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Abstract

We extend the non-commutative standard model based on the minimal SU(3)×SU(2)×

U(1) gauge group to include the interaction of photon with neutrino. We show that, in the

gauge invariant manner, only the right handed neutrino can directly couple to the photon.

Consequently, we obtain the Feynman rule for the γνν̄-vertex which does not exist in the

minimal extension of non-commutative standard model (mNCSM). We calculate the ampli-

tude for γν → γν in both the nonminimal non-commutative standard model (nmNCSM)

and the extended version of mNCSM. The obtained cross section grows in the center of mass

frame, respectively, as (θNC)
2M−4

Z
E6 and (θNC)

4E6 which can exceed the cross section for

γν → γγν and γν → γν in the high energy limit in the commutative space.

1 Introduction

High energy photon and neutrino and their scattering channels based on the standard model are

currently of interest to many authors in astrophysics and cosmology [1]-[4]. In the low energy

limit the elastic photon-neutrino scattering is strongly suppressed by Yang’s theorem in the

lowest order [5]. Meanwhile, the inelastic scattering of photon-neutrino such as γν → γγν and

its crossed processes are not subject to this suppression i.e. σγν→γγν(1MeV ) ∼ 10−52cm2 in

comparison with σγν→γν(1MeV ) ∼ 10−65cm2 [2]. Nevertheless, in the high energy limit it is

shown that [3]

σγν→γν = 6.7× 10−33(
E

me
)6 pb, (1)

while [4]

σγν→γγν = 1.74 × 10−16(
E

me
)2 pb, (2)

in which the photon energy, E, in the center of mass frame satisfies me ≪ E ≪MW . Obviously,

with increasing E the elastic cross section exceeds the inelastic one and it can be easily seen

that the crossover occurs at E ∼ 7GeV . In the high energy limit the non-commutativity

effects seem to be significant and therefore the new interactions of photon and neutrino in the
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non-commutative space and time can be potentially important to astrophysics. However, non-

commutative field theory and its phenomenological aspects have been recently considered by

many authors [6]-[10]. Such theories are mostly characterized on a non-commutative space-time

with the non-commutativity parameter θµν . In the canonical version of the non-commutative

space-time one has

θµν = −i [x̂µ, x̂ν ] , (3)

where a hat indicates a non-commutative coordinate and θµν is a real, constant and anti-

symmetric matrix. The action for field theories on non-commutative spaces is then obtained

by using the Weyl-Moyal correspondence; Accordingly, the usual product of fields should be

replaced by the star product:

f ⋆ g(x, θ) = f(x, θ) exp(
i

2

←−
∂ µθ

µν−→∂ ν)g(x, θ). (4)

In replacing the ordinary product with the star product there is an ambiguity in transcribing

gAψ, where g, A and ψ are coupling constant, gauge and particle fields, respectively, into non-

commutative form that is: gA ⋆ ψ, gψ ⋆ A or g1A ⋆ ψ + g2ψ ⋆ A. In the commutative limit all

the terms can be reduced to the same term while for the neutral particles, for example in QED,

the third term in the non-commutative limit is essentially different from the other two. In fact

this can bring about direct interaction of photon and neutral particles.

In section 2 we give a brief review on the direct interaction of neutral particles with photon

in the non-commutative QED and subsequently extend the non-commutative standard model

(NCSM) based on SU(3)c × SU(2)L × U(1)Y gauge group to incorporate the direct interaction

of photon with neutrino. In section 3 we explore the photon-neutrino elastic scattering in the

extended minimal NCSM as well as the non-minimal NCSM at the lowest order. Finally, we

compare our results with the results on the photon-neutrino scattering given in the literature.

