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Spontaneous generation of the Nambu –Jona-Lazinio

interaction in quantum chromodynamics
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119992 Moscow, RF

E-mail: arbuzov@theory.sinp.msu.ru

In QCD with two light quarks with application of Bogolubov quasi-averages ap-
proach a possibility of spontaneous generation of an effective interaction, leading
to the Nambu – Jona-Lazinio model, is studied. Compensation equations for
form-factor of the interaction is shown to have the non-trivial solution leading to
theory with two parameters: average low-energy value of αs and dimensional pa-
rameter fπ. All other parameters: the current and the constituent quark masses,
the quark condensate, mass of π meson, mass of σ meson and its width are
expressed in terms of the two initial parameters in satisfactory correspondence
to experimental phenomenology. The results being obtained allow to state an
applicability of the approach in the low-energy hadron physics and promising
possibilities of its applications to other problems.

1 Introduction

In work [1] based on quasi-averages approach by N.N. Bogolubov [2, 3] a method is proposed
aimed to obtain an effective interaction in a renormalizable quantum field theory. In par-
ticular such an effective interaction is necessary for construction of the well-known Nambu
– Jona-Lazinio model [4], which describes the low-energy physics of strong interactions. In
view of this it is of interest to apply the developed method [1] to a study of possibility
of generation of effective four-fermion interaction, which is intrinsic to the Nambu – Jona-
Lazinio model. Following the results of work [1] one is to expect the essential contraction of
number of initial parameters of the model.

An application of the method [1] to a rather extensively studied low-energy region of
hadron physics may show to what extent the use of the method is justified. In the present
work the first non-perturbative approximation of the method will be developed in application
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to the problem of a spontaneous generation of Nambu – Jona-Lazinio Lagrangian in the
genuine strong interaction theory, namely in QCD with doublet of light quarks.

2 Compensation equation for effective form-factor

Now we start with QCD Lagrangian with two light quarks (u and d) with number of colours
N = 3

L =

2
∑

k=1

( ı

2

(

ψ̄kγµ∂µψk − ∂µψ̄kγµψk

)

− m0ψ̄kψk + gψ̄kγµt
aAa

µψk

)

− 1

4

(

F a
µνF

a
µν

)

; (1)

where we use the standard QCD notations.
In accordance to the Bogolubov approach, application of which to such problems being

described in details in work [1], we look for a non-trivial solution of a compensation equation,
which is formulated on the basis of the Bogolubov procedure ”add – subtract”. Namely let
us write down the initial expression (1) in the following form

L = L0 + Lint ;

L0 =
ı

2

(

ψ̄γµ∂µψ − ∂µψ̄γµψ
)

− 1

4
F a
0µνF

a
0µν − m0ψ̄ ψ +

G1

2
·
(

ψ̄τ bγ5ψ ψ̄τ
bγ5ψ −

−ψ̄ ψ ψ̄ ψ
)

+
G2

2
·
(

ψ̄τ bγµψ ψ̄τ
bγµψ + ψ̄τ bγ5γµψψ̄τ

bγ5γµψ
)

; (2)

Lint = gs ψ̄γµt
aAa

µψ − 1

4

(

F a
µνF

a
µν − F a

0µνF
a
0µν

)

− G1

2
·
(

ψ̄τ bγ5ψ ψ̄τ
bγ5ψ − ψ̄ ψ ψ̄ ψ

)

−

− G2

2
·
(

ψ̄τ bγµψ ψ̄τ
bγµψ + ψ̄τ bγ5γµψψ̄τ

bγ5γµψ
)

. (3)

Here ψ is the isotopic doublet, colour summation is performed inside of each fermion bilinear
combination, F0µν = ∂µAν − ∂νAµ, and notation G1 · ψ̄ψψ̄ψ corresponds to non-local vertex
in the momentum space

ı (2π)4G1 F1(p1, p2, p3, p4) δ(p1 + p2 + p3 + p4) ; (4)

where F1(p1, p2, p3, p4) is a form-factor and p1, p2, p3, p4 are incoming momenta. In
the same way we define vertices, containing Dirac and isotopic matrices. We comment the
composition of the vector sector, being proportional to G2, in what follows.

Let us consider expression (2) as the new free Lagrangian L0, whereas expression (3)
as the new interaction Lagrangian Lint. Then compensation conditions (see again [1]) will
consist in demand of full connected four-fermion vertices, following from Lagrangian L0, to
be zero. This demand gives a set of non-linear equations for form-factors Fi.

