecting again CP–violating effects one has from CP -invariance

Hλ2,λW
(B̄) = H−λ2,−λW

(B) and αB̄ = −αB. One can verify that the decay distributions

in Eqs. (61), (64) and (67) are form invariant under Hλ2λW
→ H−λ2−λW

, αB → −αB and

P → −P as follows from CP–invariance. We mention that the NA48 collaboration has

recently observed the decay Ξ0 → Σ+e+νe and, based on 555 events, have given a branching

ratio of (2.55± 0.14stat ± 0.10syst) · 10−4 for this semileptonic antihyperon decay [53].

We have summed over the helicity states of the final particles assuming that their

polarization go unobserved. This corresponds to taking the trace of the density matrix of

28



the final particles. It is clear that one can equally well calculate the density matrix of the

final state particles by leaving the relevant helicity index unsummed. This was illustrated

for the density matrix of the final lepton in the semileptonic decay process.

Doing the helicity sums in the master formulas listed in this paper by hand can become

quite cumbersome. However, this task can be automated and can be left to the computer.

The relevant Mathematica codes can be obtained from A. Kadeer. We mention also that

the helicity frame analysis used in this paper can be easily transcribed to a transversality

frame analysis (see e.g. [24]) where the z–axis is perpendicular to the hadron plane . In

fact, any choice of z–axis in the analysis will provide the same total amount of information

on the dynamics of the process entailed in the invariant amplitudes. It is then a question

of experimental exigency of whether to analyze angular decay distributions in the helicity

frame or the transversality frame, or, for that matter, in any other frame.

For the sake of conciseness we have written our results in terms of bilinear products of

the helicity amplitudes Hλ2λW
= HV

λ2λW
+HA

λ2λW
instead of bilinear products of the vector

and axial vector helicity amplitudes HV
λ2λW

and HA
λ2λW

. Writing the decay distributions in

terms of HV
λ2λW

and HA
λ2λW

can be quite illuminating if one wishes to identify the overall

parity nature of the observables that multiply the angular terms in the angular decay

distributions.

We have formulated a minimal form factor model assuming SU(3) symmetry at zero

momentum transfer and a canonical q2–dependence of the form factors. We have used this

minimal form factor model to numerically calculate a few observables such as branching

rates, the rate ratio Γ(e)/Γ(µ), a lepton–side forward-backward asymmetry, the longitu-

dinal and transverse polarizations of the daughter baryon and the lepton and a mean

azimuthal correlation parameter in the decay Ξ0 → Σ+(→ p+ π0) + l− + ν̄l.

We have written a Monte Carlo event generator which is based on the angular decay

distributions derived in this paper. Among others, the event generator allows one to gener-

ate events in the parent baryon rest frame. The MC program can be obtained from Rainer

Wanke of the NA48 Collaboration (Rainer.Wanke@uni-mainz.de). We have presented a

few decay distributions and correllations based on this event generator. We have, however,

not systematically investigated which observables would be optimal to obtain the maximal

possible information on the underlying dynamics encapsuled in the invariant form factors

or the helicity amplitudes. A discussion of these issues also using parent baryon rest frame

decays can be found in e.g. [7].

We did not provide an in–depth analysis of the dynamics of semileptonic hyperon de-

cays as is necessary if one wants to extract a value of the CKM matrix element Vus from

semileptonic hyperon decay data. This issue was discussed in [56, 57, 58, 59]. We mention

that there has been some recent progress in the dynamical description of strangeness chang-
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ing semileptonic hyperon transition form factors from the lattice community [60, 61, 62]

and in the framework of chiral symmetry [47, 66] including the explicit calculation of chiral

corrections [63, 64, 65].