2 Non-commutative standard model

In the frame work of NCQED it is shown that the neutral particles interact with photons if

they transform under U(1) in a similar way as in the adjoint representation of a non-Abelian

gauge theory. In fact, for this purpose eA ⋆ ψ − eψ ⋆ A should be added to ordinary derivative

to construct the covariant derivative [11]-[12]. In the limit of θ → 0, we have

eA ⋆ ψ − eψ ⋆ A = 0 +O(θ), (5)

therefore the covariant derivative to the lowest order can be obtained as follows

D̂µψ̂ = ∂µψ̂ + eθνρ∂νÂµ∂ρψ̂. (6)

The fields themselves in the non-commutative space can be expanded by the Seiberg-Witten

(SW) map [6] up to the lowest order as

ψ̂ = ψ + eθνρAρ∂νψ, (7)
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Âµ = Aµ + eθνρAρ[∂νAµ −
1

2
∂µAν ]. (8)

Therefore the interaction term in terms of commutative fields is

−
e

2
Fµν(iθ

µνρ∂ρ)ψ, (9)

where Fµν = ∂µAν − ∂νAµ and

θµνρ = θµνγρ + θνργµ + θρµγν . (10)

It should be noted that for neutrino as a neutral particle in the NCQED, as well as QED, in

contrast with the standard model, there is not any constraint on the mass or even the chirality

of the neutrino. In the standard model, neutrino is massless and only the left handed one

has weak interaction while the right handed neutrino, if existing, has an expectator role in

all reactions. However, there are two approaches to construct the standard model in the non

commutative space. In the minimal extension the gauge group is SU(3)c × SU(2)L × U(1)Y

in which the number of gauge fields, couplings and particles are the same as the ordinary one

[13]. Although in this extension new interactions will appear due to the star product and the

SW map, the photon-neutrino vertex is absent. In the second approach the gauge group is

U(3)×U(2)×U(1) which is reduced to SU(3)c×SU(2)L×U(1)Y by an appropriate symmetry

breaking [14]. However, in the latter approach, besides many new interaction like the former

one, photon can interact with the left handed neutrino.

To introduce the neutrino-photon interaction in the minimal NCSM, one can define the ad-

joint representation in the covariant derivative for the neutral particle as is done in the NCQED.

The main difference in the SM is U(1)Y instead of U(1)EM . Therefore neutral hyper charge

particle can only couple to the hyper gauge field in a gauge invariant manner. The only particle

with zero hyper charge in the SM is the right handed neutrino therefore the covariant derivative

for this particle can be written as follows

D̂µψ̂νR = ∂µψ̂νR + eθνρ∂νB̂µ∂ρψ̂νR , (11)

in which ψ̂νR and B̂, respectively, denote the NC-fields of the right handed neutrino and the

hyper charge with their own expansion in the NC-space as are given in Eqs.(7-8). Consequently,

Lagrangian density for the right handed neutrino part of NCSM can be written as follows

LνR = iψ̄∂/ψ + ieθµν [∂µψ̄Bνγ
ρ(∂ρψ)

−∂ρψ̄Bνγ
ρ(∂µψ) + ψ̄(∂µBρ)γ

ρ(∂νψ)], (12)

where B in terms of the photon and the Z-gauge boson fields is

B = cos θWA− sin θWZ. (13)

Therefore the Feynman rules for γνν̄ and Zνν̄ vertices can be obtained from the Lagrangian

(12) as:

Γµ
γνν̄ = i

e

2
cosθW (1 + γ5)(θ

µνkνq/+ θρµqρk/+ θνρkνqργ
µ), (14)
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Figure 1: Feynman diagram for the process γν → γν in nmNCSM at the order θ. The bold dot

represents the non-commutative vertex Γµνρ.

and

Γµ
Zνν̄ = −i

e

2
sinθW (1 + γ5)(θ

µνkνq/+ θρµqρk/ + θνρkνqργ
µ). (15)

It should be noted here that in the minimal extension of the standard model to the non-

commutative space-time (mNCSM) there is not any γνν̄-vertex while the Zνν̄-vertex has al-

ready existed for the left handed neutrino therefore Γµ
Zνν̄ for the right handed neutrino can be

considered as a correction to the same vertex in the mNCSM. Since the other particles in the

SM, even the left handed neutrino, all have nonzero hyper charge, the remaining parts of the

SM in the noncommutative space do not change.

