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This comment discusses a recent paper by Walliser and Weigel on the quantization of chiral

soliton models in the context of exotic baryons.

Claims made in that work are misleading due

to unfortunate nomenclature. Moreover, attempts in that paper to go beyond the leading order
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(O ' The comment seeks to clarify the recent paper by Walliser
<1 and Weigelﬂ] on the quantization of chiral soliton models in
the context of exotic baryons. A principal purpose of this
comment is to demystify several statements in ref. ﬂ] which
are extremely misleading.

Ref. [1] uses the phrases “rigid rotor quantization” and
collective” differently than is used in much of the literature.
This may create the false impression that basic fabric of the
approach is in conflict with earlier analyses ﬂ, E, E, E, E, ﬁ]
(O These earlier analyses showed that the rigid-rotor approach
= as employed by Praszalowicz@] and by Diakonov, Petrov and

Polyakovﬂg] is not justified at large IV, for baryons with exotic
1 quantum numbers and that the correct way at large N, to
compute the relevant physical observable, namely, the phase
shift, is via small amplitude fluctuations (i.e., the method of

. = Callan and Klebanovﬂm]. In fact, the explicit calculations

= by Walliser and Weigel show precisely that the Callan and

>< Klebanov approach gives the exact phase shifts at large N,

“
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and that the rigid-rotor approach used by Praszalowicz and
by Diakonov, Petrov and Polyakov cannot be used validly
without substantial modification. Walliser and Weigel re-
fer to this modification as the rotation-vibration approach
(RVA). Tt is shown in sec. V of ref. [i] that at large N.
the RVA is indistinguishable from the Callan-Klebanov ap-
proach. Thus, the substance of ref. ﬂ] is in accord with the

analyses of refs. E, B4 88, ﬂ]

However, despite this fundamental agreement of refs. ﬂﬂ, B,
E, E, E, ﬁ] with the approach of Walliser and Weigel for the
S-matrirx at large N., multiple statements in ref. ﬂ] appear
to be in conflict with refs. E, B 4 B 6 [ Asan example,
consider the claim in the abstract of ref. [1l] that “We thor-
oughly compare the bound state [that is the Callan-Klebanov
approach] and rigid rotor approaches to three-flavored chiral
solitons. We establish that these two approaches yield iden-
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calculations of the phase shifts are ad hoc and never justified. This comment also addresses a
technical issue in that paper: the identification of the excitation energy of the pentaquark obtained
via conventional rigid rotor quantization with a frequency obtained in the context of small amplitude
fluctuations. The identification is erroneous: the small amplitude fluctuation result is based on a
first-order perturbation computation of the frequency around a zero mode solution at a frequency
far from zero and well away from the perturbative regime.

tical results for the baryon spectrum and the kaon-nucleon
S-matriz in the limit that the number of colors tends to in-
finity.” This appears to be in flat contradiction that the
rigid rotor approach gives incorrect results for exotic states
and the correct approach is to compute phase shifts accord-
ing to the Callan-Klebanov approach as was originally done
in ref. [4].

A central reason for this apparent discrepancy is linguistic.
When refs. [2, 3,4, H, |d, ] refer to the “rigid rotor approach”
they mean the approach used b Praszalowiczﬂ] and by Di-
akonov, Petrov and Polyakovd in the early predictions of
pentaquarks from chiral soliton models. That is, they mean
using the collective Hamiltonian introduced by Guadagnini
EI] to directly calculate properties of discrete states which
are then equated with the pentaquark. In the language of
ref. ﬂ] this corresponds to simply using the Lagrangian of
Eq. (4.1), converting it to a collective Hamiltonian, quantiz-
ing the Hamiltonian and using the discrete states so obtained
to calculate directly the physical of baryons. The central
purpose of refs. ﬂ, E, E, ﬁ, ﬁ] was to show that this proce-
dure while legitimate for the two flavor Skyrmion and for
non-exotic states in the three flavor models, is inadequate
to compute the physical properties of exotic baryons in the
large N, limit of the theory. It is clear that the authors of
ref. [1]] agree that it is not. They write in sec. I B that “...it
s necessary to include small amplitude fluctuations in the
RRA. We call this approach the rotation-vibration approach
(RVA).” The authors then go on to show, correctly, that the
S-matrix computed in the RVA is identical to that computed
Callan-Klebanov approach at large N.. Thus, when claims
are made in ref. ﬂ] that the “rigid-rotor approach” agrees
with the Callan-Klebanov approach at large N, it is often
referring to the RVA and not to the unadulterated rigid rotor
approach used by Praszalowicz@] and by Diakonov, Petrov
and Polyakovﬂg]. Thus, despite the apparent conflict, there
is no underlying disagreement between the results of these
previous analyses and the large N, results of Walliser and
Weigel for the physical observables.
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Of course, as a logical matter, definitions when used in
a self-consistent manner cannot be incorrect. In this sense,
there is nothing wrong with ref. [1l] use of “rigid rotor ap-
proach” to refer to a calculation including both vibrations
and rotations. However, it would have been wise to avoid
such a usage: it is seriously misleading about previous work.
It is also a particularly perverse locution in that the vibra-
tions, the non-rigid degrees of freedom, play an essential role.