We finally emphasize that we have not included CP–violating effects or radiative cor-

rections in our analysis. The latter can be included using the results of [7]. It will be

interesting to find out how the radiative corrections will affect the angular decay distribu-

tions.
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A Two-body decay of a polarized particle in the he-

licity formalism

In deriving the two–body decay of a polarized spin J particle in the helicity formalism we

shall closely follow the approach of [67, 68]. Consider the two particle decay a → b + c of

a spin Ja particle where the polarization of particle a in the frame (x0, y0, z0) is given by

ρ0λaλ′
a
. Consider a second frame (x, y, z) obtained from (x0, y0, z0) by the rotation R(θ, φ, 0)

and whose z–axis is defined by particle b. The polarization density matrix ρ in the frame

(x, y, z) is obtained by a “rotation” of the density matrix ρ0 from the frame (x0, y0, z0)

to the frame (x, y, z). The rate for a → b + c is then given by the the sum of the decay

probabilities |Hλbλc|2 (with λa = λb − λc) weighted by the diagonal terms of the density

matrix ρ of particle a in the frame (x, y, z). Thus we find

Γa→b+c(θ, φ) ∝
∑

λa,λ′
a,λb,λc

|Hλbλc|2DJ∗
λa,λb−λc

(θ, φ) ρ0λa,λ′
a
DJ

λ′
a,λb−λc

(θ, φ) (A1)

where

DJ
m,m′(θ, φ) = e−imφdJmm′(θ) . (A2)
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All the master formulas written down in this paper can be obtained by a repeated

application of the basic two-body formula Eq. (A1).

B Wigner’s dJ–functions for J=1/2 and J=1

For definiteness we list explicit forms for the two dJ–functions of Wigner used in this paper.

We use the convention of Rose [69] which is also the convention of [49] . One has

d
1/2
mm′(θ) =

(

cos θ/2 − sin θ/2
sin θ/2 cos θ/2

)

(B1)

for J = 1
2
and

d1mm′(θ) =







1
2
(1 + cos θ) − 1√

2
sin θ 1

2
(1− cos θ)

1√
2
sin θ cos θ − 1√

2
sin θ

1
2
(1− cos θ) 1√

2
sin θ 1

2
(1 + cos θ)






(B2)

for J = 1. The rows and columns are labeled in the order (1/2,−1/2) and (1, 0,−1),

respectively.

C T–odd contributions

In the main text we have assumed that the invariant form factors and thereby the helicity

amplitudes are relatively real. If one allows for relative phases between the helicity am-

plitudes one will obtain so–called T–odd contributions in the angular decay distributions.

They appear in the azimuthal correlation terms as can be seen by the following example

taken from the joint angular decay distribution in Sec. 6. One of the azimuthal correlation

terms derives from the helicity configurations (λ2 = −1/2, λW = 0;λ′
2 = 1/2, λ′

W = 1) and

(λ2 = 1/2, λW = 1;λ′
2 = −1/2, λ′

W = 0). Picking out the relevant terms in the master

formula Eq. (66) one has

H 1

2
1H

∗
− 1

2
0
ei(π−χ) +H− 1

2
0H

∗
1

2
1
e−i(π−χ) = −2 cosχRe(H 1

2
1H

∗
− 1

2
0
)− 2 sinχ Im(H 1

2
1H

∗
− 1

2
0
) .

(C1)

The cosχ dependent term already appears in Eq. (67) whereas the sinχ dependent term

has been dropped in Eq. (67) because of the relative reality assumption for the helic-

ity amplitudes. Adding the relevant θ and θB dependent trigonometric functions in

the above azimuthal correlation term one has the two angle dependent T–odd terms

(sin θ sinχ sin θB Im(H 1

2
1H

∗
− 1

2
0
)) and (cos θ sin θ sinχ sin θB Im(H 1

2
1H

∗
− 1

2
0
)) proportional to

sinχ.
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Next we rewrite the product of angular factors in terms of scalar and pseodoscalar

products using the momentum representations in the (x, y, z)–system (see Fig. 5). For the

normalized momenta one has (p̂2 = 1)

p̂l− = (sin θ cosχ, sin θ sinχ,− cos θ) , (C2)

p̂W = (0, 0,−1) ,

p̂Σ+ = (0, 0, 1) ,

p̂p = (sin θB , 0, cos θB) ,

where the momenta have unit length indicated by a hat notation. The above T–odd angular

factors can then be rewritten as

sin θ sinχ sin θB = p̂W · (p̂l−× p̂p) , (C3)

cos θ sin θ sinχ sin θB = (p̂l− · p̂W ) [ p̂W · ( p̂l−× p̂p)] .

