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Branching ratios and polarization amplitudes for B decaying to all allowed pseudoscalar, vector,
axial-vector, scalar and tensor combinations of Ds and D mesons are calculated in the Isgur Scora
Grinstein Wise (ISGW) quark model after assuming factorization. We find good agreement with
other models in the literature and the limited experimental data and make predictions for as yet
unseen decay modes. Lattice QCD results in this area are very limited. We make phenomenological
observations on decays in to Ds(2317) and Ds(2460) and propose tests for determining the status
and mixings of the axial mesons. We use the same approach to calculate branching ratios and
polarization fraction for decays in to two D type mesons.

PACS numbers: 13.25.Hw, 12.15.Ji, 12.39.Jh

I. INTRODUCTION

Non-leptonic weak decays of B-mesons are impor-
tant because they probe both electroweak physics and
hadronic structure, and may provide a window on physics
beyond the standard model. As well as its intrinsic in-
terest, the hadronic part must be understood in order to
extract electroweak and new physics from these decays.
This involves non-perturbative QCD and so can not be
calculated from first principles. There have been many
attempts to model the hadronic part and their success
varies depending on which decay mode is studied. There
are only very limited lattice QCD results in this area.
Semi-leptonic decays of B and D mesons have been suc-
cessfully studied using the Isgur Scora Grinstein Wise
(ISGW) model [1]. We extend this model to the study
of exclusive non-leptonic decays after assuming factoriza-
tion of these decays. The model has corrections that van-
ish when the final mesons have zero recoil and so should
be most reliable close to this kinematic region.

Heavy Quark Effective Theory (HQET) as used, for
example, in Ref. [2], provides a set of symmetry rela-
tions but not expressions for the rates. Some explicit
model must still be used. The ISGW model satisfies the
requirements of HQET in the zero recoil limit [3] and
provides an explicit model in which calculations can be
made.

There are also pole models such as that of Bauer, Stech
& Wirbel (BSW) [4][5] which we compare to our results.
There are different approaches for heavy to light de-
cays such as the Soft Collinear Effective Theory (SCET)
framework [6] and Light-Cone Sum Rules [7][8]. These
are useful where the final state mesons have high energy
unlike the regime close to zero recoil that we are probing
here.

Some predictions have been made for decays to com-
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binations of pseudoscalar Ds and D and vector D∗
s and

D∗ such as by Luo & Rosner [2] and Chen et. al. [9].
Datta and O’Donnell [10] have made limited studies of
the decays to axial and scalar Ds. Cheng et. al. in Ref.
[11] have studied s and p-wave form factors in the light-
front approach. They have compared this to improved
ISGW model [3] results given in Ref. [12]. We specialize
to the Ds D modes where the ISGW predictions should
be reliable and calculate explicit results for all possible
combinations of p and s-wave mesons consistently in one
model giving polarization ratios where applicable.

With B factories tightening current observations of B
decays and finding new decay modes it is timely that
these modes should be studied in detail.

Our aims are to:

• Provide robust predictions of branching ratios and
polarization fractions for all the possible combina-
tions. These can be compared with current and
future experimental data.

• Comment on what can be learnt about the nature
of Ds(2317) and Ds(2460) mesons and axial vector
mixing.

We start in Section II with a discussion of factorization
and general remarks. In Section III we briefly describe
the ISGW model and extend it to non-leptonic decays af-
ter assuming factorization. In Section IV we present our
results for the branching ratios and polarization fractions
of the allowed decay modes. We also compare our results
with those from other models and experimental data in
this section. Then we apply the same method to decays
in to two D type mesons. In Section V we discuss what
we can learn about the scalar and axial Ds0 and Ds1.
We finish with some general remarks and conclusions in
Section VI and suggest some experimental observations
that could be made.

http://arxiv.org/abs/hep-ph/0511169v3
mailto:c.thomas1@physics.ox.ac.uk
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FIG. 1: B−(bū) → D−

s (c̄s)D0(cū) - Type I Tree Diagram

II. GENERAL DEFINITIONS AND
FACTORIZATION

The color favored tree diagram (“Type I tree dia-
gram”) for B → DsD is shown in Fig. 1. Here Ds and
D can be any s or p-wave sc̄ and cū states. We ignore
any contribution to this process from penguin and weak-
annihilation topologies.

The rate for a general Type I Tree decay B(bq̄i) →
Y (q1q̄2)X(qq̄i) (e.g. Y = Ds and X = D) can be written
as:

Γ =
G2

F

16π
a21|VqbVq1q2 |2

|q|
M2

B

|A|2. (1)

where GF is the Fermi Constant, a1 is the effective Wil-
son coefficient, Vqb and Vq1q2 are Cabibbo-Kobayashi-
Maskawa (CKM) quark-mixing matrix elements, q is the
recoil 3-momentum in the rest frame of B and MB is
the B-meson mass. |A|2 is the sum of the squares of the
polarization amplitudes Ai:

|A|2 ≡
∑

i

|Ai|2. (2)

We use the notation i = +−, −+ or ll where the first
label denotes the helicity of the X meson.

We follow Rosner & Luo [2] by assuming the factor-
ization hypothesis (naive factorization) and writing the
amplitude as a product of two matrix elements:

Ai =< Y |Jµ|0 >< X |Jµ|B >, (3)

where Jµ ≡ Vµ −Aµ ≡ q̄fγµ(1− γ5)qi is the vector-axial
current. In QCD Factorization [13] [14] [15] it has been
shown that B decays to two heavy mesons do not obey
the BBNS factorization formula and so naive factoriza-
tion is not expected to hold. However, as noted in Ref.
[14], the charm quark mass is at an intermediate scale
between the light and heavy (bottom quark mass) scales

and so factorization is still an open question in the modes
we consider. Empirically factorization works where it has
been tested in these modes [2] [16] [9]. Comparison of our
results with experiment can further test this assumption.
The effective Wilson coefficient a1 contains some QCD
corrections. As remarked in Ref. [2] this varies from
process to process but only by less than about 1%. We
therefore use that paper’s value, a1 = 1.05, for all pro-
cesses.

The matrix element < X |Jµ|B > can be parameter-
ized in terms of general form factors. We use the same
definitions as ISGW and these are given in Appendix A.
These form factors can then be calculated in a particular
model such as ISGW discussed in Section III. The po-
larization vectors and tensors used for J = 1 and J = 2
mesons are given in Appendix B.

The matrix element < Y |Jµ|0 > can be parameterized
in terms of the decay constant of meson Y, fY . For vec-
tor (3S1) and axial vector (3P1,

1P1) mesons [44] with
polarization vector ǫYµ and mass MY this is defined by

< Y |Jµ|0 >= ǫ∗Yµ fYMY , (4)

and for scalar (3P0) and pseudoscalar (1S0) mesons [45]
with 4-momentum P Y

µ ,

< Y |Jµ|0 >= iP Y
µ fY . (5)

III. THE ISGW MODEL

The ISGW model [1] was developed to calculate
semileptonic B and D decays using a constituent quark
model and the mock meson approach [17]. We extend
the model to non-leptonic decays using the factorization
hypothesis and test the sensitivity to the assumptions
made. We find that robust predictions can be made for
the Ds D decay modes because they are in the valid kine-
matic region.