These equation according to terminology of works [2, 3] are called compensation equa-

tions. In a study of these equations it is always evident the existence of a perturbative trivial
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solution (in our case Gi = 0), but, in general, a non-perturbative non-trivial solution may
also exist. Just the quest of a non-trivial solution inspires the main interest in such problems.
One can not succeed in finding an exact non-trivial solution in a realistic theory, therefore
the goal of a study is a quest of an adequate approach, the first non-perturbative approxi-
mation of which describes the main features of the problem. Improvement of a precision of
results is to be achieved by corrections to the initial first approximation.

Thus our task is to formulate the first approximation. Here the experience acquired in
the course of performing of work [1] could be helpful. Now in view of obtaining the first
approximation we assume:
1) In compensation equation we restrict ourselves by terms with loop numbers 0, 1, 2.
2) In expressions thus obtained we perform a procedure of linearizing, which leads to linear
integral equations. It means that in loop terms only one vertex contains the form-factor,
being defined above, while other vertices are considered to be point-like. In diagram form
equation for form-factor F1 is presented in Fig 1.
3) While evaluating diagrams with point-like vertices diverging integrals appear. Bearing in
mind that as a result of the study we obtain form-factors decreasing at momenta infinity, we
introduce a cut-off Λ in the diverging integrals. It will be shown that results do not depend
on the value of this cut-off.
4) We can obtain analytic expressions for massless quarks only. We take masses into account
by introducing the cut-off in the lower limit of integration by momentum squared q2 at a
value, which equals to a value of the corresponding propagator denominator at q = 0. Namely
with the denominator (q2 +m2) the cut-off parameter equals m2. In doing this we keep at
nominators only the leading terms in m expansions because taking into account of the next
terms evidently means supererogation of accuracy.
5) We shall take into account at most the first two terms of the 1/N expansion.

Let us formulate compensation equations in this approximation. For free Lagrangian
L0 full connected four-fermion vertices are to vanish. One can succeed in obtaining ana-
lytic solutions for the following set of momentum variables (see Fig. 1): left-hand legs have
momenta p and −p, and right-hand legs have zero momenta. In particular this kinematics
suits for description of zero-mass bound states. Under some assumptions solutions obtained
under these conditions may be generalized to momentum set (p,−p, q,−q). The construc-
tion of expressions with an arbitrary set of momenta is the problem for the subsequent
approximations.

Now following the rules being stated above we obtain the following equation for form-
factor F1(p) in scalar colour singlet channel

G1F1(p
2) =

G2
1NΛ2

2π2

(

1 +
1

4N
− G1N

2π4

(

1 +
1

2N

)

∫

F1(q
2) dq

q2

)

+

+
3G1G2

8π2

(

2Λ2 + p2 log
p2

Λ2
− 3

2
p2 − µ2

2 p2

)

− (G2
1 + 6G1G2)N

32 π6
×
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×
∫

(

2Λ2 + (p− q)2 log
(p− q)2

Λ2
− 3

2
(p− q)2 − µ2

2(p− q)2

)G1F1(q
2)dq

q2
; (5)

Here integration is performed in the four-dimensional Euclidean momentum space, µ = m2
0.

One-loop terms contains terms proportional to N and 1 while two-loop terms correspond
to N2 and N . The leading terms are the same for scalar and pseudo-scalar cases. We
begins the study with the scalar channel, because it defines chiral symmetry breaking effect.
Equation (5) evidently has trivial solution G1 = 0. Bearing in mind our goal to look for
non-trivial solutions we divide the equation by G1. As a result of four-dimensional angle
integration (see Appendix) we have

F1(x) = A+
3G2

8π2

(

2Λ2 + x log
x

Λ2
− 3

2
x− µ2

2x

)

− (G2
1 + 6G1G2)N

32 π4
×

×
(

1

6 x

∫ x

µ

(y2 − 3µ2)F1(y) dy +
3

2

∫ x

µ

yF1(y) dy + log x

∫ x

µ

yF1(y) dy +

+x log x

∫ x

µ

F1(y) dy +

∫

∞

x

y log y F1(y) dy + x

∫

∞

x

(

log y +
3

2

)

F1(y) dy +

+
x2 − 3µ2

6

∫

∞

x

F1(y)

y
dy +

(

2Λ2 − 3

2
x
)

∫

∞

µ

F1(y) dy −
3

2

∫

∞

µ

yF1(y) dy −

− log Λ2

(

∫

∞

µ

yF1(y) dy + x

∫

∞

µ

F1(y) dy
)

)

; (6)

A =
G2

1NΛ2

2π2

(

1 +
1

4N
− G1N

2π2

(

1 +
1

2N

)

∫

∞

µ

F1(y) dy
)

;

x = p2 ; y = q2 .