The authors of ref. [1] use of the word “collective” can also
be seriously misleading. Part of the origin of this potential
confusion stems from the fact that “collective” has many us-
ages in the literature. One common meaning in many-body
physics is to refer to dynamics in which many particles are
moving with significant coherence: eg., the giant dipole res-
onance in low energy nuclear physics. A “collective coordi-
nate” in such a context refers to a choice of coordinate which
couples strongly to this coherent motion and weakly to the
single particle motion. The definition of such a degree of
freedom is somewhat arbitrary in such circumstances but a
judicious choice can simplify one’s description. More gener-
ally, one can introduce “collective coordinates” in a similar
sense for problems in which some class of motion which is
characteristically more coherent than typical motion.

There is also a second, more technical, usage of “collec-
tive” which is commonly used in semiclassical treatments of
soliton models[12]. In this context, “collective” refers to de-
grees of freedom which are formally adiabatic in the sense
that they become arbitrarily slow as the weak coupling (i.e.,
semiclassical) limit is approached. Such modes are associated
with the zero modes of the linearized classical equations of
motion around static solitons. They have the property that
they completely decouple from all non-collective degrees of
freedom in the weak coupling limit. The large N, limit is
precisely such a weak coupling expansion. Thus, the formu-
lation of a systematic 1/N, expansion for chiral soliton mod-
els depends on correctly identifying the “collective modes” in
this second more restricted sense. References [3, I, [1] care-
fully distinguish between static and dynamic zero modes and
show that not all static zero modes have associated dynamic
zero modes. This is done precisely to show there are fewer
collective degrees of freedom in this second more technical
sense than are obtained by counting the number of flat di-
rections assuming that there is one pair of collective modes
for each. This, in turn is extremely useful in developing a
simple systematic treatment of the theory at large N. and
zero SU(3) flavor breaking.

When Walliser and Weigel write, “Generally we may al-
ways introduce collective coordinates to investigate specific
excitations. This is irrespective of whether the correspond-
ing excitation energies are suppressed in the large N, limit
or not. This is in contrast to the claims of ref. [33] [refs.
[2, 3] of this comment] that a scale separation is necessary to
validate the collective quantization coordinate quantization.

FEventually the coupling terms and constraints ensure correct
results.” and “...collective coordinates are not necessarily
linked to zero modes of a system and any distinction between
dynamical and static zeromodes [34] [ref. [d] of this com-
ment] is obsolete.”, they must be referring to some variant of
the first usage of “collective” and not the second more tech-
nical sense. The statement is manifestly wrong if used in the
second sense. Moreover, in this context the phrase “collec-
tive coordinate quantization” used above clearly refers to the
RVA (which as noted above is at large N, identical to the
Callan-Klebanov approach) and not the rigid rotor approach
of Guadagnini [11]. This is unfortunate since for “collective
quantization” may call to mind Guadagnini’s rigid rotor ap-
proach and thus create an impression at odds with the facts.

Before turning to the substance of ref. [1l], a final quibble
about language. Reference [l] uses the unfortunate moniker
“bound state approach” to describe the Callan-Klebanov
method of small amplitude vibrations. While Callan and
Klebanov did refer to this method as the “bound state ap-
proach” [1(], that was in the context of non-exotic states
which were, in fact, bound. For exotic states—which are
unbound resonances—describing the method as the “bound
state approach” is perverse. For this reason this method will
be referred to as the “Callan-Klebanov” approach through-
out this comment.