The matrix element < X |Jµ|B > is calculated us-
ing a non-relativistic decomposition of the quark current
q̄γµ(1−γ5)b. This will contain corrections of O(|q|4/m4

qi)

and O(|q|4/M4
X) wheremqi are the quark masses appear-

ing in the current decomposition. The model is there-
fore reliable only close to zero recoil and with heavy
quarks. MB is the mass of the B meson, MX is the
mass of the D (or excited D) meson, MY is the mass

of the Ds (or excited Ds) meson. M̃B, M̃X and M̃Y

are the respective mock meson masses. PB, PX , PY

are the 4-momenta, y ≡ t
M2

B

≡ (PB−PX )2

M2
B

=
M2

Y

M2
B

, and

tm ≡ max t = (MB −MX)2. The quarks are the spec-
tator antiquark q̄i, the decaying quark b, the quark in
the final state meson with the spectator quark q, and the
quark and antiquark pair in the other final state meson
q1 and q̄2. mqi, mb, mq, mq1 and mq2 are the constituent
quark masses. In the decay B− → D−

s D
0: q̄i = ū, q = c,

q1 = s and q̄2 = c̄.
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In the original ISGW paper the semileptonic differen-
tial rate is given in terms of the form factors. We have
adapted the model to calculate non-leptonic decays in the
factorization hypothesis given above. The resulting rela-
tionships between polarization amplitudes, form factors
and decay constants are given in Appendix C. For con-
nection with the original ISGW paper [1], their hadronic
tensor (Equ. 7) is given by

hµν =
∑

i

< B|J†
ν |X >< X |Jµ|B > . (6)

We initially followed the original ISGW paper using
(radial ground state) harmonic oscillator (HO) wavefunc-
tion of the momentum space form:

ψl=0,ml=0(k) =
(

πβ2
)−3/4

exp

(

−|k|2
2β2

)

, (7)

ψl=1,ml=0(1)(k) =
√
2
(

πβ2
)−3/4 kz(+)

β
exp

(

−|k|2
2β2

)

. (8)

where β is the wavefunction parameter and k+ =
− 1√

2
(kx + iky) . The wavefunctions are normalized such

that
∫

d3kψ∗(k)ψ(k) = 1.

The resulting ISGW form factors using harmonic os-
cillator (HO) wavefunctions are given in Appendix D.
These are mostly the same as the ISGW paper with some
additional ones not given in that paper. However, there
are a couple of differences. The sign of the scalar form
factor u+ in Equ. D14 is opposite to that in Equ. B37
of Ref. [1]. As Ref. [1] does not give an expression for
u− it is not possible to tell if this is an overall or rela-
tive sign. It seems likely that it is an overall sign due to
the conventions used, in which case it has no affect on
the results. If it is a relative sign it can only modify the
results when meson Y is a pseudoscalar or scalar. If, for
example, Y is the pseudoscalarDs, adding a relative sign
changes the branching ratio significantly: from 4.2×10−4

to 2.2× 10−3.

The other difference is the additional mass ratio
M̃B/M̃X ≈ 2.2 in the axial vector (1+−) form factor
v in Equ. B43 of Ref. [1] compared with Equ. D11 here.
This is a parity violating form factor which appears in
decays where meson Y is a vector or an axial vector
and only in the transverse polarization amplitudes. This
has a negligible affect on the branching ratios and lon-
gitudinal fractions. For example, when Y is the vector
D∗

s , the branching ratios (arbitrary normalization) are
∝ 5.28× 1013 and 5.29× 1013, and the longitudinal frac-
tions 0.930 and 0.928 respectively without and with the
mass ratio. However, there is a significant affect on the
parity odd fraction ∝ (A+−−A−+)

2. This is 0.66×10−3

without the mass ratio but 3.1× 10−3 with it.

The original ISGW paper was restricted to harmonic
oscillator wavefunctions; our ISGW form factors for gen-
eral wavefunctions are given in Appendix E.

In the original ISGW paper |q|2 in form factors is ap-
proximated as (tm − t)MX/MB and a relativistic correc-

Quark Constituent Quark Mass / MeV

b 5170

q = q1 = c 1770

qi = u 330

q2 = s 550

TABLE I: Constituent quark masses [18].

tion factor κ is introduced through |q|2 → |q|2/κ2. This
was intended to bring the pion form factor into better
agreement with experiment at the low q2 region [1]. We
take κ = 0.75 [18]. However, we look at how much κ
influences the results by setting κ = 1 in one model.

There is ambiguity in the mock meson approach [19]
as to whether, at the end of the calculation, to identify
the mock meson masses as the physical meson masses or
the sum of the constituent quark masses.

We used a number of different models corresponding to
different choices to assess the robustness of the approx-
imations used. In model 1 the (tm − t) form is used in
place of |q|2. In models 2 and 3 the exact |q|2 is used
in the exponential of F3. In models 1-2 the mock meson
masses are equal to the physical meson masses. In model
3 the physical meson masses are used except in the ex-
ponential of F3 where the sum of the constituent quark
masses is used. Models 4-5 take the mock meson masses
to be the sum of the constituent quark masses. Model 4
uses (tm − t) and model 5 uses |q|2. Model 6 is the same
as model 3 except that we set κ = 1.

The Ds D decay mode is expected to be reason-
ably well modeled by ISGW. The highest recoil momen-
tum (that for final state pseudoscalars) is 1812 MeV.
|q|/mb ≈ 0.35, |q|/mc ≈ 1.02, |q|/MD ≈ 0.97. Although
|q|/mc and |q|/MD do not appear small, they appear
as, for example, |q|4/(8M4

D) in a Taylor expansion with
numerical value ≈ 0.14. The approximation is therefore
reasonable. In the following section we present the results
of our calculation.

IV. RESULTS OF CALCULATIONS

A. ISGW Model Results

Unless otherwise stated all numerical values of con-
stants, masses etc. are taken from the PDG Review 2004
[23]. The quark masses and HO wavefunction parameters
used are shown in Tables I and II respectively. We take
a1 = 1.05 [2], |Vbc| = 0.04 and |Vcs| = 0.97. The magni-
tudes of decay constants used are given in Table III. The
phases of the decay constants are chosen to match those
given by quark model calculations in Appendix F.

To be explicit, we consider the mode in which a charged
B decays in to a charged Ds and neutral D0. Initially
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Meson β / MeV

B 410

D 390

D∗ 390

D0 330

D1 330

D2 330

TABLE II: HO wavefunction parameters [20].

Meson Decay Constant f / MeV

Ds 240 MeV [21]

D∗

s 275 MeV [21]

Ds0 110 MeV [22]

Ds11 240 MeV [22]

Ds12 63 MeV [22]

TABLE III: Ds meson decay constants.

we take the axial vector Ds1(2460) ≡ Ds11 to be 3P1

with mass 2460 MeV. The Ds1(2536) ≡ Ds12 is 1P1 and
has mass 2536 MeV. We discuss axial vector mixing in
Section V. The scalarDs0 is assumed to be the Ds(2317)
with mass 2317MeV. We take both axialD1 to have mass
2420 MeV: D11 is 3P1 and D12 is 1P1. The scalar D0 has
mass 2350 MeV and the tensor D2 has mass 2459 MeV.