In view of taking into account of quark mass the lower limit of the momentum integration
µ = m2

0 is introduced. Equation (6) by a sequential six-fold differentiation reduces to the
following differential equation

d2

dx2

(

x
d2

dx2

(

x
d2

dx2

(

xF1(x)
)

+
β µ2

4
F1(x)

)

)

= β
F1(x)

x
. (7)

β =
(G2

1 + 6G1G2)N

16 π4
;

with boundary conditions to be formulated below.
Equation (7) reduces to Meijer equation [6], [7]. Namely with the simple substitution we

have
(

(

z
d

dz
− b

)(

z
d

dz
− a

)

z
d

dz

(

z
d

dz
− 1

2

)(

z
d

dz
− 1

2

)(

z
d

dz
− 1

)

− z

)

F1(z) = 0 ; (8)

z =
β x2

26
; a = − 1−

√
1− 64u

4
; b = − 1 +

√
1− 64u

4
; u =

β µ2

64
.
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Boundary conditions for equation (8) are formulated in the same way as in works [1], [5]. At
first we have to choose solutions decreasing at infinity, that is combination of the following
three solutions

F1(x) = C1G
40

06

(

z |1, 1
2
,
1

2
, 0, a, b

)

+ C2G
40

06

(

z |1, 1
2
, b, a,

1

2
, 0,

)

+

+C3G
40

06

(

z |1, 0, b, a, 1
2
,
1

2

)

; z =
β x2

26
. (9)

where
Gmn

pq

(

z |a1, ... , apb1, ... , bq

)

;

is the Meijer function [6], [7] with sets of upper indices ai and of lower ones bj . In case only
one line of parameters is written this means the presence of lower indices only, n and p in
the case being equal to zero.

Constants Ci are defined by conditions

3G2

8π2
− β

2

∫

∞

µ

F1(y) dy = 0 ;

∫

∞

µ

y F1(y) dy = 0 ; (10)

∫

∞

µ

y2 F1(y) dy = 0 .

These conditions and condition A = 0 as well provide cancellation of all terms in Eq. (6)
being proportional to Λ2 and log Λ2. Thus the result does not depend on a value of parameter
Λ. By solving linear set (10), in which solution (9) is substituted, we obtain the unique
solution. Value of parameter u0, which is connected with current quark mass, and ratio of
two constants Gi we obtain from conditions F1(µ) = 1 and

A =
G1NΛ2

2π2

(

1 +
1

4N
− G1N

2π2

(

1 +
1

2N

)

∫

∞

µ

F1(y) dy
)

=

=
(

1 +
1

4N

)G1NΛ2

2π2

(

1− 6G2(4N + 2)

(G1 + 6G2)(4N + 1)

)

= 0 ; (11)

this gives for N = 3 with the account of the first of conditions (10)

u0 = 1.6 · 10−8 ; G1 =
6

13
G2 . (12)

The form-factor now reads as (9) with

C1 = 0.28322 ; C2 = − 3.655 · 10−8 ; C3 = − 7.794 · 10−8 ; (13)
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F1(u0) = 1 and F1(z) decreases with z increasing. It is important, that the solution exists
only for positive G2 and due to (12) for positive G1 as well.

Let us comment an essential point, connected with very small value of parameter u0.
Note, that for u = 0 solution satisfying all conditions excluding (11) is given by the following
expression

1

2
√
π
G40

06

(

z |1, 1
2
,
1

2
, 0, 0, − 1

2

)

;

with ratio
r(u)u=0 = G1/G2 = − 3 +

√
12 = 0.464102 . (14)

At the same time value (12), which follows from (11) is equal to 0.461538. For u → 0 this
ratio x(u) tends to value (14) from below. Because of these two numbers being quite close the
intersection of curve x(u) with (11) occurs at so small u. In case we use in expression (11) the
most leading terms in 1/N , the ratio is 1/2 and there is no intersection of x(u) with this value
at all, i.e. the solution does not exist. So a value u0 is sharply dependent on approximations
and quite small change of coefficients in expression (11) influences it strongly. We take into
account these considerations while commenting values of current quark mass in what follows.

Solution F1(p,−p, 0, 0) can be extended for more general kinematics. Namely, let us
consider form-factor F1(p,−p, q,−q). Assuming factorization property and bearing in mind
the previous note on small contribution of u0 the form-factor reads as follows

F1(p, −p, q, −q) =
1

4 π
G40

06

(

z |1, 1
2
,
1

2
, 0, 0, − 1

2

)

G40

06

(

z′ |1, 1
2
,
1

2
, 0, 0, − 1

2

)

;

z =
β x2

64
; z′ =

β y2

64
; x = p2 ; y = q2 . (15)

A study of form-factor F2(p
2), which enters into four-fermion vector and pseudo-vector terms

in (2), leads to result, that conditions of an existence of the corresponding solution does not
provide additional restrictions for parameters being introduced above. Vector form-factors
will be considered in details elsewhere. The explicit form of F2(p

2) do not influence results
of the present work.