3 Photon-neutrino interaction in NCSM

In the minimal extension of the standard model to the non-commutative space-time due to the

different choices for representations of the gauge group the trace in the kinetic terms for gauge

bosons is not unique. In fact the freedom in the choice of the traces can be used to construct a

new version of the NCSM which is called nmNCSM. Neutral triple-gauge boson vertices such as

γγγ and Zγγ in contrast to the mNCSM as well as SM can arise within the framework of the

nmNCSM. These vertices can be extracted from the Lagrangian of nmNCSM which are given

in [13] as follows

Lγγγ =
e

4
sin2θWKγγγθ

ρσAµν(AµνAρσ − 4AµρAνσ), (16)

LZγγ =
e

4
sin2θWKZγγθ

ρσ[2Zµν(2AµρAνσ −AµνAρσ)

+8ZµρA
µνAνσ − ZρσAµνA

µν ], (17)

and

LZZγ = LZγγ(Aµ ↔ Zµ), (18)

LZZZ = Lγγγ(Aµ → Zµ), (19)

where

Aµν = ∂µAν − ∂νAµ, (20)

Zµν = ∂µZν − ∂νZµ. (21)
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The constants Kγγγ , KZγγ and so on are functions of the coupling constants of the non-

commutative electroweak sector up to the first order of θ. They can be obtained by matching

the NCSM action with the SM action and their allowed range of values is given in [15]. How-

ever, up to the first order of θ in the nmNCSM, there is a Feynman diagram which is shown in

Fig.(1). The Feynman rule for the Zγγ vertex in the nmNCSM can be easily derived from the

Lagrangian of Eq.(17) as follows

Γµνρ = −2esinθWKZγγΘ((µ, k1), (ν, k2), (ρ, k3)),

in which KZγγ is the strength of the Zγγ triple-gauge bosons and

Θ((µ, k1), (ν, k2), (ρ, k3)) = −θ
µν(kρ

1
(k2.k3)− k

ρ
2
(k1.k3))

+θµαk1α(g
νρ(k2.k3)− k

ρ
2
kν3 )− θ

ναk1α(g
ρµ(k2.k3)− k

ρ
2
kµ
3
)

−θραk1α(g
µν(k2.k3)− k

µ
2
kν3 ) + k1.θ.k2(k

µ
3
gνρ − kν3g

ρµ)

+cycl. permut. of(µi, ki), (22)

where µ1 = µ, µ2 = ν and µ3 = ρ. Therefore, the invariant amplitude for the reaction

γ(k1, εµ) + ν(k3)→ γ(p2, ερ) + ν(p1) (23)

can be easily written as

−iM = εµ(k1)ερ(p2)T
µρ

= εµ(k1)ερ(p2)u(p1)
−ig

2 cos θW
γν

1

2
(1− γ5)

u(k3)
i(−2e sin 2θW kZγγ)

M2

Z − k
2
2

Θµνρ, (24)

where, after some algebra Θµνρ in the center of mass frame, can be obtained as:

Θµνρ =

{

2(k1.p2)θ
µαp2αg

νρ − pρ
2
pν2θ

µαk2α + kρ
1
kµ
1
θναp2α − p

µ
2
pρ
2
θναk1α − k

ν
1k

µ
1
θραk2α

−2(k1.p2)θ
ραk1αg

µν − (k1.p2)θ
µνpρ

2
− (k1.p2)θ

νρkµ
1
+ 2(k1.p2)θ

ρµkν1

+(k1.θ.p2)(k
µ
1
− 2pµ

2
)gνρ + 2(k1.θ.p2)k

ν
1g

ρµ + (k1.θ.p2)(p
ρ
2
− 2kρ

1
)gµν

}

, (25)

and as a natural consequence of gauge symmetry one can easily show that T µρ satisfies the Ward

identity as

k1µT
µρ = p2ρT

µρ = 0. (26)

It therefore follows that if E ≪MZ then, after a little algebra, the spin-averaged amplitude is

| M |
2

=

(

4πα

M2

Z

)2

| kZγγ |
2 ×25

{

(k1.p2)
3
(

p2.θ.θ.p2 + k1.θ.θ.k1
)
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Figure 2: Feynman diagrams for the process γν → γν in mNCSM. The bold dot represents the

non-commutative vertex Γµ
γνν̄ .

