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GUT angle minimises Z0 decay
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Abstract

The GUT value of Weinberg’s angle is also the value that minimises the

total square matrix elements of Z0 decay, independently of any GUT consid-

eration, and thus the one that maximises the neutrino branching ratio against

total width. We review the proof of this result and some related facts.

From any textbook (eg [1]), the amplitude for decay of Z0 into a fermion pair,
at leading order, is

Γ(Z0 → f f̄) = Cf (|Vf |2 + |Af |2)
GFM

3

Z

6
√
2π

(1)

where Cf is a colour normalisation constant, 1 for fermions and 3 for quarks, and
Vf and Af are the vector and axial charges,

Vf = T 3

f − 2Qf sin
2 θW (2)

Af = T 3

f (3)

If we are interested on the decay into a set of fermions, we add the contributions
to get the total square matrix element:

K{f} =
∑

f

Cf ((T
3

f )
2 + (T 3

f − 2Qf ŝ)
2) (4)

We want to know for which value of ŝ ≡ sin2 θW will the relative coupling, and
then the decay width1, to be a minimum. Thus we ask

0 = K ′
{f}(ŝ) =

∑

f

2Cf (T
3

f − 2Qf ŝ)(−2Qf ) = 4
∑

f

Cf (2ŝQ
2

f − T 3

fQf ) (5)

and then using that T 3

fQf = T 3

f (Y + T 3

f ) = (T 3

f )
2 for sums across an isospin

multiplet, accounting colour in the whole sum, and passing it from Dirac to Weyl
species we get

ŝmin =

∑

f T
3

fQf

2
∑

f Q
2

f

=

∑

(T 3

f )
2

∑

Q2

f

(6)

When the set of fermions is a whole generation, this last formula equals the
very well known result (e.g. exercise VII.5.2 in [2]) for sin2 θW at the GUT scale of
any unification based on a simple group. It is independent of the specific fermion
content of the theory except that the factor 2 cancels because right fermions live in
isospin singlets, thus T 3 = 0 for them.

∗Zaragoza University at Teruel. arivero@unizar.es
1Except for the kinematics if we still want MZ to depend of sin θW .
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The proof is even shorter if we make use of the argument from D. H. Perkins
[6, section 9.3]. According this argument, normalisation of the coupling amplitudes
in the GUT scale amounts to forbid fermion-loop mixing of Z0 and photon, i.e. to
ask directly

∑

f CfQ(T 3− 2ŝ ·Q) = 0 when the loop is run for all the fermions in a
multiplet of the GUT group. Diagramatically we can move between our formulation
and Perkins’s by joining the two fermion lines in the Z0 decay to form a tadpole
diagram and then inserting an external photon line, the whole process resembling
the setup of a Ward identity, but where now the derivative is against Weinberg’s
sine squared.

Another early try to get the right normalisation of couplings from considerations
in the fermion-boson vertex can be found in [7].

Now lets concentrate particularly in the fermion content of a generation of the
standard model, where we have ŝmin = 3/8 (and K{u,d,ν,e}(3/8) = 2.5).

The charge assignments of the standard model can be imposed by hand or via
the requisites of anomaly cancellation. In any case, they have an extra property
when we pay attention to minimisation of Z0 decay: the value 3/8 also minimises
separately the partial decay width towards an u (or c) quark. And thus it minimises
also the partial decay into the set {d, νe, e} (or {s, νµ, µ} or {b, ντ , τ})

This means that for the standard model, 3/8 is not only the value minimising
decay into first and second generation; it also minimises the decay of Z0 into the
third generation, even if the top quark is kinematically out of reach of the gauge
meson. A posteriori, we could interpret this fact of an indication of the particular
characteristics of the top quark. The same arguments could be run from Perkins
requisite, but the sum of fermion loops does not underline the special role of top
quark, while Z0 decay stresses it.

Up to here the main comment, or result2, of this note: that the GUT formula
for Weinberg angle at unification scale is also got without GUT, by minimising Z0

decay. The following few paragraphs are random musings distilled from the above:
- A consequence of the derivation here presented is that a model can get into

GUT angle by asking for some minimisation requisite, without looking for a GUT
group. Spectral actions of Connes-Chamseddine could be a good candidate for this,
as would some other approaches from non commutative geometry [9, 10]. And I
wonder if Ibañez string-inspired approaches to Weinberg angle are also a conse-
quence of hidden minimisation.

- We have an alternate, more physical if you wish, way to state the Hierarchy
problem. Instead of asking ”Why the unification scale is so high compared with the
electroweak SSB scale”, now we can ask ”Why the Z0 decay (the squared matrix
elements K) should reach a minimum at the GUT scale”.