3 Wave function for scalar and pseudo-scalar excita-

tions

Now with the non-trivial solution of the compensation equation we arrive at an effective
theory in which there are already no undesirable four-fermion terms in free Lagrangian (2)
while they are evidently present in interaction Lagrangian (3). Indeed four-fermion terms
in these two parts of the full Lagrangian differ in sign and the existence of the non-trivial solu-
tion of compensation equation for Lagrangian (2) means non-existence of the would be anal-
ogous equation, formulated for signs of four-fermion terms in interaction Lagrangian (3).

6



In other words the fact, that sum of a series
∑

Gnan = 0, by no means leads to a conclusion,
that sum of the same series with G→ −G vanishes as well.

So provided the non-trivial solution is realized the compensated terms go out from La-
grangian (2) and we obtain the following Lagrangian

L =
ı

2

(

ψ̄γµ∂µψ − ∂µψ̄γµψ
)

− 1

4
F a
0µνF

a
0µν − m0ψ̄ ψ +

+ gs ψ̄γµt
aAa

µψ − 1

4

(

F a
µνF

a
µν − F a

0µνF
a
0 µν

)

− G1

2
·
(

ψ̄τ bγ5ψ ψ̄τ
bγ5ψ − ψ̄ ψ ψ̄ ψ

)

−

− G2

2
·
(

ψ̄τ bγµψ ψ̄τ
bγµψ + ψ̄τ bγ5γµψψ̄τ

bγ5γµψ
)

. (16)

Thus, bound state problems in the present approach are formulated starting from Lagrangian
(16).

In case of realization of the nontrivial solution, let us consider zero-mass scalar and
pseudo-scalar excitations . Let us write down Bethe-Salpeter equation for scalar zero-mass
channel in the same approximation as was used in equation (6)

Ψ(x) =
G1N

2π2

∫

∞

µ

Ψ(y) dy +
(G2

1 + 6G1G2)N

32 π4

(

1

6 x

∫ x

µ

(y2 − 3µ2)Ψ(y) dy +

+
3

2

∫ x

µ

yΨ(y) dy + log x

∫ x

µ

yΨ(y) dy + x log x

∫ x

µ

Ψ(y) dy +

∫

∞

x

y log yΨ(y) dy +

+ x

∫

∞

x

(

log y +
3

2

)

Ψ(y) dy +
x2 − 3µ2

6

∫

∞

x

Ψ(y)

y
dy +

(

2Λ̄2 − 3

2
x
)

∫

∞

µ

Ψ(y) dy −

3

2

∫

∞

µ

yΨ(y) dy − log Λ2

(

∫

∞

µ

yΨ(y) dy + x

∫

∞

µ

Ψ(y) dy
)

)

;

The corresponding differential equation for Ψ(x) is almost the same, as the previous one (7)
with one essential difference. Namely the sign afore β is opposite.

(

(

z
d

dz
− b

)(

z
d

dz
− a

)

z
d

dz

(

z
d

dz
− 1

2

)(

z
d

dz
− 1

2

)(

z
d

dz
− 1

)

+
β z

26

)

F (z) = 0 ;(17)

z = x2 ; a =
−1 +

√
1− 64u

4
; b =

−1 −
√
1− 64u

4
; u =

βm4

64
. (18)

Boundary conditions read
∫

∞

µ

Ψ(y) dy = 0 ;

∫

∞

µ

yΨ(y) dy = 0 ;

∫

∞

µ

y2Ψ(y) dy = 0 . (19)

Now we have four independent solutions decreasing at infinity, which we use for general
solution

Ψ(x) = C∗G30

06

(β x2

26
|1, 1

2
, 0,

1

2
, a, b

)

+ C∗

1 G
30

06

(β x2

26
|1, 1

2
,
1

2
, 0, a, b

)

+

+C∗

2 G
30

06

(β x2

26
|1, a, b, 1

2
,
1

2
, 0

)

+ C∗

3 G
30

06

(β x2

26
|1
2
, a, b, 1,

1

2
, 0

)

. (20)
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Boundary conditions (19) allows to express C∗

i , i = 1, 2, 3 in terms of C∗ and condition of
wave function to be unity on the mass shell Ψ(m2) = 1 fixes C∗ as well. The normalization
condition of the Bethe-Salpeter wave function fixes constant of interaction of the bound state
with quark-anti-quark pair

g
(

φ ψ̄ ψ + ı πa ψ̄ γ5 τaψ
)

. (21)

Namely this normalization condition, which corresponds to a correct coefficient afore a kinetic
part of scalar and pseudo-scalar particles, gives

g2N

4 π2
I1 = 1 ; I1 =

∫

∞

µ

Ψ(x)2 dx

x
; (22)