As discussed in Section III, to get a handle on the
theoretical uncertainty within the ISGW model, we cal-
culated the branching ratios and polarization ratios using
six different model choices.

A plot of the calculated decay rates and the experi-
mental results is shown in Fig. 2. The model error bars
and average show the range and average of the six model
choices. The experimental results are from the PDG Re-
view 2004 [23] apart from: B0 → D+

s D
− which is from

Belle [24] and B0 → D∗+
s D∗− which is from BABAR [25].

Tables of numerical results are given in Tables V and VI
of Appendix G. Products of branching ratios have been
measured for the Ds(2317) and Ds(2460) modes from
BABAR [26] and Belle [27]. This data is averaged in the
PDG Review 2005 Partial Update [28] and discussed in
Section V.

Where data exist the model seems in remarkable agree-
ment. The possible exceptions are the newer Belle and
BABAR results for the neutral B decaying to D−

s D
+

and D∗−
s D+∗. Both these neutral B modes are lower

than the model predictions and, although this is not sig-
nificant, they are lower than the corresponding charged
B mode. If more precise data shows a discrepancy be-
tween charged and neutral decays it would be due to some
difference between u and d spectator quarks. Spectator
interaction effects which could cause this include weak
annihilation, which can only contribute to the charged
B+ decay, and electromagnetic penguins.

The variation due to the model choice is relatively
small; it’s of the same order or less than the experi-
mental uncertainty for those modes with experimental
data. This suggests the predictions made are robust. The
model uncertainty shown does not include uncertainty
in the decay constants: this would change the overall
branching ratio for each Y (e.g. Ds) meson but not the
pattern for a given Y .

The Ds11 D
∗, Ds11 D and Ds12 D

∗ modes are rela-
tively large but are complicated by axial vector mixing.
We comment on implications for Ds0 and Ds1 mesons in
Section V.

Polarization ratios for the relevant decay modes are
shown in Fig. 3. There is only one piece of experimental
data in the PDG Review 2004: that from BABAR and
CLEO on the decay in to D∗

s D∗. Here there is good
model agreement. The model uncertainty is ∼ 10% be-
ing slightly larger for the D11 modes. Again the model
predictions are robust.

We then looked at the ISGW model with more real-
istic wavefunctions using the results of Appendix E and
a numerical solution of the radial Schrödinger equation.
This was done by discretizing the position coordinate in
to 300 intervals ranging from 0 to ≈ 2 × 10−2MeV−1.
We first checked our numerical method by solving a HO
potential V = 1/2µω2r2 where ω = β2/µ and µ is the
reduced mass of the quarks. The results were the same
as the HO analytic ones to the numerical accuracy.

We then used a more realistic Linear + Coulomb
+ Hyperfine (LCHF) potential with the delta function
smoothed out to a Gaussian [29][30]:

V = −4

3

αs

r
+ br+

32αHσ
3

9mqmq̄
√
π
(sq · sq̄) exp (−σ2r2). (9)

Taking αs = 0.594, b = 1.62 × 105MeV2, σ = 897MeV
and αH = αs. The resulting form factors are neg-
ligibly different from the HO ones compared with the
other model uncertainties. Varying the parameters in
the LCHF potential by 10% leads to negligible changes
in the results.

So, to summarize, the potential used does not appear
to modify our results significantly.
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FIG. 2: B → DsD Branching Ratios: ISGW model and experimental values. See the text for references to experimental results.

B. Comparison with Other Results

We compared these results with calculations based on
the BSW model [4][5], Luo and Rosner’s HQET based
model in ref. [2] and the pole model in that reference.
We used our values of the masses, decay constants, CKM
matrix elements and a1. These models only allow predic-
tions when meson X is a vector or pseudoscalar meson.
The branching fraction results are shown in Fig. 4 and
the polarization ratios in Fig. 5. It can be seen that there
is reasonably good agreement between the four models.
This adds to our confidence in the robustness of our re-
sults. The ISGW model appears to give a slightly worse
fit in some cases. However we should note that we haven’t
fitted anything to these decays. The only parameter, a1,
was obtained for general B decays.

Cheng et. al. [11] have used a light-front approach
to calculate some of these decay modes. They do not,
however, give explicit results for all the modes that can be
compared to experimental data. The light front approach
has the advantage of being relativistic, however, in the
region close to zero recoil being studied we have argued
that the ISGW model should be valid. The light front
approach uses a parameterization to get from maximum
recoil to the physical regime.

Cheng [12] has also studied s and p-wave form fac-
tors in an improved ISGW model [3]. However different
models are used for different transitions. For consistency
we have used the same model for all the decay modes.
We give explicit results for all possible combinations in-
cluding p-wave and and p-wave modes some of which are
comparable in magnitude to the p-wave + s-wave modes.
We present polarization ratios where appropriate. None
of the parameters have been fit to these decays; the decay
constants are determined from other experimental results
or models. We have also attempted to assess the impact
of some of the approximations in our results. Their qual-
itative pattern is the same as ours but there are quantita-
tive differences, comparison being complicated by mixing
effects.

Lattice calculations currently only determine the form
factors at zero recoil for semileptonic decays of B to D
or D∗. Therefore branching ratios can not be compared
with our calculations. For B → D the lattice results are
given as F (w = 1) where w = PB · PX/(MXMB). This
is related to the ISGW form factor f+ by

F =
2
√
MXMB

MX +MB
f+. (10)

The ISGW model gives 0.961 to 1.02 depending on what
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FIG. 3: Polarization Ratios: ISGW model and experimental values. See the text for references to experimental results.

masses are used for the mock meson masses. Lattice
calculations give 1.074± 0.018± 0.016 [31]. For B → D∗

the lattice results are given as FA(w = 1). This is related
to the ISGW form factor f by

f =
√

MXMBFA(w)(1 + w). (11)

The ISGW model gives this as 0.998 whereas
a quenched lattice calculation gives 0.913+0.024

−0.017 ±
0.016+0.003+0.000+0.006

−0.014−0.016−0.014 [32]. In both cases the results of
lattice and ISGW models differ.

C. The B → DD Modes

The ISGW model can also be used in decays to two
D (and excited) mesons. The dominant contribution is
again expected to be from the Type I tree diagram shown
in Fig. 1. In the decay B− → D−D0: q̄i = ū, q = c,
q1 = d and q̄2 = c̄. These decays are Cabibbo suppressed
with the CKMmatrix element Vcs replaced by Vcd leading
to a suppression factor of 0.05 in rate compared with the
Ds D modes. This means that other contributions may
be relatively more important.

An additional complication is in distinguishing the two
D mesons produced. In neutral B decays the B0 and

B̄0 decays must be distinguished to determine which D
meson is which. In the B0 decay meson Y has charge +
whereas in the B̄0 decay it has charge −. This is not a
problem in charged B decays where meson Y is always
charged and X is neutral.