Apart from these linguistic issues, there are substantial
problems in some of the calculations in ref. [1]: important
conceptual difficulties arise in attempts to compute quanti-
ties associated with exotic baryons beyond the computation
of the phase shifts at leading order in 1/N.—the regime in
which it agrees with refs. [2, 13, 4, 15, |6, [i]. Two principal
issues arise in this regard: i) the separation of the phase
shift into a “background” and “resonant” part, and ii) the

calculation of the width of the exotic baryon for N, = 3.

Consider issue i): the paper relies on a separation of the
phase shift into a “background” and “resonant” part to con-
clude that there is a resonance in the exotic pentaquark chan-
nel. However, this separation is unnecessary, pointless, ar-
bitrary and poorly motivated. It is unnecessary since the
phase shifts (which are directly computed in the Callan-
Klebanov approach) contain all of the physics about the
scattering available at leading order. It is pointless since
there is no possible experiment which measures the “reso-
nant” piece separately. It is arbitrary, since any separation
of a full amplitude into a background and resonant contri-
bution is ultimately model dependent and hence arbitrary.
Finally, it is poorly motivated: the “background” depends on
a misidentified collective degree of freedom. It associates the
background with those fluctuations orthogonal to the “collec-
tive” fluctuation of freedom. However, as will be discussed
in detail below, this putative “collective” fluctuation plays
no special role either physically or mathematically. It should
be stressed, however, that regardless of whether one believes



that there is some mathematical or physical significance to
the “collective” mode identified for exotic baryons, the sep-
aration of the phase shift into “background” and “resonant”
contributions remains unphysical.

Next focus on the motivation for separating the phase shift
into a “background” and “resonant” part. The background is
taken to be due to fluctuations constrained to be orthogonal
to the “collective” mode identified by the authors. This “col-
lective” mode is the zero mode associated with non-exotic
oscillations, z(r). As noted above, there are two commonly
used meanings of “collective”, but the mode taken as “collec-
tive” here appears to satisfy neither definition when used to
describe the exotic degree of freedom. It is neither associated
with a zero mode of the exotic channel as in the technical
definition used in refs. [3, ld, [4] nor does it correspond ap-
proximately to a particularly coherent class of motion which
dominates the behavior in some region. Moreover, it is not
special mathematically except at zero frequency (where it
satisfies the small amplitude equation of motion and is as-
sociated with the non-exotic fluctuation); at finite frequen-
cies in the neighborhood of the putative resonance it does
not satisfy the small amplitude equation of motion. This
issue will be discussed in some detail at the end of this com-
ment. Thus, there is no apparent special quality about this
mode, neither physically nor mathematically. It seems to be
a completely arbitrary choice and there is no apparent rea-
son to identify the motion orthogonal to it as corresponding
to “background”.

Next consider issue ii): the claims the pentaquark width
is computed at N, = 3. However, this claim is unjustified on
very basic grounds. In the first place, it is based on the “res-
onant” phase shift and as noted above the separation into
“resonant” and “background” is unjustified. However, even
were that not the case, the calculation at N, = 3 would not
be legitimate. Note that entire formalism for treating the chi-
ral soliton model is based on a 1/N, expansion and has only
been computed consistently at the leading nontrivial order.
For example, the form of the profile function F(r) was com-
puted using classical equations of motion which are valid at
large N, but which have subleading corrections. At N, = 3
these induce corrections which are not included in this pa-
per. Similarly, the computation of kaon-nucleon S matrix
does not include dynamical effects in which the kaon-nucleon
scattering goes into kaon-pion-nucleon states. Such effects al-
ter the kaon-nucleon scattering amplitude when functioning
as intermediate states and for energies above the pion pro-
duction amplitude yields inelastic contributions. One can
justify dropping this dynamics in the large N, limit but
not at N. = 3. Thus, the authors make one set of 1/N,
corrections—those associated with the “collective” mode—
to all orders to get an N. = 3 result while simultaneously
neglecting even the first-order correction to others. A priori
there is no reason why such a result should be any more reli-

able at N. = 3 than the leading order expression. Certainly,
the 1/N. expansion does not justify such a procedure and
the authors give no other argument.

Thus, both the procedure to separate the “background”
and “resonant” contributions and the procedure to compute
the resonant width at N, = 3 are ad hoc. Neither has been
justified in a systematic 1/N, expansion nor from any other
systematic framework. Any conclusion based on these must
viewed with skepticism.