The loop integral of the fourth order in interaction (21) gives four-fold interaction

λ
(φ2 + πaπa)2

4!
; (23)

where

− λ =
g4 3N

π2
I2 ; I2 =

∫

∞

µ

Ψ(x)4 dx

x
. (24)

The result, that equation (17) has unique solution, which satisfies all boundary condi-
tions, is the confirmation of the evident fact, that in the same approximation, in which the
compensation equation has a non-trivial solution, fields φ and πa are to have zero masses
in accordance with Bogolubov-Goldstone theorem [2, 3, 8]. However an account of chromo-
dynamic interaction leads to additional contribution to the masses. Let us calculate a mass
correction term due to QCD interaction. For the purpose let us take into account terms of
the first order in P 2, where P is the momentum of a scalar (and pseudo-scalar) meson and
one-loop QCD term. We have

Ψ(p2) =
G1N

2 π4

∫

Ψ(q2) dq

q2

(

1− 3P 2

4 q2
+

(qP )2

(q2)2

)

+
(G2

1 + 6G1G2)N

32 π6
×

∫

(

2Λ2 + (p− q)2 log
(p− q)2

Λ2
− 3

2
(p− q)2

)(

1− 3P 2

4 q2
+

(qP )2

(q2)2

)Ψ(q2) dq

q2
+

+
g2s
4 π4

∫

Ψ(q2) dq

q2(q − p)2
. (25)

In the course of QCD term calculation we use transverse Landau gauge 1 . Let us multiply
equation (25) by Ψ(p2)/p2 at P = 0 and integrate by p. Due to equation (17) be satisfied
we have

− P 2

2

∫

Ψ(q2)2 dq

(q2)2
+

g2s
4 π4

∫

Ψ(p2) dp

p2

∫

Ψ(q2) dq

q2(q − p)2
= 0 ; (26)

1In the approximation used the transverse gauge leads to absence of renormalization of both vertex and

spinor field
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After angle integration we get

P 2 π2

2
I1 =

g2s
4

∫

∞

m2

Ψ(x) dx
(1

x

∫ x

m2

Ψ(y) dy +

∫

∞

x

Ψ(y) dy

y

)

=

=
g2s√
β

∫

∞

u

Ψ(z) dz

z

∫ z

u

Ψ(t) dt√
t

=
g2s I3√
β
; z =

β x2

64
; t =

β y2

64
. (27)

The integral entering into (27) looks like
∫ z

u

Ψ(t) dt√
t

=

(

C∗G30

06

(

t | 1
2
, 1, 3

2
, 0, a′, b′

)

+ C∗

1 G
31

17

(

t |1
1, 1, 3

2
, 0, 1

2
, a′, b′

)

+

+C∗

2 G
30

06

(

t | 3
2
, a′, b′, 0, 1

2
, 1

)

+ C∗

3 G
30

06

(

t |1, a′, b′, 0, 1

2
, 3

2

)

)z

u

; (28)

a′ =
1−

√
1− 64u

4
, b′ =

1 +
√
1− 64u

4
.

Relation (27) gives us mass of scalar (and pseudo-scalar) in terms of average low-energy
QCD constant ᾱs. There are a number of considerations concerning possible values of the
parameter. For example, in approach [9] with low-energy freezing of the strong constant
value ᾱs = 0.414 is quoted. Smooth matching of perturbative and non-perturbative regions
in QCD gives value ᾱs = 0.4354 [10]. There is also a sum rule definition of this parameter
from experimental data ᾱs = 0.47 ± 0.07 [11]. there are also considerations on behalf of
larger values of ᾱs [12, 13]. Taking into account these remarks we consider range of values
of the effective low-energy constant ᾱs = 0.4 − 0.75. In other words we can define the same
quantity as value of running strong constant at a characteristic momentum, e.g. 600MeV.
Different variants of low energy behaviour of αs lead to the same interval. Thus we have

m2

t = − 8 ᾱs I3

π
√
β I1

; I3 =

∫

∞

u

Ψ(z) Ψ1(z) dz

z
; (29)

where I1 is defined in (22). Due to both integrals being positive we evidently have tachyon
mass and so a scalar condensate appears in the minimum of effective potential

m2

t

φ2

2
+ λ

φ4

24
.

For the present approach it is highly important, that the account of the QCD interaction
leads to tachyon mass of a scalar and pseudo-scalars. The appearance of tachyons and thus
the appearance of the scalar condensate in the minimum of the effective potential results in
stability of the non-trivial solution and consequently one may conclude, that Lagrangian (16)
with the conditions being obtained are valid.