Under time reversal (t → −t) one has (p → −p). Since the T–odd momenta invariants in

Eq. (C3) involve an odd number of momenta they change sign under time reversal. This

has led to the notion of the so–called T–odd obsevables. Observables that multiply T–odd

momentum invariants are called T–odd obsevables. They can be contributed to by true

CP–violating effects or by final state interaction effects unless either or both change all

helicity amplitudes by the same common phase. One may distinguish between the two

sources of T–odd effects by comparing with the corresponding antihyperon decays since

phases from CP–violating effects change sign whereas phases from final state interaction

effects do not change sign when going from hyperon to antihyperon decays.

From the above example it should be clear how to obtain the T–odd contributions

from the master formulas for the other cases. In practise what one has to do is to add

terms where the real part of the bilinear forms of helicity amplitudes is replaced by the

corresponding imaginary part and the cosine of the azimuthal angle is replaced by the sine

with a possible sign change.

D Full five-fold angular decay distribution

In this appendix we write down the full five-fold angular decay distribution for the semilep-

tonic cascade decay of a polarized hyperon. There are now altogether three polar angles

θ, θB and θP , where θP describes the polar orientation of the polarization vector of the

parent hyperon as shown in Fig. 10 (which is directly taken from [18]). Since there are

now two planes in the cascade decay, there is one more azimuthal angle which we choose

as φl as shown in Fig. 11. It is important to note that Fig. 11 shows a special configuration
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Figure 10: Definition of the three polar angles θ, θB and θP in the semileptonic decay of a polarized
Ξ0 into Σ+ + l− + ν̄l followed by the nonleptonic decay Σ+ → p+ π0. The polarization vector of the
parent baryon ~P lies in the (x, z)–plane with positive Px component.

where the momentum of the proton lies in the first quadrant and the momentum of the

lepton lies in the second quadrant. It is clear that, for this special configuration, the three

azimuthal angles φl, φB and χ add up to π (φl + φB + χ = π). For other configurations

it may happen that the three angles add up to π + mod(2π) if the rotation sense of the

angles in Fig. 11 is kept. This will be of no consequence for the angular decay distribution

which is invariant under azimuthal 2π shifts.

The full five-fold angular decay distribution can be directly taken from [18] after in-

cluding the appropriate sign changes going from the (l+, νl) to the (l−, ν̄l) case
5. We have

simplified the corresponding expressions in [18] by assuming as before that the helicity

amplitudes are real. For completeness we shall also write down the decay distribution in

explicit form using Wigner’s dJ–functions as before. One has the master formula

W (θ, θP , θB, φB, φl) ∝
∑

λl,λW ,λ′
W ,J,J ′,λ2,λ′

2
,λ3

(−1)J+J ′|hl
λlλν=±1/2

|2ei(λW−λ′
W )φl×

× ρλ2−λW ,λ′
2
−λ′

W
(θP )d

J
λW ,λl−λν

(θ)dJ
′

λ′
W ,λl−λν

(θ)Hλ2λW
H∗

λ′
2
λ′
W
×

× ei(λ2−λ′
2)φBd

1

2

λ2λ3
(θB)d

1

2

λ′
2
λ3
(θB)|hB

λ30
|2 . (D1)