The final issue addressed in this comment is an error in
ref. [1l] which can lead to significant confusion. The context is
the small amplitude equation for the kaon vibrational modes
around a Skyrmion imbedded in the u-d subspace in Eq.
(3.5) of ref. [I]:

R2n(r) +w[2A(r) = wMg (r)] n(r) , (1)

where h2(r) is a differential operators, A(r) and My (r)
are functions; A\ arises from the Witten-Wess-Zumino term.
There is a zero frequency solution to this equation in the
limit of zero SU(3) flavor breaking:

_ VIR sin (F(r)/2)
Vor

where F'(r) is the Skyrmion profile function and © is the
normalization constant computable from F'(r). Now suppose
one wants to include SU(3) violations into this formalism:
the SU(3) violating term is in h?(r) and equals m% — m2

z(r) (2)

2.
For small SU(3) violations one can use first-order perturba-
tion theory to compute the shift of the frequency of the zero
mode away from zero. This is done by simply taking Eq. ()
replacing 7(r) by z(r), multiplying on the right by z(r) and
integrating. One obtains
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which corresponds to Eqgs. (3.7)-(3.9) of ref. [1]. Since Eq.
@) was obtained from the zero mode via first-order perturba-
tion theory in SU(3) breaking it is only valid at linear order
in I' and has the unique solution at this order:

3
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W=wp = +0(1?). (6)

The frequency is denoted by wa as it corresponds to the
excitation energy of the A above the nucleon.



While ref. [1l] has Eq. @) (it is Eq. (3.9) of that reference),
it neglects to mention that the equation obtained from the
zero mode via first-order perturbation theory in SU(3) break-
ing and thus is only valid near zero and only to first order
in T'. This is unfortunate since ref. [1] uses Eq. (3.9) to all
orders in I' to obtain—incorrectly—a general expression for
wp. Even more troubling, ref. [l] identifies the second so-
lution of the quadratic in Eq. (@) with the 67 pentaquark:

3T
w9_< wg—l—@—l—wo)/Q, (7)

which is Eq. (3.11) of ref. [1]]. However, the calculation of wy
is totally without justification. It is based on perturbation
theory around the zero mode and is only valid near w = 0.
However, the solution is parametrically far from w = 0 (it is
of order N? regardless of the value I') and hence outside the
regime of validity of the perturbative treatment. One can
see that the claimed result is wrong simply by returning to
the SU(3) limit in which case wy = wp. If one focuses on the
original small amplitude equation—Eq. () above—one sees
explicitly that z(r) is not an eigenfunction corresponding to
an eigenfrequency of wg. In summary, the quoted expression
for By is unjustified in the context of the Callan-Klebanov
approach. Moreover, it is clear in this analysis that z(r),
while a collective degree of freedom associated with a zero
mode for the non-collective state, plays no special collective
role for the exotic channel—it merely represents a mode for
which was chosen arbitrarily as the mode in which the ex-
pectation value of Eq. ([l) was taken.

The erroneous calculation of wy leads to an important mis-

statement in ref. [1]. In the introduction, it is stated that
“In sections IIT and IV we compare the two approaches [the
rigid rotor approach and the Callan-Klebanov approach] and
show how they yield identical spectra at large N....”. Note
in the context of sec. IV of ref. [1] the rigid rotor approach
refers to the original approach of Guadagnini[ll] and not
the RVA. Thus, if this statement were correct, the analysis
of refs. |2, 3, 4, 13, 16, [4] would be wrong. However, the ev-
idence presented for this in the context of exotic states at
zero SU(3) violation is given in Eq. (14) where it is shown
that at large N, the excitation of the pentaquark is identi-
cal with wy as calculated above. From this the authors write,
“Thus we conclude the BSA [i.e., Callan-Klebanov approach]
and the RRA are consistent when flavor symmetry breaking
is omitted.” This conclusion is unjustified. It is based on an
invalid calculation of wy in the Callan-Klebanov approach.
Indeed, based on the calculation, the authors ought to have
concluded that the two methods are, in fact, distinct.

In summary, the approach of Walliser and Weigel in ref. [,
where justified by the 1/N. expansion, agrees with the
Callan-Klebanov approach and is consistent with the anal-
yses of ref. |2, B, 4, 5, |6, 4. However, this basic fact is
generally obscured by a very unfortunate use of language in
refs. [1]. It is obscured further by the erroneous of computa-
tion wy which is then used to argue spuriously that the rigid
rotor approach and the Callan-Klebanov approach are equiv-
alent. Finally, the principal new elements of this approach,
the separation of the phase shifts into a “background” and
“resonant” part, and the scheme to compute the phase shifts
at N. = 3 are not justified.
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