Bearing in mind definitions of quantities entering in the effective potential, we obtain for
value of the scalar condensate η

η2 =
− 6m2

t

λ
; η =< φ > . (30)

9



Mass of φ after symmetry breaking is
√

2(−m2
t ), and π mass equals to zero in the present

approximation. The constituent quark mass mq is defined by relation

mq − m0 = g η = g

√

6 (−m2
t )

λ
=

mφ

2

√

I1
I2
. (31)

Integrals in this as well as in other relations of this section including boundary condi-
tions are calculated with the lower limits defined not by the current mass m0, but by the
constituent mass m. Now parameter u is defined by relation

u =
β m4

26
. (32)

Thus after the appearance of the scalar condensate the quark propagator takes form

G(p) =
1

(γ p) − Σ(p)
; Σ(p) = (m−m0) Ψ(p2) + m0 . (33)

Relations (31, 27, 28) give for ᾱs = 0.46

u = 0.001 ; C∗ = − 0.919 ; C∗

1 = − 0.0255 ; C∗

2 = − 1.895 ;

C∗

3 = 0.228 ; I1 = 1.285 ; I2 = 0.801 ; I3 = 0.302 . (34)

We take ᾱs and current mass m0 as the initial parameters and express in their terms
all other parameters including π-decay constant fπ. We use for the latter the Goldberger
– Treiman relation. In the framework of the present approach we obtain the relation by
considering the expression for transition π+ → µ+ νµ. We have

fπ =
g N

4 π2

∫

∞

m2

(

(m−m0) Ψ(y)2 + m0 Ψ(y)
)dy

y
=

=
g N

4 π2

(

(m−m0) I1 + m0 I7

)

; I7 =

∫

∞

u

Ψ(z) dz

2 z
. (35)

Provided either m0 = 0 or I1 = I7 we get with account of normalization condition (22) just
the original Goldberger – Treiman relation m = g fπ. We use full relation (35). However let
us note, that values of the two integrals are close I1 ≃ I7 and the simple original relation
works with sufficient accuracy.

At this place it is worth-while to explain that we have a solution for any value of m0 and
the problem is, which value is to be chosen. While m0 is not measured directly, the accuracy
of its definition is not very high. For comparison with experimental data we propose to fix
value of fπ = 93MeV, which is quite certain, while other parameters including m0 being
subjects for calculation.

As a result we obtain e.g. for ᾱs = 0.46 (u = 0.001)

g = 3.2 ; G1 =
1

(240.5MeV)2
; m = 298.5MeV ; m0 = 19.8MeV . (36)
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Mass of σ is defined by above results (34, 36)

mσ = 2 (m−m0)

√

I2
I1

= 440.1MeV . (37)

At this stage mass of π-meson is zero due to appearance of vacuum average of scalar field φ.
Coupling constant gσ π π in interaction

gσ π π σ π
a πa ; (38)

is calculated with the use of wave function (20) with parameters (34, 36). The triangle
diagram gives

gσ π π =
g3N

π2

∫

∞

m2

Ψ(y)3 dy

y
((m−m0)Ψ(y) +m0) = 8.04m. (39)

According to (39) the σ width reads

Γσ =
3 g2σ π π

16 πm2
σ

√

m2
σ − 4m2

π = 605.8MeV ; mπ = 139MeV . (40)

Values (37, 40) do not contradict the existing data [14], which, as a matter of fact, are
characterized by a wide spread of results.

The results on the wave function of a scalar particle and on the form-factor of the effective
four-fermion interaction allow to estimate the quark condensate in the next approximation.
Indeed vertex σψ̄ ψ form-factor is just gΨ(q2) . The non-perturbative part of the quark prop-
agator reads g ηΨ(q2) = (m−m0)Ψ(q2) . According to definition of the quark condensate
we have

< q̄ q >= − 4N gη

(2 π)4

∫

∞

m2

Ψ(q2) dq2 . (41)

Here the integral equals zero due to boundary conditions (19). However one may try to
calculate subsequent approximations. Let us calculate loop corrections: firstly with vertex
corresponding to four-fermion interaction in Lagrangian (16) and secondly with gluon ex-
change in transverse gauge (see Fig. 3). In loop diagrams with the form-factor F1(p) we sum
up infinite loop chain (the senior orders in 1/N), that gives factor (1−B) in the denominator
of the first term in the following expression

< q̄ q >= − 12
√
3(m−m0)

π2
√
14G1 (1−B)

I4 I5 − 3 ᾱs(m−m0)

4 π3

(

−m2 I7 +
16 π2

G1

√
42
I6

)

;

I4 =

∫

∞

u

F1(z) dz

2
√
z

; I5 =

∫

∞

u

F1(z) Ψ(z) dz

2
√
z

; I6 =

∫

∞

u

Ψ1(z) dz

2z
; (42)

B =
16

√
3√

14

∫

∞

u

(F1(z))
2 dz

2
√
z

;
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where function Ψ1(z) is defined by relation (28). We have e.g. again for u = 0.001, ᾱs = 0.46

< q̄ q >= − (167MeV)3 ; (43)

that is sufficiently lower than the traditional value (240 MeV)3. Nevertheless we draw at-
tention to the correct sign of the condensate. It is connected with the sign afore G1 in the
interaction Lagrangian (16),which is defined by conditions of the existence of the non-trivial
solution of the compensation equation.