For the normalized five-fold angular decay distribution one finds

5Apart from listing angular decay distributions Ref. [18] contains much additional useful material like
e.g. a discussion of the statistical tensors of the processes and their bounds, HQET results for heavy
baryon transition form factors, etc..
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Figure 11: Definition of the three azimuthal angles φl, φB and χ (φl+φB+χ = π) in the semileptonic
decay of a polarized Ξ0. Fig. 11 is a view of Fig. 10 from the right along the negative z–direction. ~pTl
and ~pTp denote the transverse components of the momentum of the lepton and proton, respectively.

dΓ

dq2d cos θBd cos θd cos θPdχdφl

= B(B2 → B3 +M)
1

12

G2
F

(2π)5
|Vus|2

(q2 −m2
l )

2p

8M2
1 q

2
×

×
[

b0000 + 3 cos θ b0100 + cos θB b1000

+ (
3

2
cos2 θ − 1

2
) b0200

− 3
√
2 sin θ cos φl b

01
01

− 2 sin θB cos φB b1010

− 3√
2
sin 2θ cosφl b

02
01

+ 3 cos θ cos θB b1100

+ (
3

2
cos2 θ − 1

2
) cos θB b1200

− 3

2

√
2 sin θ sin θB cosχ b1111

− 3

4

√
2 sin θB sin 2θ cosχ b1211

+
3

2
sin2 θ sin θB cos(χ− φl) b

12
12

− 6 cos θ sin θB cosφB b1110

− 3
√
2 sin θ cos θB cosφl b

11
01

− 3

2

√
2 sin 2θ cos θB cosφl b

12
01

− sin θB(3 cos
2 θ − 1) cosφBb

12
10

]

. (D2)

It is important that the rotation sense of the azimuthal angles in Fig. 11 is kept. We

have used the relation φl + φB + χ = π +mod(2π) to rewrite cos(φB + φl) = − cosχ and

cos(φB + 2φl) = − cos(χ − φl). Note that Eq. (D2) contains the redundant angle φB. As

before one can reexpress cos φB as cos φB = − cos(φl + χ).
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The coefficients bklij in Eq. (D2) are given by 6

b0000 =
(

(1 + ǫ)(|H− 1

2
−1|2 + |H 1

2
0|2) + 3ǫ|H 1

2
t|2
)

ρ 1

2

1

2

+
(

(1 + ǫ)(|H 1

2
1|2 + |H− 1

2
0|2) + 3ǫ|H− 1

2
t|2
)

ρ− 1

2
− 1

2
,

b0100 =
1

2

(

∓ |H 1

2
1|2 − 4ǫ H− 1

2
0H− 1

2
t

)

ρ− 1

2
− 1

2

− 1

2

(

∓ |H− 1

2
−1|2 + 4ǫ H 1

2
0H 1

2
t

)

ρ 1

2

1

2
,

b1000 =αB

(

(1 + ǫ)(−|H− 1

2
−1|2 + |H 1

2
0|2) + 3ǫ|H 1

2
t|2
)

ρ 1

2

1

2

− αB

(

(1 + ǫ)(|H− 1

2
0|2−|H 1

2
1|2)+3ǫ|H− 1

2
t|2
)

ρ− 1

2
− 1

2
,

b0200 =
1− 2ǫ

2

(

− 2|H− 1

2
0|2 + |H 1

2
1|2
)

ρ− 1

2
− 1

2

+
1− 2ǫ

2

(

|H− 1

2
−1|2 − 2|H 1

2
0|2
)

ρ 1

2

1

2
,

b0101 =
1

2

(

2ǫH− 1

2
tH− 1

2
−1 ±H− 1

2
0H− 1

2
−1

− 2ǫH 1

2
1H 1

2
t ±H 1

2
1H 1

2
0

)

ρ 1

2
− 1

2
,

b1010 =− αB

(

3ǫH 1

2
tH− 1

2
t + (1 + ǫ)H 1

2
0H− 1

2
0

)

ρ− 1

2

1

2
,

b0201 =
1− 2ǫ

2

(

H− 1

2
0H− 1

2
−1 −H 1

2
1H 1

2
0

)