With these caveats the decays can be calculated as
above. We take |Vcd| = 0.22. The magnitudes of decay
constants used are given in Table IV. These are from a
quark model calculation using HO wavefunctions, as de-
scribed in Appendix F, normalized to the fD result from
CLEO [33]. They produce the same pattern of results as
in Ref. [22].

Meson Decay Constant f / MeV

D 223 [33]

D∗ 215

D0 156

D11 183

D12 89

TABLE IV: D meson decay constants

The branching ratios and polarization fractions are
shown Figures 6 and 7 respectively. Numerical values
are given in Tables VII and VIII of Appendix G. In the
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FIG. 4: B → DsD Branching Ratios: Different models. Experimental data as in Fig. 2.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ds*
D*

Ds11
D*

Ds12
D*

Lo
ng

itu
di

na
l /

 T
ot

al
 R

at
e 

R
at

io

Decay Mode

ISGW Model
BSW
HQET Rosner
Pole Rosner
Experimental

FIG. 5: Polarization Ratios: Different models. Experimental data as in Fig. 3.

PDG Review 2005 Update [28] there are only upper lim-
its for the vector and pseudoscalar modes along with a
combined branching ratio in to D+ D∗ and D∗+ D of
0.93± 0.15× 10−3. The experimental data shown on the
figures is from Belle [34] [35]. There is good agreement
except for decay to D D. Again here the B0 branching
ratio is lower than the B+ branching ratio. The model
uncertainty shown does not include uncertainty in the

decay constants which could be significant.

Because of the charge conjugation symmetry of the fi-
nal state in decays to D∗ D̄∗ another interesting observ-
able is the CP odd fraction, R⊥. This is related to the
helicity amplitudes: Equs. C4 and C5 in Appendix C by

R⊥ =
|A+− −A−+|2

2(|A+−|2 + |A−+|2 + |All|2)
(12)
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FIG. 6: B → DD Branching Ratios: ISGW model and experimental values. See the text for references to experimental results.

The model R⊥ are shown in Table IX of Appendix G.
There is experimental data on R⊥ in the decay to D∗D∗:
Belle givesR⊥ = 0.19±0.08±0.01 [34] and BABARR⊥ =

0.125± 0.044± 0.007 [36]. This is in general agreement
with R⊥ = 0.086 from the ISGW model.

Chen et. al. in ref. [9] have used generalized factor-
ization to study decays to pseudoscalar and/or vector D
mesons and compared a number of approaches. They in-
clude penguin and annihilation effects and comment that
penguin effects are not negligible in decays to two pseu-
doscalars. They have better agreement with experiment
in that mode and so this could be a contribution to the
discrepancy between our branching ratio to D D and ex-
periment.

V. PHENOMENOLOGICAL IMPLICATIONS
FOR Ds0 AND Ds1

The Ds(2317) (0
+) and Ds(2460) (1

+) do not fit eas-
ily in to the cs̄ spectroscopy [37]. These states could be
conventional cs̄ mesons with lower than expected masses
[38]. Alternatively they could be multiquark or molecu-
lar mesons associated with DK andD∗K thresholds [39].

Measuring branching ratios to D or D∗ with Ds(2317)
or Ds(2460) would help determine the nature of these
mesons. If the measured branching ratios are consistent
with our predictions this would support them being con-
ventional mesons. If this is the case, the mixing angle of
the 3P1 and 1P1 states in to physical axial vector mesons
Ds(2460) and Ds(2536) can also be determined.

Products of branching ratios have been measured for
theDs(2317) andDs(2460) modes from BABAR [26] and
Belle [27] and included in the PDG Review 2005 Partial
Update [28]. Following Datta and O’Donnell [10] we es-
timate lower limits for modes containing these mesons.

For decays to Ds(2317) D we get experimental lower
limits of (9.0± 3.2)× 10−4 for the B+ decay and (1.1±
0.4)× 10−3 for the B0 decay. For decays to Ds(2317) D

∗

we obtain (9±7)×10−4 and (1.5±0.6)×10−3 respectively.
These are consistent with the model predictions.

We parameterize the mixing of the axial Ds states in
terms of a mixing angle φ. The physical states are then
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FIG. 7: Polarization Ratios: ISGW model and experimental values. See the text for references to experimental results.

given by:

|Ds1〉 = sinφ
∣

∣

3P1

〉

+ cosφ
∣

∣

1P1

〉

, (13)

|D′
s1〉 = cosφ

∣

∣

3P1

〉

− sinφ
∣

∣

1P1

〉

. (14)

When φ = 0: Ds1 is purely 1P1 and corresponds to our
Ds12, andD

′
s1 is purely

3P1 and corresponds to ourDs11.
In the heavy quark limit the physical states are 3/21+

and 1/21+ (jJP j-j coupling eigenstates) corresponding
to φ = −54.7◦.

Plots of branching ratios to these mesons and D and
D∗ as a function of φ are shown in Figures 8 and 9 respec-

tively. We have ignored the mass difference and assumed
the Ds(2460) to be a conventional scalar meson. In our
conventions the decay constants of the 3P1 and 1P1 ax-
ials have opposite sign (see Appendix F) and this must
be taken in to account when calculating the amplitudes.
The estimated experimental limits are shown. Because
only limits exist it is not yet possible to determine the
mixing angle using these decays. With measured branch-
ing ratios these decays provide a relatively clean way to
measure the mixing angle but dependent on the Ds1 de-
cay constants.

Datta and O’Donnell [10] claim that there is a discrep-
ancy between experiment and theory. However they only
consider ratios of decay constants and ignore the mass
differences between the s and p-wave mesons. Here we
have shown that if the ISGW model is used and the mass
differences are taken in to account there is no inconsis-
tency between experiment and theory.

Ignoring effects due to the different masses between the
3P1 and 1P1 axial vector mesons, the only difference in
branching ratios is due to the decay constants. The quark

model expressions for decay constants given in Appendix
F imply that the branching ratio to 3P1 Ds is larger than
that to 1P1 Ds because the first is proportional to the
reduced mass whereas the later is proportional to the
inverse of the difference of inverse masses. In the equal
quark mass limit only the 3P1 meson can be produced,
not the 1P1. In the heavy quark limit only the 1/21+

meson can be produced, not the 3/21+ as remarked in
Ref. [40].

The axials and vectors can not be compared to the
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scalars and pseudoscalars as simply. This is because the
amplitudes involve different combinations of form factors
as seen in Appendix C.

VI. CONCLUSIONS

The ISGW model with the factorization hypothesis
produces robust predictions for branching ratios and po-
larization fractions for the B → DsD decays, which are
in general agreement with the limited experimental data.
The predictions are also in line with those from BSW,
HQET and pole models. We have made predictions for

all combinations of s and p-wave final state mesons that
can be measured in B decays. There are opportunities
to probe the nature of the Ds(2317) and Ds(2460) states
and determine the axial vector meson mixing using these
decays. Measuring more polarization fractions will be in-
teresting because they weigh different form factors at the
same momentum transfer. This method has also be used
to calculate branching ratios and polarization fractions
in B → DD decays.

With the B factories at BABAR and Belle, the Teva-
tron and later LHCb, more precise data and also data on
other decay modes should emerge.