4 Discussion of results

The low-energy hadron parameters being calculated for three values of ᾱs are presented
in Table 1. The calculations needs numerical integrations of expressions containing Meijer
functions with infinite upper limits. Therefore the presented data may contain uncertainties
(not more than 3%). Note that integrals I4, I6, I7 are evaluated analytically, and all the
rest ones are calculated numerically. Let us recall, that only two parameters are in our
disposal – the average strong coupling constant ᾱs and dimensional constant of π-decay fπ.
We use of course the Goldberger-Treiman relation (35), which is obtained in the framework
of the present approach. No other outside information is used. In particular while calculat-
ing σ-meson width we substitute pion mass which was obtained here in the corresponding
approximation and was quoted in the Table. We see from Table 1, that the approach gives
reasonable correspondence to the existing facts and data. We present information from ex-
periments and from phenomenological considerations in the last right-hand column of the
table.

Value of current mass m0 is essentially larger than customary values. This parameter
is defined by value u0 (12), which is sharply dependent on corrections of the next orders of
1/N expansion and on other details of the next approximations. For example, by a slight
change in coefficient afore the second term in brackets in expression (11) one may obtain
for m0 value being two-three times smaller than that presented in Table 1. At this all other
parameters practically do not change. Taking into account this fact we do not consider the
deviation of m0 as critical for the approach. In comparison to the traditional value the
modulus of quark condensate is essentially smaller. While its calculation we have seen that
in the leading approximation this parameter is zero and the values quoted correspond to loop
corrections. It is possible, that there are other contributions to the quark condensate, which
give essential changes. For example contribution of s-quark loop to the first term in (42)
evidently enlarge it. This problem deserves a special study. However just the presented values
give rise to an interesting observation. It comes out, that Gell-Mann – Renner relation [15]
agrees sufficiently well with the parameters of Table 1. Indeed In the lowest line of the table
for pion mass we write down its values calculated by the relation

m2

π = − 2m0

f 2
π

< q̄ q > .
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Values of mπ for m0 and < q̄ q > from the table are quite satisfactory in the range of a
reasonable accuracy. Note also that values of the quark condensate being lower than the
traditional one are discussed in the literature (see e.g. [16]). Lattice measurements [17]
give rather wide interval of renormalization invariant value of the condensate − < q̄q >
= ((206 ± 44 ± 8 ± 5)MeV)3, in which also the values presented in Table 1 also enter.
Parameters of the σ-meson especially its width noticeably depend on a choice of value ᾱs.
Unfortunately the spread of data [14] covers all presented results. Provided one choose results
of one work then it is possible to do some conclusion on preferable value of ᾱs. For example
in paper [18] the processing of the set of data leads to result mσ = (470 ± 30)MeV, Γσ =
(590 ± 40)MeV. Such values agree well with our results for ᾱs ≃ 0.5. At that the pion mass
and the constituent quark mass are quite satisfactory.

So we may state a quantitative agreement for constituent quark mass and for parameters
of mesons π and σ, whereas for current mass and for the quark condensate we may declare at
least a qualitative agreement. One hardly could expect more from the first non-perturbative
approximation with only two parameters, one of which fπ is strictly fixed. Therefore one
have to admit the description of the low-energy data by the approach being satisfactory.

To conclude let us emphasize that the aim of the work is achieved. We have begun with
the demonstration of the non-trivial solution of the compensation equation. The existence
of scalar and pseudo-scalar excitations (mesons) in the same approximation is a consequence
of its existence. The account of QCD interaction leads to the shift of their masses squared
to the negative region, i.e. to the appearance of tachyons, which are necessary for scalar
condensate to arise. As a result we obtain the standard scheme of chiral symmetry breaking
with massive scalar and massless pion. Subsequent approximations of the approach are
related to values of the quark condensate and the pion mass.

We have shown that the application of the method of work [1], which is based on Bo-
golubov quasi-averages approach, to the low-energy region of hadron physics leads to quite
reasonable results. From this we would make two essential conclusions.

