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HADRONIC OR QCD VACUUM EFFECTS ∗
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The anomalously large cos(2φ) asymmetry measured in the Drell-Yan process is
discussed. Possible origins of this large deviation from the Lam-Tung relation are
considered with emphasis on the comparison of two particular proposals: one that

suggests it arises from a QCD vacuum effect and one that suggests it is a hadronic
effect. Experimental signatures distinguishing these effects are discussed.

1. Introduction

Azimuthal asymmetries in the unpolarized Drell-Yan (DY) process differ-

ential cross section arise only in the following way

1

σ

dσ

dΩ
∝

(

1 + λ cos2 θ + µ sin 2θ cosφ+
ν

2
sin2 θ cos 2φ

)

, (1)

where φ is the angle between the lepton and hadron planes in the lepton

center of mass frame (see Fig. 3 of Ref.1). In the parton model (order α0
s)

quark-antiquark annihilation yields λ = 1, µ = ν = 0. The leading order

(LO) perturbative QCD corrections (order α1
s) lead to µ 6= 0, ν 6= 0 and

λ 6= 1, such that the so-called Lam-Tung relation 1 − λ − 2ν = 0 holds.

Beyond LO, small deviations from the Lam-Tung relation will arise. If one

defines the quantity κ ≡ − 1
4 (1 − λ − 2ν) as a measure of the deviation

from the Lam-Tung relation, it has been calculated2,3 that at order α2
s κ

is small and negative: −κ<∼ 0.01, for values of the muon pair’s transverse

momentum QT of up to 3 GeV/c.

Surprisingly, the data is incompatible with the Lam-Tung relation and

with its small order-α2
s modification as well3. These data from CERN’s

NA10 Collaboration4,5 and Fermilab’s E615 Collaboration6 are for π−N →

µ+µ−X , with N = D and W . The π−-beam energies range from 140 GeV
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up to 286 GeV and the invariant mass Q of the lepton pair is in the range

Q ∼ 4 − 12 GeV. The measured values for κ are an order of magnitude

larger than the order-α2
s result and moreover, of opposite sign.

Several explanations have been put forward, but not all of them will

be reviewed here. Some unlikely explanations would be: i) NNLO pQCD

corrections could solve the discrepancy (but in that case the perturbative

expansion itself would be questionable); ii) it could be a higher twist effect

(but Q2 > 16 GeV2 seems too high and according to the Fermilab data the

deviation disappears at high xπ , contrary to higher twist expectation; also,

one would expect µ > ν, whereas in the data ν ≫ µ ≈ 0); iii) it could be a

nuclear effect, since σ(QT )W /σ(QT )D is an increasing function of QT (but

according to Ref.5 ν(QT ) shows no apparent nuclear dependence).

The two possible explanations that will be discussed and compared here

are: i) a QCD vacuum effect3; ii) a hadronic effect, arising from non-

collinear parton configurations1. The following will largely be based on a

recent comparative study performed in collaboration with A. Brandenburg,

O. Nachtmann and A. Utermann7.

2. Explanation in terms of a QCD vacuum effect

Usually the DY process at Q ∼ 4 − 12 GeV is described by collinear fac-

torization. Collinear quarks inside unpolarized hadrons are unpolarized

themselves, implying a trivial quark-antiquark spin density matrix:

ρ(q,q̄) =
1

4
{1⊗ 1}. (2)

The QCD vacuum may alter this. The gluon condensate leads to a chro-

momagnetic field strength (Savvidy; Shifman, Vainshtein, Zakharov; ...)

〈g2Ba(x) ·Ba(x)〉 ≈ (700MeV)4, (3)

with gluon fields having a typical correlation length a ≈ 0.35 fm in Eu-

clidean space. Taking this to be an invariant length in Minkowski space8

leads to the picture of a fluctuating domain structure of the vacuum with

typical domain size a, schematically depicted in Fig. 1. If a fast hadron, and

with it a fast quark, traverses this domain structure, the time for traversing

a vacuum domain is of the order of the correlation length: t ≈ a. Due to

the presence of a background chromomagnetic field the quark will acquire

a transverse polarization (the Sokolov-Ternov effect). The time to build up

transverse polarization is estimated8,9 to be much shorter than the time it

takes to traverse the domain, i.e. t ≪ a. The radiated gluons/photons are
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Figure 1. Left figure: cartoon of the chromomagnetic field domain structure of the
QCD vacuum. Right figure: a fast quark traversing a domain.

just part of the cloud of virtual particles; in other words, they are included

in the wave function. There will be no average polarization. However, if the

quark will annihilate with an antiquark in a high energy scattering experi-

ment, such as DY, the polarization of the quark and the antiquark may be

correlated if they annihilate within a certain domain. Therefore, the QCD
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_
q

q

Figure 2. Annihilation of a quark and an antiquark inside the same domain.