It is important to note that these approximations are
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robust for the generic class of Ds D decays but are more
suspect for color suppressed B → J/ψK (and excited)
decays. These are outside the kinematically valid region
and experimental data on these modes disagree with re-
sults from this model. In addition, the factorization hy-
pothesis fails for these decays as evidenced by the obser-
vation of a χc0 K

+ decay mode at BABAR [41] and Belle
[42]. A possible contribution to these discrepancies could
be final state rescattering of (cs̄) (uc̄) in to (cc̄) (us̄) final
states [43].
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APPENDIX A: GENERAL PARAMETERIZATION OF VECTOR-AXIAL CURRENTS BETWEEN
MESONS

When X is a pseudoscalar 1S0 0−+:

〈X |Vµ|B〉 ≡ f+(PB + PX)µ + f−(PB − PX)µ. (A1)

When X is a vector 3S1 1−− with polarization vector ǫµ:

〈X |Aµ|B〉 ≡ fǫ∗µ + a+(ǫ
∗ · PB)(PB + PX)µ + a−(ǫ

∗ · PB)(PB − PX)µ, (A2)

〈X |Vµ|B〉 ≡ igǫµνρσǫ
∗ν(PB + PX)ρ(PB − PX)σ. (A3)

When X is a scalar 3P0 0++:

〈X |Aµ|B〉 ≡ u+(PB + PX)µ + u−(PB − PX)µ. (A4)

When X is an axial vector 3P1 1++ with polarization vector ǫµ:

〈X |Vµ|B〉 ≡ lǫ∗µ + c+(ǫ
∗ · PB)(PB + PX)µ + c−(ǫ

∗ · PB)(PB − PX)µ, (A5)

〈X |Aµ|B〉 ≡ iqǫµνρσǫ
∗ν(PB + PX)ρ(PB − PX)σ. (A6)

When X is an axial vector 1P1 1+− with polarization vector ǫµ:

〈X |Vµ|B〉 ≡ rǫ∗µ + s+(ǫ
∗ · PB)(PB + PX)µ + s−(ǫ

∗ · PB)(PB − PX)µ, (A7)

〈X |Aµ|B〉 ≡ ivǫµνρσǫ
∗ν(PB + PX)ρ(PB − PX)σ, (A8)

When X is a tensor 3P2 2++ with polarization tensor ǫµν :

〈X |Aµ|B〉 ≡ kǫ∗µνP
ν
B + b+(ǫ

∗
αβP

α
BP

β
B)(PB + PX)µ + b−(ǫ

∗
αβP

α
BP

β
B)(PB − PX)µ, (A9)

〈X |Vµ|B〉 ≡ ihǫµνλρǫ
∗ναPBα(PB + PX)λ(PB − PX)ρ. (A10)

APPENDIX B: POLARIZATION VECTORS FOR
J = 1 AND J = 2 MESONS

For a vector meson with 4-momentum (E, 0, 0, |q|) and
mass M the polarization vectors are

ǫµ+ = − 1√
2
(0, 1, i, 0), (B1)

ǫµ− =
1√
2
(0, 1,−i, 0), (B2)

ǫµL =
1

M
(|q|, 0, 0, E). (B3)

For a vector meson with 4-momentum (E, 0, 0,−|q|)
and mass M the polarization vectors (in the spin rather
than the helicity basis) are

ǫµ+ = − 1√
2
(0, 1, i, 0), (B4)

ǫµ− =
1√
2
(0, 1,−i, 0), (B5)

ǫµL =
1

M
(−|q|, 0, 0, E). (B6)

For a tensor meson with 4-momentum (E, 0, 0, |q|) and
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massM the polarization tensors can be obtained by tak-
ing the outer product of two spin-1 polarization vectors
with the appropriate Clebsh-Gordon coefficients. The
polarization tensors are given by:

ǫµν++ =
1

2











0 0 0 0

0 1 i 0

0 i −1 0

0 0 0 0











, (B7)

ǫµν+ = − 1

2M











0 |q| i|q| 0

|q| 0 0 E

i|q| 0 0 iE

0 E iE 0











, (B8)

ǫµν0 =

√

2

3











|q|2
M2 0 0 |q|E

M2

0 − 1
2 0 0

0 0 − 1
2 0

|q|E
M2 0 0 E2

M2











, (B9)

ǫµν− =
1

2M











0 |q| −i|q| 0

|q| 0 0 E

−i|q| 0 0 −iE
0 E −iE 0











, (B10)

ǫµν−− =
1

2











0 0 0 0

0 1 −i 0

0 −i −1 0

0 0 0 0











. (B11)

APPENDIX C: POLARIZATION AMPLITUDES IN TERMS OF FORM FACTORS

For a pseudoscalar B decaying to a pseudoscalar (X) and a pseudoscalar (Y) the amplitude is given by

A = ifY
[(

M2
B −M2

X

)

f+ +M2
Y f−

]

. (C1)

For a decay in to a vector (X) and a pseudoscalar (Y) only a longitudinal vector is allowed and the amplitude is
given by

AL = −i fY |q|MB

MX

[

f + a+(M
2
B −M2

X) + a−M
2
Y

]

. (C2)

For a decay in to a pseudoscalar (X) and a vector (Y) only a longitudinal vector is allowed and the amplitude is
given by

AL = −2fY f+|q|MB. (C3)

For a decay in to a vector (X) and a vector (Y) the polarizations amplitudes for X positive, negative and longitudinal
polarization respectively are

A+− = −fYMY (f + 2g|q|MB) , (C4)

A−+ = −fYMY (f − 2g|q|MB) , (C5)

All =
fY
MX

[

f

(

|q|2 + 1

4M2
B

(M2
B +M2

X −M2
Y )(M

2
B +M2

Y −M2
X)

)

+ 2a+|q|2M2
B

]

, (C6)

=
fY
MX

[

fPY .PX + 2a+|q|2M2
B

]

. (C7)

For a decay in to a tensor (X) and a pseudoscalar (Y) only a longitudinally polarized tensor is allowed and the
amplitude is given by

AL = −ifY
[

k + b+(M
2
B −M2

X) + b−M
2
Y

]

√

2

3

M2
B|q|2
M2

X

. (C8)

For a decay in to a tensor (X) and a vector (Y) the tensor can not have polarization±2. The polarization amplitudes
for X positive, negative and longitudinally polarized respectively are given by

A+− = −fY
MB|q|MY

MX

√
2

(k + 2hMB|q|) , (C9)
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A−+ = −fY
MB|q|MY

MX

√
2

(k − 2hMB|q|) , (C10)

All =

√

2

3

|q|MBfY
M2

X

[

k

(

|q|2 + 1

4M2
B

(M2
B +M2

X −M2
Y )(M

2
B +M2

Y −M2
X)

)

+ 2M2
B|q|2b+

]

. (C11)

From these expressions it can be seen that the parity violation arises from a non-zero form factors g and h.

Amplitudes for when Y is an axial vector or scalar can be obtained simply by using the correct decay constant.
Amplitudes when X is an axial vector or scalar can be obtained by replacing the vector or pseudoscalar form factors
by the analogous axial or scalar ones given in Appendix A and multiplying by −1 to account for the difference in sign

of the vector and axial currents in V-A.