Firstly, a subsequent development of the present approach to the hadron physics quite
deserves attention. In particular it is advisable to apply the approach to calculation of
parameters of vector mesons ρ, ω, A1, to consider hadrons containing s-quark, to take into
account the π − A1-mixing, to introduce diquarks etc.. In view of methods it would be
desirable to improve a procedure of taking into account of particle masses. These problems
comprise subjects for a forthcoming studies.

Secondly, the positive result of applicability test with Nambu – Jona-Lazinio model,
being taken as an example, allows to hope for successful application of the approach to other
problems. In particular we mean the problem of a dynamical breaking of the electroweak
symmetry. A qualitative discussion of possible variants in this region is presented e.g. in
works [19], [20].

The author is grateful to M.K. Volkov and S.B. Gerasimov for valuable discussions and
to I.V. Zaitsev for some numerical calculations.

The work is partially supported by grant ”Universities of Russia” UR.02.02.503.
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A Appendix

We present below a set of formulas for angular integrals in four-dimensional Euclidean space,
which are used in the work.

x = p2 , y = q2 ;
∫

d4q F (q2)

(p− q)2
= π2

∫

∞

0

ydyF (y)
(

θ(x− y)
1

x
+ θ(y − x)

1

y

)

;

∫

d4q F (q2) (pq)

(p− q)2
=

π2

2

∫

∞

0

ydyF (y)
(

θ(x− y)
y

x
+ θ(y − x)

x

y

)

;

∫

d4q F (q2)(pq)2

(p− q)2
=

π2

4

∫

∞

0

ydyF (y)
(

θ(x− y)
(y2

x
+ y

)

+ θ(y − x)
(

x+
x2

y

))

;

∫

d4q F (q2)(pq)3

(p− q)2
=

π2

8

∫

∞

0

ydyF (y)
(

θ(x− y)
(y3

x
+ 2y2

)

+ θ(y − x)
(

2x2 +
x3

y

))

;

∫

d4q F (q2)(p, p− q)

((p− q)2)2
= π2

∫

∞

0

ydyF (y)θ(x− y)
1

x
;

∫

d4q F (q2)(q, q − p)

((p− q)2)2
= π2

∫

∞

0

ydyF (y)θ(y− x)
1

y
;

∫

d4q F (q2)(p, p− q)(pq)

((p− q)2)2
=

π2

4

∫

∞

0

ydyF (y)
(

θ(x− y)
3y

x
− θ(y − x)

x

y

)

;

∫

d4qF (q2) log (q − p)2 = π2

∫

∞

0

ydyF (y)
(

θ(x− y)
( y

2x
+ log x

)

+

+ θ(y − x)
(

log y +
x

2y

))

;

∫

d4qF (q2)(pq) log (q − p)2 =
π2

6

∫

∞

0

ydyF (y)
(

θ(x− y)
(y2

x
− 3y

)

+

+ θ(y − x)
(

−3x+
x2

y

))

; (44)

∫

d4qF (q2)(pq)2 log (q − p)2 =
π2

4

∫

∞

0

ydyF (y)
(

θ(x− y)
( y3

4x
+ xy log x

)

+

+θ(y − x)
(

xy log y +
x3

4y

))

;

∫

d4qF (q2)(pq)3 log (q − p)2 =
π2

8

∫

∞

0

ydyF (y)
(

θ(x− y)
( y4

5x
+
y3

3
− 2y2x

)

+

+ θ(y − x)
(

− 2x2y +
x3

3
+
x4

5y

))

.

Integrals containing log (q − p)2 are evaluated using formulas from book [21].
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Table 1.
Parameters of the low-energy hadron physics for three values

of effective coupling constant ᾱs.

ᾱs 0.46 0.61 0.73 exp/phen
fπ MeV 93 93 93 input

g 3.20 3.44 3.59 –
m0MeV 19.8 17.9 16.9 5 – 10
mMeV 298.5 321.3 335.5 300 – 350

G
−1/2
1 MeV 240.5 217.6 205.4 –

− < q̄q >1/3 MeV 0 0 0
167.0 155.4 148.7 220 – 240

mπ MeV 0 0 0
146.0 124.6 113.3 136 – 140

gσ π π/m 8.04 8.27 8.40 –
mσ MeV 440.1 469.1 486.3 400 – 1200
Γσ MeV 584.4 761.1 862.5 600 – 1000

u 0.001 0.002 0.003
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Figure captions

Fig. 1. Diagram representation of the compensation equation. Black spot corresponds to
four-fermion vertex with a form-factor.

Fig. 2. Diagram representation of Bethe-Salpeter equation for scalar bound state, the
later corresponding to a double line.

Fig. 3. Loop correction to the non-perturbative part of the quark condensate. The full line
corresponds to the quark propagator with non-perturbative mass operator (m −m0)Ψ(p2).
The dotted line represents a gluon.
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