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Abstract

We investigate the running gauge couplings of U(N) noncommutative gauge theories with
compact extra dimensions. Power law running of the trace-U(1) gauge coupling in the
ultraviolet is communicated to the infrared by ultraviolet/infrared mixing, whereas the
SU(N) factors run exactly as in the commutative theory. This results in theories where
the experimentally excluded trace-U(1) factors decouple with a power law running of the
momentum in the extreme infrared, effectively hiding them from detection.
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1 Introduction

Gauge theories on spaces with noncommuting coordinates,

[xµ, xν ] = i θµν , (1.1)

are an interesting class of quantum field theories with intriguing and sometimes unex-
pected features. These noncommutative models can arise naturally as low-energy effec-
tive theories from string theory and D-branes [1; 2; 3; 4]. As field theories they must
satisfy a number of restrictive constraints, and this makes them particularly interesting
and challenging for the purposes of particle physics model building. For general reviews
of noncommutative gauge theories the reader can consult Refs. [4; 5; 6].

In the context of noncommutative Standard Model building, there is a number of
generic features which are very constraining [7]. Particularly important for the present
discussion is the fact that the gauge groups are restricted to be U(N) [8; 9] or prod-
ucts thereof, and that fields can transform only in (anti-)fundamental, bi-fundamental or
adjoint representations [10; 11; 12].

In a recent paper [13] it was shown that the consequences for noncommutative gauge
theories in four dimensions are potentially fatal; we would either observe additional mass-
less degrees of freedom in experiment or the photon would acquire a Lorentz symmetry
violating mass of the order of the supersymmetry breaking scale, neither effect of which
has been seen.

There is one particularly striking feature of noncommutative gauge theories that su-
perficially looks as if it may solve the problem but in its purely 4-dimensional form does
not: there is a mixing of ultraviolet (UV) and infrared (IR) effects [14; 15] and a con-
sequent asymptotic decoupling of undesirable U(1) degrees of freedom [7; 16; 17] in the
infrared. Unfortunately the decoupling is logarithmically slow. Indeed the couplings of
the SU(N) and the trace-U(1) parts of the U(N) gauge interaction are related as

g2U(1)

g2SU(N)

∼
log

(

k2

Λ2

)

log
(

M4
NC

Λ2k2

) & 10−3 , (1.2)

where Λ is the strong coupling scale of the SU(N) and k2 ≫ Λ2 is the momentum scale
of a scattering experiment. The logarithmic dependence on MNC ∼ |θ|−1/2 leads to an
incredibly tight bound, MNC ≫MPlanck. This makes such models very unnatural [13].

Logarithmic running of couplings is a typical property of four-dimensional field theo-
ries. But in higher dimensions running generically follows a power-law. Thus the question
naturally arises as to whether power law running transfers to the infrared via UV/IR mix-
ing, and whether this is enough to decouple unwanted U(1) factors. In this paper we show
that the answer to both questions is positive and discuss the bounds.
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The rapid power-law decoupling of the trace-U(1) factors opens up possibilities for
particle physics model building based on noncommutative extra-dimensional theories in
the UV. One such approach for embedding the Standard Model into a noncommutative
theory was discussed in [7]. Adding compact extra dimensions to these models can now
essentially remove the ubiquitous trace-U(1) degrees of freedom from the low-energy ef-
fective theory.

2 Power law running in the UV and IR

We begin by discussing generalities of two-point functions in noncommutative theories.
Consider the polarisation tensor, given by [15]

ΠAB
µν = ΠAB

1 (k2, k̃2)
(

k2gµν − kµkν
)

+ΠAB
2 (k2, k̃2)

k̃µk̃ν

k̃2
, (2.1)

with
k̃µ := θµνk

ν . (2.2)

A and B are adjoint indices of U(N), such that A,B = 0, . . .N and A,B = 0 select the
trace-U(1) and A,B = 1, . . . N correspond to the SU(N) parts. ΠAB

1 is directly related to
the gauge coupling matrix1

(

1

g2(k)

)AB

=

(

1

g20

)AB

+ΠAB
1 (k), (2.3)

and it is this term we need to evaluate in order to discuss the running [16; 17]. The
additional term ∼ Π2 is Lorentz symmetry violating. In supersymmetric theories it is
absent [15] and we defer its discussion until Sect. 3.