APPENDIX D: ISGW FORM FACTORS FOR HARMONIC OSCILLATOR WAVEFUNCTIONS

We define:

β2
BX ≡ 1

2
(β2

B + β2
X), (D1)

µ± ≡
(

1

mq
± 1

mb

)−1

, (D2)

and

Fn =

√

M̃X

M̃B

(

βBβX
β2
BX

)n/2

exp

[

−
(

m2
qi

4M̃XM̃B

)

tm − t

κ2β2
BX

]

. (D3)

The pseudoscalar (1S0) form factors are

f+ = F3

[

1 + mb

2µ
−

− mbmqmqiβ
2
B

4µ+µ
−
M̃Xβ2

BX

]

, (D4)

f− = F3

[

1− (M̃X + M̃B)
(

1
2mq

− mqiβ
2
B

4µ+M̃Xβ2
BX

)]

. (D5)

The vector (3S1) form factors are

f = 2M̃BF3 (D6)

g = 1
2F3

[

1
mq

− mqiβ
2
B

2µ
−
M̃Xβ2

BX

]

, (D7)

a+ = − F3

2M̃X

[

1 +
mqi

mb

(

β2
B−β2

X

β2
B
+β2

X

)

− m2
qiβ

4
X

4µ
−
M̃Bβ4

BX

]

, (D8)

a− = F3

2M̃X

[

1− M̃X

M̃B
+

M̃2
X

mqM̃B
− β2

BmqiM̃X

2β2
BX

M̃Bµ+

]

. (D9)

The axial vector (1P1) form factors are

r = F5
M̃BβB√

2µ+

, (D10)

v = F5
βB

4
√
2mbmq

, (D11)

s+ = F5
mqi√

2M̃BβB

[

1 + mb

2µ
−

− mbmqmqiβ
2
B

4µ+µ
−
M̃Xβ2

BX

]

, (D12)

s− = F5
mqi√

2M̃BβB

[

1− M̃X+M̃B

2mq
+

(M̃X+M̃B)β2
Bmqi

4µ+β2
BX

M̃X

]

. (D13)

Note the difference in v compared with B43 of [1], we have checked this and believe our expression is correct. We
comment on this in Section III.
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The scalar (3P0) form factors are

u+ = −F5
mbmqmqi√
6βBM̃Xµ

−

, (D14)

u− = F5
mqi(M̃X+M̃B)√

6βBM̃X
. (D15)

Note the negative sign in u+ compared with that in equation B37 of [1]. We comment on this in Section III.

The axial vector (3P1) form factors are

q = F5
mqi

2M̃XβB
, (D16)

l = −F5βBM̃B

[

1
µ
−

+
mqi(tm−t)

2M̃Bβ2
B
κ2

(

1
mq

− mqiβ
2
B

2βBXM̃Xµ
−

)]

, (D17)

c+ = F5
mqimb

4M̃BβBµ
−

[

1− mqimqβ
2
B

2M̃Xµ
−
β2
BX

]

, (D18)

c− = −F5
mqi(M̃B+M̃X )

4M̃BβB

[

1
mq

− mqiβ
2
B

2µ
−
β2
BX

M̃X

]

. (D19)

The tensor (3P2) form factors are

h = F5
mqi

2
√
2M̃BβB

[

1
mq

− mqiβ
2
B

2M̃Xµ
−
β2
BX

]

, (D20)

k =
√
2F5

mqi

βB
, (D21)

b+ = −F5
mqi

2
√
2M̃XmbβB

[

1− mqimbβ
2
X

2µ+M̃Bβ2
BX

+
mqimbβ

2
X

4M̃Bµ
−
β2
BX

(

1− mqiβ
2
X

2M̃Bβ2
BX

)]

, (D22)

b− = F5
mqi

2
√
2M̃2

B
βB

[

−1 + M̃X

mq
+ M̃B

M̃X
− mqi

µ+
+

mqi(M̃X+M̃B)
2mbmq

]

. (D23)

APPENDIX E: ISGW FORM FACTORS FOR GENERAL WAVEFUNCTIONS

We define:

β2
BX ≡ 1

2
(β2

B + β2
X), (E1)

and

µ± ≡
(

1

mq
± 1

mb

)−1

(E2)

In the following 〈〉 ≡ 〈X |B〉 and 〈O〉 ≡ 〈X |O|B〉. For example 〈pz〉 =
∫

d3p.pz.ψ
∗(p)ψ(p). For notational convenience

we include the common
√

M̃X/M̃B factors in 〈〉 and 〈O〉.
The pseudoscalar (1S0) form factors are

f+ = 〈〉
(

1 + mb

2µ
−

)

+ 〈pz〉
|q|

mbmq

2µ
−
µ+
, (E3)

f− = 〈〉
(

1− M̃X+M̃B

2mq

)

− 〈pz〉
|q|

M̃X+M̃B

2µ+
. (E4)

The vector (3S1) form factors are

g = 1
2

[

〈〉
mq

+ 〈pz〉
|q|µ

−

]

, (E5)

f = 2 〈〉 M̃B, (E6)

a+ = − 1
2M̃X

[

〈〉
(

1 + M̃X

M̃B
− M̃2

X

mqM̃B

)

− 〈pz〉
|q|

M̃2
X

M̃Bµ+

]

, (E7)

a− = 1
2M̃X

[

〈〉
(

1− M̃X

M̃B
+

M̃2
X

mqM̃B

)

+ 〈pz〉
|q|

M̃2
X

M̃Bµ+

]

. (E8)
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The axial vector (1P1) form factors are

r = 〈p+〉 M̃B

µ+
, (E9)

v = 〈p+〉 1
4mbmq

, (E10)

s+ = 〈〉 M̃X

|q|M̃B

(

1 + mb

2µ
−

)

+ 〈pz〉 mbmqM̃X

2M̃Bµ+|q|2µ
−

− 〈p+〉 1
2M̃Bµ+

(

1 +
mbmqM̃X

µ
−
|q|2 +

mbmq

2µ
−
M̃X

)

, (E11)

s− = 〈〉 M̃X

|q|M̃B

(

1− (M̃X+M̃B)
2mq

)

− 〈pz〉 M̃X (M̃X+M̃B)

2M̃Bµ+|q|2 + 〈p+〉 (M̃X+M̃B)M̃X

2M̃Bµ+|q|2 . (E12)

The scalar (3P0) form factors are

u+ = −〈〉 1√
3

mbmq

|q|µ
−

, (E13)

u− = 〈〉 1√
3

(M̃X+M̃B)
|q| . (E14)

The axial vector (3P1) form factors are

q = 〈〉 1√
2|q| , (E15)

l = −M̃B√
2

[

〈pz〉
µ
−

+ 〈〉|q|
mq

+ 〈p+〉
µ
−

]

, (E16)

c+ =
mbmqM̃X

2
√
2M̃B |q|2µ

−

[

− 〈p+〉
µ
−

+ 〈pz〉
µ
−

+ 〈〉|q|
mq

]