+(k1.p2)
2

(

p1.θ.θ.p2(k1.k3) + k3.θ.θ.p2(p1.k1)− k1.θ.θ.p2(k1.p2)

+p1.θ.θ.k1(k1.k3) + k3.θ.θ.k1(p1.k1)− k1.θ.θ.k1(k1.p2)

)

−(k1.p2)
2

(

(p1.θ.k1)(k3.θ.p2) + k1.θ.θ.p2(k1.p2)

)

+(k1.p1)(k1.k3)

(

(k1.p2)
2 |
−→
θ |2 +2(k1.θ.p2)

2

)}

, (27)

thus by doing some manipulation the total cross section for γν → γν in nmNCSM results in

σ ∼= 11.5 | kZγγ |
2
α2E6

Λ4M4

Z

, (28)

where the scale of non-commutativity Λ is defined as

Λ =
1

√

|
−→
θ |2

. (29)

The constant KZγγ varies in the range −0.3 ≤ KZγγ ≤ 0.1 and for KZγγ ∼ 0.1 the cross

section varies in the range 10−42-10−46 cm2 for Λ ∼ 100 − 1000GeV and E ∼ 0.1MZ which is

comparable with its counterpart in the commutative space, see Table 1. Although, the triple

gauge boson coupling constants simultaneously do not vanish the KZγγ is the only coupling

which is appeared in the cross section and it may be even zero. Since the values of the triple

gauge boson coupling constants can not be uniquely obtained in the nmNCSM, to be certain,

we may restrict ourselves to the mNCSM where there is not such a freedom. In contrast to the

nmNCSM in the mNCSM there is not any triple gauge boson vertex in the electro-weak sector

therefore we have not any diagram at the tree level for the elastic photon-neutrino scattering.

But in the extended version of mNCSM which is introduced in section 2 the photon can interact

directly with right handed neutrino therefore at the tree level there are two Feynman diagrams

for the photon-neutrino elastic scattering which is shown in Fig.2. The Feynman rule for the

γνν̄ vertex in the extended mNCSM is given in Eq.(14) as

6



Γµ
γνν̄ = i e

2
cosθW (1 + γ5)(θ

µνkνq/+ θρµqρk/ + θνρkνqργ
µ).

Therefore, the invariant amplitude for the first diagram of Fig.(2) in the center of mass frame

can be written as

−iM1 = εµε
′
νu(p

′)(iecosθW )
1

2
(1 + γ5)[k′.θ.(k + p)γν

+θναk′α(/k + /p)− θνα(kα + pα)/k
′]
(−i)(/k + /p)

(k + p)2

(−iecosθW )
1

2
(1 + γ5)[k.θ.pγµ + kβθ

µβ/p− pβθ
µβ/k]u(p),

(30)

which, because of the momentum conservation k + p = k′ + p′, the Dirac equations /pu(p) =

0, ū(p′)/p′ = 0 and the following identity

Aµθ
µνBν = A.θ.B =

−→
θ .(A×B), (31)

where
−→
θ = (θ23, θ31, θ12), results in

M1 = −e
2cos2θW ε

′
νεµp

′
αpβθ

ναθµβu(p′)
1

2
(1 + γ5)/k′u(p). (32)

For the second diagram one similarly has

−iM2 = εµε
′∗

ν u(p
′)(−iecosθW )

1

2
(1 + γ5)[k.θ.(p′ − k)γµ

+θµβkβ(/p
′ − /k)− θµβ(p′β − kβ)/k]