- If we contemplate K{u,d,ν,e} we can wonder for the value of this coupling at
the experimental scale of decay, ie when ŝ is about 0.232. In GUT theories there
is an scale available from which the value of the angle descends via renormalisation
flow [3, 4]; here we haven’t such scale to start with. But a related unexplained fact
is that

K{u,d,ν,e}(0.231948...) = exp(1) =

∞
∑

0

1

n!
(7)

We haven’t the slightest idea of why the transcendent number e could have a reason
to appear here. The minimum, K = 2.5, is a member of the simple series expansion
of e, up to three terms. But on the other hand the values K = 1 and K = 2, which
we could get by using the lower terms, need of a complex ŝ.

It could bring some problem to poorly programmed statistical algorithms. Lets

2The whole note is motivated because I have been unable to find this remark in standard

textbooks; I’d thank any information about previous statements of it
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trace numerically this dependence K{f}(ŝ
2)

ŝ2 | lnK{f} − 1|
0.2310 .001067
0.2311 .000954
0.2312 .000841
0.2313 .000729
0.2314 .000616
0.2315 .000503
0.2316 .000391
0.2317 .000279
0.2318 .000166
0.2319 .000054
0.2320 .000059
0.2321 .000171
0.2322 .000283
0.2323 .000395
0.2324 .000507
0.2325 .000619
0.2326 .000731
0.2327 .000842
0.2328 .000954
0.2329 .001065

An algorithm using a three-digits cutoff somewhere (say, in a conditional IF of
the simulation code) could round the values between 0.2318 .. 0.2320 into the value
0.2319484

In any case, compare with 0.23193± 0.00056 from ALEPH [13] hep-ex/0107033.
It is amusing.
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The figure shows |1 − lnK| as in the table, compared with the measured values of
ŝ2 from table 10.5 of [12]. Vertical arrows mark experimental central value, for all
data, and the point 0.2319484 of singularity. It can be seen that the measurement
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from Ab,c
FB is away from the rest of values but in agreement with the numerical

singularity.
But the precise apparition of the trascendent number e or its series should be

taken with a bit of salt if thinking about applications in phenomenology. To give
one example, almost the same numbers (0.2319478) are got if we ”solve” e from its
approximation

√

e− 5/2 ≈ (1 + 3/8)
e

8

I.e., if we ask the derivative of lnK to have the value

d(lnK(ŝ2))

d(ŝ2)

∣

∣

∣

∣

ŝ2
Z

≈ −
√

2

3
(1 +

3

8
)

which give us a intrascendent (er, algebraic) value. And for sure other approxima-
tions are possible.

Related to this, it is perhaps worth to mention that the experimental Z0 width,
which we can calculate by summing the three families, has another intriguing empir-
ical accident: it scales straightforwardly, via the cube of the mass, from neutral pion
width[8], so that currently the scaling down from Z0 to π0 is a precise ”prediction”
of the mean life of the latter particle.

- Also for the standard model assignment of charges, and in terms of the decay
to a whole family, we have the relationships K{d,e} = 1

2
K, Kν = 1

2
, Ku = 1

2
K − 1

2
.

This implies that for the above mentioned K = 1, the decay probability into upper
quarks vanishes.

- The value ofKν does not depend of sin2 θW . Then we can use its corresponding
decay width to stablish branching ratios, getting rid of GF and M3

Z0 . So, we
can state for instance that at tree order, the value of sin2 θW that maximises the
branching ratio of neutrinos in Z0 decay is the same value that sin2 θW has at the
Grand Unification Scale. And so on. This is a traditional trick, used by instance
in [11], where regretly Wilczek et al. only plot ratios dependence of sin2 θW in the
quark sector, then getting a near miss of the formulation here presented.

- Just for analytic commodity we can solve the equation for ŝ in terms of the
decay to a whole family. We have

ŝ =
3

8
(1 −

√

2

3

√

K − 5

2
) (8)

where some care must be taken about the lack of analyticity of ||2 and its conversion
to ()2. Actually the possible values of ŝ for a given K form an hyperbola in the
complex plane, that becomes degenerate when K = 5/2. For values K < 5/2 the
hyperbola does not touch the real axis and the above equation gives the position
of its vertex. Incidentally, for K=1 such vertex it at a distance 3/8 of the real axis
and the hyperbola is symmetric to the one for K=4.

- Finally, let me note that another common apparition of the factor 3/8 is
in perturbative expansions of electromagnetism, and that the use of the GUT to
correct αEM has been vindicated in some exponential adjustments between Planck
and electron scales, eg by Laurent Nottale. I strongly doubt that the development
here can be connected to these ones, albeit a corner should be left to accidental
technicalities from sin4, cos4 expansions.
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