, (E17)

c− = M̃X(M̃X+M̃B)

2
√
2M̃B |q|2

[

〈p+〉
µ
−

− 〈pz〉
µ
−

− 〈〉|q|
mq

]

. (E18)

The tensor (3P2) form factors are

k = 〈〉 2M̃X

|q| , (E19)

h = M̃X

2M̃B |q|2

[

〈pz〉
µ
−

+ 〈〉|q|
mq

− 〈p+〉
µ
−

]

, (E20)

b+ =
M̃2

X

2|q|2M̃2
B

[

〈pz〉
(

1
µ+

+ 1
2µ

−

)

− 〈p+〉
(

1
µ+

+ 1
2µ

−

)

+ |q| 〈〉
(

1
mq

− 2
M̃X

− mbmq

M̃2
X
µ
−

)]

, (E21)

b− =
M̃2

X

2|q|2M̃2
B

[

〈pz〉
(

1
µ+

− (M̃X+M̃B)
2mbmq

)

− 〈p+〉
(

1
µ+

− (M̃X+M̃B)
2mbmq

)

+ |q| 〈〉
(

1
mq

− 2
M̃X

+ (M̃B+M̃X )

M̃2
X

)]

. (E22)

APPENDIX F: DECAY CONSTANTS IN THE
QUARK MODEL

A non-relativistic quark model calculation using simple
harmonic oscillator wavefunctions gives:

f1P0
= i

√
2
N(Y )

MY
, (F1)

f1P1
=

√
2
N(Y )

MY
, (F2)

f3P0
= −i

√
3
βYN(Y )

µ−MY
, (F3)

f3P1
= −

√
2
βYN(Y )

µ+MY
, (F4)

f1P1
=

βYN(Y )

µ−MY
, (F5)

f3P2
= 0. (F6)

βY is the SHO wavefunction parameter,

N(Y ) ∝ (4πβ2
Y )

3
4

√

MY

and

1

µ±
=

1

mq2
± 1

mq1
.

Here mq1 is the outgoing quark mass and mq2 is the
outgoing antiquark mass. The sign of the 3P1 decay con-
stant depends on which way around the spin and orbital
angular momentum are coupled. We use the convention
consistent with the argument in Ref. [40]. In this work, a
different relative sign here would only lead to the branch-
ing ratios shown in Figs. 8 & 9 being shifted in φ.

For general wavefunctions the above equations are re-
placed by:
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f1P0
= i

√
2
N(Y )

MY
< 0, 0|0 >L, (F7)

f1P1
=

√
2
N(Y )

MY
< 0, 0|0 >L, (F8)

f3P0
= −i 1√

6

N(Y )

µ−MY
(< 1, 0|pz|0 >L + < 1, 1|p+|0 >L + < 1,−1|p−|0 >L) , (F9)

f3P1
= −1

2

N(Y )

µ+MY
(< 1, 1|p+|0 >L + < 1,−1|p−|0 >L) , (F10)

f1P1
=

1√
2

N(Y )

µ−MY
< 1, 0|pz|0 >L, (F11)

f3P2
= 0. (F12)

Here the overlaps < l,ml|pi|0 >L only contain the spa-

tial integrals; the spin and Clebsh-Gordan factors have
already been taken care of. p+ = − 1√

2
(px + ipy) and

p− = 1√
2
(px − ipy).

Note that a tensor meson can not be produced from
an axial-vector current.

In the equal mass limit 1
µ
−

= 0 and so the scalar or
1P1 axial can not be produced. However, the 3P1 axial
can be produced.

In the heavy quark limit where the quark mass mq1 →
∞ and µ− = µ+ both axial vectors can be produced. It
is useful to change from the L-S basis 2s+1LJ to the j-j
coupling basis jJP where j is the total angular momen-
tum of the light degrees of freedom, J is the total angular
momentum and P is the parity. The transformation is
given by [40]:

∣

∣

1P1

〉

=

√

1

3

∣

∣

∣

1/21+
〉

+

√

2

3

∣

∣

∣

3/21+
〉

(F13)

∣

∣

3P1

〉

= −
√

2

3

∣

∣

∣

1/21+
〉

+

√

1

3

∣

∣

∣

3/21+
〉

(F14)

∣

∣

∣

3/21+
〉

=

√

2

3

∣

∣

1P1

〉

+

√

1

3

∣

∣

3P1

〉

(F15)

∣

∣

∣

1/21+
〉

=

√

1

3

∣

∣

1P1

〉

−
√

2

3

∣

∣

3P1

〉

(F16)

In the heavy quark limit f3P1
= −

√
2f1P1

and so:

f3/21+ = 0, (F17)

f1/21+ =
√
3f1P1

, (F18)

f1/20+ = −i
√
3f1P1

. (F19)

So the 3/21+ axial can not be produced but the 1/21+

axial can. Note also that, apart from a phase, the scalar
has the same decay constant. This is a specific realization
of the general result given by Le Yaouanc et. al. in Ref.
[40].

It is important to note that if it was the antiquark mass
that was large there would be a relative negative sign be-
tween µ− and µ+ which would change the negative signs
around in the basis change between L-S and j-j coupling.
This means that the basis transformation has different
signs in D+

s and D−
s mesons.

APPENDIX G: TABLES OF RESULTS
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Decay Mode Branching Ratio Lower Upper