−i(/p′ − /k)

(p′ − k)2

(iecosθW )
1

2
(1 + γ5)

[

k′.θ.pγν + θναk′α/p− θ
ναpα/k

′
]

u(p),

(33)

which after some manipulation yields

M2 = −e2cos2θW εµε
′
νu(p

′)
1

2
(1 + γ5)×

[
(k.θ.p′)(k′.θ.p)

(p′ − k)2
γµ(/p′ − /k)γν − pαp

′
βθ

µβθνα/k′

−(k.θ.p′)(pαθ
ναγµ − p′αθ

µαγν)]u(p). (34)

Therefore by introducing the appropriate tensor T µν in terms of the total amplitude Mtot =

M1 +M2 one can show that

kµT
µν = k′νT

µν = 0. (35)
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ẑ

x̂

ŷ

6 α

−→
θ

6 λ6 βν(p) γ(k)

ν(p′)

γ(k′)

Figure 3: The process γν → γν in the center of mass frame.

Thus, the spin-averaged amplitude for γν → γν scattering can be evaluated as

| Mtot |
2

=
1

2
e4cos4θW gνδgµη

Tr



/p′
1

2
(1− γ5)

3
∑

i=1

Iµνi /p
3
∑

j=1

Jηδ
j



 , (36)

where

Iµν
1
≡

(k.θ.p′)(k′.θ.p)

(p′ − k)2
γµ(/p′ − /k)γν ,

Iµν
2
≡ (k.θ.p′)(pαθ

ναγµ − p′αθ
µαγν) ,

Iµν
3
≡ (pβp

′
α − pαp

′
β)θ

µβθνα/k′ ,

Jηδ
1

= Iδη
1

,

Jηδ
2

= Iηδ
2

,

Jηδ
3

= Iηδ
3

, (37)

which, using the trace theorems, implies

| Mtot |
2

=
e4cos4θW

2
[8
(

k.θ.p′
)4 p.p′

(p′ − k)2

+8(k.p)(k′.p)((p′.θ.θ.p′)(p.θ.θ.p)

−
(

p′.θ.θ.p
)2
) + 4

(

k.θ.p′
)2

((k′.p)(p.θ.θ.p′

−p.θ.θ.p− p′.θ.θ.p′)− 3(k.p)
(

p.θ.θ.p′
)

)].

(38)

To evaluate the total cross section the particle momenta are shown in Fig.(3) and the differential

cross section is given by

dσ =
| Mtot |

2

4π2 × 4k.p

d3P ′

2E′
ν

d3K ′

2E′
γ

δ4(k′ + p′ − k − p). (39)

Now by introducing:

p = (E,P ), (40)
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k = (E,−P ), (41)

p′ = (E′
ν , P

′), (42)

k′ = (E′
γ ,K

′), (43)

the differential cross section can be cast into

dσ =
| Mtot |

2

4π2 × 4k.p

d3P ′

4E′2
δ(2E′ − 2E), (44)

where in the center of mass frame E′ ≡ E′
γ = E′

ν . In the relativistic limit d3P ′ is equal to

E′2dE′dβ d cosα, therefore, in this limit one has

dσ =
| Mtot |

2

E′=E

27 × π2 × k.p
dβd cosα. (45)

Now by using the invariant quantities:

k.p = 2E2, (46)

p.p′ = k.k′ = E2(1− cosα), (47)

p.k′ = k.p′ = E2(1 + cosα), (48)

and also the identity given in Eq.(31) and

Aµθ
µνθβνBβ = A.θ.θ.B =|

−→
θ|2 (A.B)− (A.

−→
θ )(B.