ρ 1

2
− 1

2
,

b1100 =
αB

2

(

∓ |H 1

2
1|2 + 4ǫ H− 1

2
0H− 1

2
t

)

ρ− 1

2
− 1

2

+
αB

2

(

∓ |H− 1

2
−1|2 − 4ǫ H 1

2
0H 1

2
t

)

ρ 1

2

1

2
,

b1200 =
αB

2
(1− 2ǫ)

(

2|H− 1

2
0|2 + |H 1

2
1|2
)

ρ− 1

2
− 1

2
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2
(1− 2ǫ)

(

|H− 1

2
−1|2 + 2|H 1

2
0|2
)

ρ 1

2

1

2
,

b1111 =αB

(

2ǫH 1

2
1H− 1

2
t ∓H 1

2
1H− 1

2
0

)

ρ− 1

2
− 1

2

+ αB

(

− 2ǫH 1

2
tH− 1

2
−1 ∓H 1

2
0H− 1

2
−1

)

ρ 1

2

1

2
,

b1211 =αB(1− 2ǫ)
(

H 1

2
1H− 1

2
0 ρ− 1

2
− 1

2
−H 1

2
0H− 1

2
−1 ρ 1

2

1

2

)

,

b1212 =− αB(1− 2ǫ)H 1

2
1H− 1

2
−1 ρ 1

2
− 1

2
,

b1110 =αB ǫ
(

H 1

2
0H− 1

2
t +H 1

2
tH− 1

2
0

)

ρ− 1

2

1

2
,

b1101 =
αB

2

(

− 2ǫH− 1

2
tH− 1

2
−1 ∓H− 1

2
0H− 1

2
−1

− 2ǫH 1

2
1H 1

2
t ±H 1

2
1H 1

2
0

)

ρ 1

2
− 1

2
,

6The coefficient b1110 takes twice the value as compared to the corresponding coefficient in [18]. Also in
Eq. (48) of [18] concerning the overall normalization one has to effect the replacement q2 → (q2−m2

l
)2/q2.
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b1201 =− αB

2
(1− 2ǫ)

(

H− 1

2
0H− 1

2
−1 +H 1

2
1H 1

2
0

)

ρ 1

2
− 1

2
,

b1210 =αB(1− 2ǫ)H 1

2
0H− 1

2
0 ρ− 1

2

1

2
. (D3)

We have introduced the abbreviation ǫ = m2
l /2q

2 for the leptonic flip suppression factor.

As in the main text the upper signs in the coefficients bklij hold for the case (l−, ν̄l) relevant

to the cascade decay Ξ0 → Σ+(→ p+ π0) + l− + ν̄l treated in this paper. The lower signs

hold for the case (l+, νl) discussed in [18]. Finally, ρλ1λ
′

1

is the spin density matrix of the

parent hyperon given in Eq. (59).

We have performed various checks on Eq. (D2). First we found it to agree with the

angular decay distribution derived from the master formula Eq. (D1). We further checked

that Eq. (D2) reduces to the decay distributions listed in the main text after integration

or after setting the relevant parameters to zero. We thus checked that Eq. (D2) reduces to

Eq. (67) when setting P = 0. There is a factor of 4π from the integration over cos θP and

φl. Further Eq. (D2) reduces to Eq. (61) when setting αB = 0, dropping the branching

ratio factor B(B2 → B3 +M) and replacing φl by (π − χ). Also there is a factor 4π from

the integration over cos θB and φB. Finally, Eq. (D2) reduces to Eq. (64) when integrating

over φl and cos θ. As mentioned before we have assumed that the helicity amplitudes (or

the invariant amplitudes) are relatively real. Nonzero relative phases between the helicity

amplitudes could arise from final state interaction effects or from extensions of the SM that

bring in CP–violating phases (see e.g. [70, 71]). In such a case one would have to keep the

full phase structure contained in the master formula Eq. (D1) or in the original version of

Eq. (D2) listed in [18].
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