D∗

s D 1.49 × 10−2 1.27× 10−2 1.70× 10−2

D∗

s D∗ 3.18 × 10−2 2.84× 10−2 3.50× 10−2

D∗

s D0 6.97 × 10−4 6.41× 10−4 7.36× 10−4

D∗

s D11 1.54 × 10−3 1.20× 10−3 1.70× 10−3

D∗

s D12 2.20 × 10−3 1.79× 10−3 2.51× 10−3

D∗

s D2 1.34 × 10−3 1.06× 10−3 1.54× 10−3

Ds11 D 8.10 × 10−3 7.18× 10−3 8.92× 10−3

Ds11 D∗ 2.67 × 10−2 2.45× 10−2 2.88× 10−2

Ds11 D0 2.70 × 10−4 2.55× 10−4 2.84× 10−4

Ds11 D11 6.82 × 10−4 5.68× 10−4 7.25× 10−4

Ds11 D12 7.17 × 10−4 6.13× 10−4 7.88× 10−4

Ds11 D2 5.07 × 10−4 4.21× 10−4 5.61× 10−4

Ds12 D 5.07 × 10−4 4.53× 10−4 5.53× 10−4

Ds12 D∗ 1.86 × 10−3 1.72× 10−3 2.00× 10−3

Ds12 D0 1.48 × 10−5 1.40× 10−5 1.55× 10−5

Ds12 D11 3.79 × 10−5 3.21× 10−5 4.00× 10−5

Ds12 D12 3.84 × 10−5 3.33× 10−5 4.18× 10−5

Ds12 D2 2.61 × 10−5 2.19× 10−5 2.87× 10−5

Ds D 1.76 × 10−2 1.49× 10−2 2.05× 10−2

Ds D∗ 7.51 × 10−3 6.38× 10−3 8.88× 10−3

Ds D0 4.63 × 10−4 4.21× 10−4 4.94× 10−4

Ds D11 2.16 × 10−4 7.77× 10−5 2.67× 10−4

Ds D12 2.76 × 10−3 2.19× 10−3 3.20× 10−3

Ds D2 3.21 × 10−4 2.15× 10−4 3.92× 10−4

Ds0 D 3.36 × 10−3 2.97× 10−3 3.81× 10−3

Ds0 D∗ 1.28 × 10−3 1.12× 10−3 1.50× 10−3

Ds0 D0 4.98 × 10−5 4.64× 10−5 5.27× 10−5

Ds0 D11 1.57 × 10−5 7.04× 10−6 1.87× 10−5

Ds0 D12 3.05 × 10−4 2.49× 10−4 3.44× 10−4

Ds0 D2 2.44 × 10−5 1.69× 10−5 2.91× 10−5

TABLE V: B → DsD branching ratios calculated in the
ISGW model. The branching ratio, lower and upper values
give the average and range of results dependent on model
choices as discussed in Section III.
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Decay Mode Longitudinal Polarization Fraction Lower Upper

D∗

s D∗ 0.47 0.46 0.49

D∗

s D11 0.19 0.10 0.22

D∗

s D12 0.93 0.92 0.93

D∗

s D2 0.50 0.48 0.50

Ds11 D∗ 0.42 0.42 0.44

Ds11 D11 0.15 0.10 0.16

Ds11 D12 0.81 0.80 0.82

Ds11 D2 0.44 0.44 0.45

Ds12 D∗ 0.41 0.41 0.43

Ds12 D11 0.15 0.11 0.16

Ds12 D12 0.76 0.75 0.77

Ds12 D2 0.43 0.43 0.44

TABLE VI: B → DsD polarization fractions calculated in
the ISGW model. The polarization fraction, lower and upper
values give the average and range of results dependent on
model choices as discussed in Section III.
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Decay Mode Branching Ratio Lower Upper

D∗+ D 5.04 × 10−4 4.26× 10−4 5.81× 10−4

D∗+ D∗ 9.58 × 10−4 8.48× 10−4 1.06× 10−3

D∗+ D0 2.51 × 10−5 2.29× 10−5 2.67× 10−5

D∗+ D11 5.29 × 10−5 4.00× 10−5 5.90× 10−5

D∗+ D12 8.35 × 10−5 6.71× 10−5 9.61× 10−5

D∗+ D2 4.70 × 10−5 3.66× 10−5 5.45× 10−5

D+

1 1 D 2.54 × 10−4 2.24× 10−4 2.81× 10−4

D+

1 1 D∗ 7.93 × 10−4 7.27× 10−4 8.58× 10−4

D+

1 1 D0 8.98 × 10−6 8.45× 10−6 9.43× 10−6

D+

1 1 D11 2.24 × 10−5 1.85× 10−5 2.39× 10−5

D+

1 1 D12 2.42 × 10−5 2.06× 10−5 2.67× 10−5

D+

1 1 D2 1.71 × 10−5 1.42× 10−5 1.91× 10−5

D+

1 2 D 6.00 × 10−5 5.30× 10−5 6.64× 10−5

D+

1 2 D∗ 1.88 × 10−4 1.72× 10−4 2.03× 10−4

D+

1 2 D0 2.12 × 10−6 2.00× 10−6 2.23× 10−6

D+

1 2 D11 5.30 × 10−6 4.38× 10−6 5.66× 10−6

D+

1 2 D12 5.72 × 10−6 4.86× 10−6 6.32× 10−6

D+

1 2 D2 4.05 × 10−6 3.35× 10−6 4.51× 10−6

D+ D 7.95 × 10−4 6.69× 10−4 9.36× 10−4

D+ D∗ 3.46 × 10−4 2.92× 10−4 4.12× 10−4

D+ D0 2.36 × 10−5 2.13× 10−5 2.54× 10−5

D+ D11 1.19 × 10−5 4.10× 10−6 1.48× 10−5

D+ D12 1.39 × 10−4 1.09× 10−4 1.62× 10−4

D+ D2 1.72 × 10−5 1.14× 10−5 2.12× 10−5

D+

0 D 3.44 × 10−4 3.05× 10−4 3.88× 10−4

D+

0 D∗ 1.29 × 10−4 1.13× 10−4 1.50× 10−4

D+

0 D0 4.73 × 10−6 4.42× 10−6 5.01× 10−6

D+

0 D11 1.42 × 10−6 6.55× 10−7 1.68× 10−6

D+

0 D12 2.89 × 10−5 2.37× 10−5 3.25× 10−5

D+

0 D2 2.19 × 10−6 1.52× 10−6 2.60× 10−6

TABLE VII: B → DD branching ratios calculated in the
ISGW model. The branching ratio, lower and upper values
give the average and range of results dependent on model
choices as discussed in Section III.
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Decay Mode Longitudinal Polarization Fraction Lower Upper

D∗+ D∗ 0.49 0.48 0.51

D∗+ D11 0.22 0.11 0.24

D∗+ D12 0.94 0.94 0.95

D∗+ D2 0.51 0.50 0.52

D+

1 1 D∗ 0.43 0.42 0.44

D+

1 1 D11 0.15 0.098 0.17

D+

1 1 D12 0.83 0.82 0.84

D+

1 1 D2 0.45 0.44 0.45

D+

1 2 D∗ 0.43 0.42 0.44

D+

1 2 D11 0.15 0.098 0.17

D+

1 2 D12 0.83 0.82 0.84

D+

1 2 D2 0.45 0.44 0.45

TABLE VIII: B → DD polarization fractions calculated in
the ISGW model. The polarization fraction, lower and upper
values give the average and range of results dependent on
model choices as discussed in Section III.

Decay Mode CP Odd Fraction, R⊥ Lower Upper

D∗+ D∗ 8.61 × 10−2 7.93× 10−2 8.95× 10−2

D∗+ D11 4.55 × 10−1 3.99× 10−1 6.15× 10−1

D∗+ D12 5.76 × 10−4 5.69× 10−4 5.89× 10−4

D∗+ D2 5.82 × 10−2 5.68× 10−2 5.90× 10−2

D+

1 1 D∗ 7.12 × 10−2 6.65× 10−2 7.36× 10−2

D+

1 1 D11 5.00 × 10−1 4.56× 10−1 6.05× 10−1

D+

1 1 D12 9.33 × 10−4 9.32× 10−4 9.35× 10−4

D+

1 1 D2 3.62 × 10−2 3.45× 10−2 3.71× 10−2

D+

1 2 D∗ 7.12 × 10−2 6.65× 10−2 7.36× 10−2

D+

1 2 D11 5.00 × 10−1 4.56× 10−1 6.05× 10−1

D+

1 2 D12 9.33 × 10−4 9.32× 10−4 9.35× 10−4

D+

1 2 D2 3.62 × 10−2 3.45× 10−2 3.71× 10−2

TABLE IX: B → DD CP odd fractions R⊥ calculated in
the ISGW model. The polarization fraction, lower and upper
values give the average and range of results dependent on
model choices as discussed in Section III.