vacuum can induce a spin correlation between an annihilating q q̄ pair. The

quark-antiquark spin density matrix Eq. (2) will then be modified into

ρ(q,q̄) =
1

4
{1⊗ 1+ Fj σj ⊗ 1+Gj 1⊗ σj +Hij σi ⊗ σj} . (4)

Only if Hij = FiGj , then the spin density matrix factorizes. But this is not

necessarily so, in which case it could be called entangled. Brandenburg,
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Nachtmann & Mirkes3 demonstrated that the diagonal elements H11 and

H22 can give rise to a deviation from the Lam-Tung relation:

κ ≡ −
1

4
(1 − λ− 2ν) ≈

〈

H22 −H11

1 +H33

〉

. (5)

A simple assumption for the transverse momentum dependence of (H22 −

H11)/(1 +H33) produced a good fit to the data:

κ = κ0
Q4

T

Q4
T +m4

T

, with κ0 = 0.17 and mT = 1.5 GeV. (6)

Note that for this Ansatz κ approaches a constant value (κ0) for large QT .

In other words, the vacuum effect could persist out to large values of QT .

The Q2 dependence of the vacuum effect is not known, but there is also no

reason to assume that the spin correlation due to the QCD vacuum effect

has to decrease with increasing Q2.

3. Explanation as a hadronic effect

Usually if one assumes that factorization of soft and hard energy scales in

a hard scattering process occurs, one implicitly also assumes factorization

of the spin density matrix. In the present section this will indeed be as-

sumed, but another common assumption will be dropped, namely that of

collinear factorization. It will be investigated what happens if one allows for

transverse momentum dependent parton distributions (TMDs). The spin

density matrix of a noncollinear quark inside an unpolarized hadron can

be nontrivial. In other words, the transverse polarization of a noncollinear

quark inside an unpolarized hadron in principle can have a preferred direc-

tion and the TMD describing that situation is called h⊥
1
10. As pointed out

in Ref.1 nonzero h⊥
1 leads to a deviation from Lam-Tung relation. It offers

a parton model explanation of the DY data (i.e. with λ = 1 and µ = 0):

κ = ν
2 ∝ h⊥

1 (π)h
⊥
1 (N) . In this way a good fit to data was obtained

by assuming Gaussian transverse momentum dependence. The reason for

this choice of transverse momentum dependence is that in order to be con-

sistent with the factorization of the cross section in terms of TMDs, the

transverse momentum of partons should not introduce another large scale.

Therefore, explaining the Lam-Tung relation within this framework neces-

sarily implies that κ = ν
2 → 0 for large QT . This offers a possible way to

distinguish between the hadronic effect and the QCD vacuum effect.

It may be good to mention that not only a fit of h⊥
1 to data has been

made (under certain assumptions), also several model calculations of h⊥
1
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and some of its resulting asymmetries have been performed11,12,13, based

on the recent insight that T-odd TMDs like h⊥
1 arise from the gauge link.

In order to see the parton model expectation κ = ν
2 → 0 at large QT in

the data, one has to keep in mind that the pQCD contributions (that grow

as QT increases) will have to be subtracted. For κ perturbative corrections

arise at order α2
s, but for ν already at order αs. To be specific, at large QT

hard gluon radiation (to first order in αs) gives rise to14

ν(QT ) =
Q2

T

Q2 + 3
2Q

2
T

. (7)

Due to this growing large-QT perturbative contribution the fall-off of the

h⊥
1 contribution will not be visible directly from the behavior of ν at large

QT . Therefore, in order to use ν as function of QT to differentiate between

effects, it is necessary to subtract the calculable pQCD contributions. In

Fig. 3 an illustration of this point is given. The dashed curve corresponds

0
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Figure 3. Impression of possible contributions to ν as function of QT compared to DY
data of NA10 (for Q = 8 GeV). Dashed curve: contribution from perturbative one-gluon
radiation. Dotted curve: contribution from a nonzero h⊥

1 . Solid curve: their sum.

to the contribution of Eq. (7) at Q = 8 GeV. The dotted line is a pos-

sible, parton model level, contribution from h⊥
1 with Gaussian transverse

momentum dependence. Together these contributions yield the solid curve

(although strictly speaking it is not the case that one can simply add them,

since one is a noncollinear parton model contribution expected to be valid

for small QT and the other is an order-αs result within collinear factor-

ization expected to be valid at large QT ). The data are from the NA10

Collaboration for a pion beam energy of 194 GeV/c 5.

The Q2 dependence of the h⊥
1 contribution is not known to date. Only

the effect of resummation of soft gluon radiation on the h⊥
1 contribution to
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ν (and κ) has been studied to some extent and was found to be quite impor-

tant 15. It gives rise to a considerable Sudakov suppression with increasing

Q: in going from Q = 10 to 90 GeV, the contribution decreases by an order

of magnitude and approximately follows a 1/Q behavior (although it is nei-

ther a dynamical nor a kinematical higher twist effect). Interestingly, the

contribution from hard gluon radiation (7) decreases more rapidly: as 1/Q2

at fixed QT . But it seems safe to conclude that using the Q2 dependence

of ν (or κ) to differentiate between effects is not feasible at present.