−→
θ ), (49)

which leads to

(k.θ.p′)2 = E4 |
−→
θ|2 sin2α sin2λ sin2β,

p.θ.θ.p = E2 |
−→
θ|2 sin2λ,

p′.θ.θ.p′ = E2 |
−→
θ|2 (1− cos2α cos2λ

− sin2α sin2λ cos2β − 0.5 sin 2α sin 2λ cos β),

p.θ.θ.p′ = E2 |
−→
θ|2 (sin2λ cosα− 0.5 sin 2λ sinα cos β),

(50)

one can easily perform the β and the α integration of (45) to find

σ = 0.5α2cos4θW
E6

Λ8
, (51)

or

σ = 3.8 × 10−32(
MZ

Λ
)8(

E

me
)6 pb. (52)

By choosing Λ = 113 GeV in Eq.(52) one has

σ = 6.7× 10−33(
E

me
)6 pb, (53)

which is equal to the the cross section of photon-neutrino elastic scattering in the range me ≪

E ≪ MW in the commutative standard model given in Eq.(1) while for the cross section of

Eq.(53) there is not such a constraint.
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Table 1: The total cross section for γν → γν in the nmNCSM given in Eq.(28) for KZγγ = 0.1,

the mNCSM given in Eq.(51) and in the standard model (SM) obtained in [3].

σ(νγ → νγ) nmNCSM mNCSM SM

(cm2) (Λ ∼ 100 − 1000GeV ) (Λ ∼ 100− 1000GeV )

E = 1MeV 3.4× 10−67 − 3.4× 10−71 1× 10−66 − 1× 10−74 4× 10−67

E = 10GeV 3.4× 10−43 − 3.4× 10−47 1× 10−42 − 1× 10−50 2× 10−43

4 Summary

In this paper , we extended the non-commutative standard model based on the minimal SU(3)×

SU(2) × U(1) gauge group to include the interaction of the neutral gauge bosons with the

neutrino. Since in the gauge invariant manner only the particle with neutral hyper-charge

can couple to the hyper-gauge field, the right handed neutrino part of the NCSM Lagrangian

density changes as is given in Eq.(12). Consequently, we obtained the Feynman rule for the γνν̄-

vertex which does not exist in the minimal extension of the non-commutative standard model

introduced in [13], while for the Zνν̄-vertex we find some corrections given in Eqs.(14-15). We

explored the photon-neutrino elastic scattering in both the nmNCSM and the extended version

of mNCSM. In the former model, the left handed neutrino at the tree level can interact with

photon via Z-gauge boson exchange as is shown in Fig.(1). We showed that the cross section

grows as E6 in the center of mass and depends on the new undetermined constant, KZγγ , as well

as the parameter of non-commutativity, see Eq.(28). The cross section for KZγγ = 0.1 varies in

the range 10−42-10−46 cm2 for Λ ∼ 100 − 1000GeV and E ∼ 0.1MZ which is comparable with

its counterpart in the commutative space though KZγγ varies in the range −0.3 ≤ KZγγ ≤ 0.1

and it may be zero. Nevertheless, the photon-neutrino elastic scattering is also examined in the

extended version of mNCSM where photon can interact directly with neutrino. In this case there

are two Feynman diagrams at the tree level which are presented in Fig.(2). Since the parameter

of non-commutativity is the only mass scale, the cross section should be proportional to α2Λ−8E6

which is explicitly obtained in Eq.(51). Comparison of Eq.(53) and Eq.(1) with Eq.(2) shows

that the three cross sections are equal for E = 6.5GeV while the value of the photon-neutrino

elastic scattering cross section in the non-commutative space at E = 10GeV is about two times

the value of its counterpart in the commutative space. Therefore, at sufficiently high energies

the process νγ → νγ in the non-commutative space dominates the processes νγ → νγ and

νγ → νγγ in the commutative space. Nonetheless, for the higher values of Λ the elastic cross

section in the NC-space will be comparable with the elastic one in the commutative space at

the higher energies. For example for Λ = 1000GeV at E = 500GeV it is still one percent of the

cross section of νγ → νγ in the SM while they are equal at E ∼ 1000GeV . Therefore, in the

high energy limit the right handed neutrino has the same contribution to the photon-neutrino

scattering as the left handed one and is not the expectator particle.
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