By assumption, nonzero h⊥
1 gives rise to a factorized product of spin

density matrices ρ(q,q̄) = ρ(q) ⊗ ρ(q̄) with7

ρ(q) =
1

2

{

1+
h⊥
1

f1

x1

M1
(e3 × p1) · σ

}

≡
1

2
{1+ Fj σj} , (8)

ρ(q̄) =
1

2

{

1−
h̄⊥
1

f̄1

x2

M2
(e3 × p2) · σ

}

≡
1

2
{1+Gj σj} . (9)

Therefore, Hij = FiGj with H33 = 0. Unfortunately it is hard to observe

the difference between H33 = 0 and H33 6= 0. But the factorization Hij =

FiGj should shows itself via consistency among various processes, which is

based on the fact that the same function h⊥
1 appears in different processes.

Regarding this universality, complications have recently been addressed16

that go beyond the sign change17 that occurs between semi-inclusive DIS

(e p → e′ π X) and DY: (h⊥
1 )SIDIS = −(h⊥

1 )DY. Nevertheless, the different

numerical factors with which h⊥
1 arises in different processes are calculable

(functions of Nc only) and can be taken into account.

4. Hadronic effect versus vacuum effect

Summarizing the features of the two approaches in a table:

Table 1. Comparison of the hadronic and the vacuum effect

h⊥

1 6= 0 QCD vacuum effect

ρ(q,q̄) ρ(q) ⊗ ρ(q̄) possibly entangled

Q dependence κ
?
∼ 1/Q ?

QT → ∞ κ → 0 need not disappear (κ → κ0)

flavor dependence yes flavor blind

x dependence yes yes, but flavor blind

As indicated in the table, the hadronic effect will generally be flavor depen-
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dent and have an x dependence that is flavor dependent, since there is no

reason to assume that h⊥
1 for the u quark should be the same as (or simply

related to) that for the d quark. This is different from the QCD vacuum

effect, which in this sense is flavor blind; it does not matter whether the

spin correlation is between u ū or d d̄ (except for presumably small mass

corrections). There will be an x dependence, since that determines the

energy of the annihilation process, but this again should be flavor blind.

It should be emphasized that flavor blindness in general does not imply

hadron blindness or even process blindness. So the best next step would be

to perform experiments with different beams (π+, p, p̄, . . ., where π+ and

p̄ offer the advantage of having valence anti-quarks) and in different kine-

matical regimes. For instance, the measurement of 〈cos 2φ〉 can be done at

RHIC in p p → µ+µ−X , or in p p̄ → µ+µ−X at Fermilab or GSI/FAIR.

The use of polarized beams can also help (e.g. at RHIC or GSI). In the

DY process with one transversely polarized hadron, the differential cross

section can namely depend on the azimuthal angle φS of the transverse

hadron spin (ST ) compared to the lepton plane:

dσ(p p↑ → ℓ ℓ̄X)

dΩ dφS

∝ 1+cos2 θ+sin2 θ
[ν

2
cos 2φ− ρ |ST | sin(φ + φS)

]

+ . . .

Within the framework of TMDs the analyzing power ρ is proportional to

the product h⊥
1 h1

1, which involves the transversity function h1. A nonzero

function h⊥
1 will provide a relation between ν and ρ, which in case of one

(dominant) flavor (usually called u-quark dominance) and Gaussian trans-

verse momentum dependences, is approximately given by

ρ ≈
1

2

√

ν

νmax

h1

f1
, (10)

where νmax is the maximum value attained by ν(QT ). This relation de-

pends on the magnitude of h1 compared to f1 (see Refs.18,19 for explicit

examples) and this may be extracted from double transverse spin asym-

metries in DY (potentially at RHIC or GSI) or from SIDIS data (from e.g.

HERMES or COMPASS) by exploiting the interference fragmentation func-

tions (which can be obtained from e+e− data, e.g. at BELLE).

Also semi-inclusive DIS can be used. The 〈cos 2φ〉 in e p → e′ πX

would be ∝ h⊥
1 H

⊥
1 , where H⊥

1 is the Collins fragmentation function (also

obtainable from BELLE). This particular SIDIS observable has been studied

using model calculations20. All this illustrates how the consistency among

processes may be used to test the h⊥
1 hypothesis.
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5. Conclusions

A transverse spin correlation in quark-antiquark annihilation (q↑q̄↑ → γ∗)

will lead to a cos(2φ) asymmetry in the DY lepton-pair angular distribution.

Such a spin correlation can arise from the chromomagnetic background field

in the QCD vacuum or from noncollinear partons. If a flavor dependence is

observed in future data, it would favor a hadronic effect. On the other hand,

persistence of the asymmetry at large values of QT and Q (after subtraction

of pQCD corrections if needed) would favor a vacuum effect. Several future

and ongoing experiments will be able to provide crucial information on

these dependences.
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