In most of the discussion we will adopt a four-dimensional point of view in describing
extra-dimensional theories. That is, because we are interested in renormalisation group
effects associated with the 4-dimensional momentum, it makes more sense to include the
effects of extra dimensions by considering the effect of a simple Kaluza-Klein tower of
states. (In the UV-complete string models there are other effects which, at one-loop order
and in compact dimensions significantly larger than the string length, will be secondary.)

Intuitively it is obvious that the main factor affecting the running of the gauge cou-
plings will be the noncommutativity parameter k̃, and in particular how it mixes the
additional (compact) dimensions with the ordinary four large dimensions. We will now
give a somewhat heuristic presentation of how k̃ affects the running of the gauge cou-
plings. A more precise and general calculation is given in Appendix B and we will just
quote the results from there in the last part of this section.

1The generators are normalised such that Tr(tAtB) = 1
2
δAB, as it is standard for SU(N). For the

trace-U(1) coupling this results in a factor of two compared to the standard U(1) conventions.
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2.1 The UV regime

Let us start by briefly reviewing power law running in the UV at scales well above the
compactification scale. In the UV regime the planar diagram (cf. Appendix A) dominates
the two point function and so there is no difference to the ordinary commutative case (see
[18]). Because of this it is sufficient to use an intuitive approach based on thresholds2.

Consider first the most simple case of one compact extra dimension of size M−1
c .

Neglecting threshold effects the one loop running of the gauge coupling in four dimensions
typically follows (t = log(k))

∂

∂t
g2 =

∑

m2
i<k2

cig
4, (2.4)

where the ci are coefficients depending on the spin and representation of the particle i.
In the sum only particles with mass m2

i smaller than the momentum scale k2 contribute
(cf. Appendix A). This leads to the typical decoupling of massive modes. For simplicity,
let us now consider a situation where all particles have (approximately) the same mass
m2 ≪M2

c . We find
∂

∂t
g2 = −b0g4, for m2 ≪ k2 ≪M2

c , (2.5)

where we have chosen the sign of the constant b0 such that it is positive when the theory
is asymptotically free. (For example, in N = 2 supersymmetric pure gauge theory b0 =
N/(4π2) in this notation.)

Above the compactification scale, more precisely at m2 +M2
c < k2 < m2 + 4M2

c , the
first Kaluza-Klein mode gives an identical contribution to the β-function, and in general
one finds

∂

∂t
g2 = −NKK(k)b0g

4, (2.6)

where NKK(k) is the number of Kaluza-Klein modes (including the zero mode) contribut-
ing at the scale k. Since the mass of the nth Kaluza-Klein mode is given by

√

m2 + n2M2
c

one easily finds the approximate formula

NKK(k) ≈ C1
k

Mc
for k ≫Mc, (2.7)

where we have introduced the constant C1 to account for the details of the compactification
and threshold effects (cf. also Appendix B). This already suggests power law running.
More precisely, one easily checks that for k2 ≫M2

c and appropriate initial conditions the
solution approaches

g2 ≈ 1

C1b0

Mc

k
(2.8)

2A fuller treatment based on dimensional regularisation is presented in Appendix B. An even better
one is presented in Ref. [19]. In those treatments it becomes evident that higher-dimensional operators
appear in the effective action. These operators are due to a different form of UV/IR mixing from regions
of KK momenta that are zero in some directions and high in others. These difficulties are absent for the
IR regime which is the main point of interest in the present discussion so we do not dwell on them here.
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which is indeed a power law.

Expressions (2.7) and (2.8) are easily generalized to arbitrary dimension D = n + 4
(k2 ≫M2

c )

∂

∂t
g2 = −NKK(k)b0g

4, (2.9)

NKK(k) ≈ Cn

(

k

Mc

)n

,

g2 ≈ n

Cnb0

(

Mc

k

)n

,

where again the constant Cn depends on the details of the compactification.

The flow equation (2.9) for the running coupling can be also discussed using the more
natural effective coupling ĝ2 of the D-dimensional theory,

ĝ2 =

(

k

Mc

)n

g2. (2.10)

From the lower-dimensional viewpoint (2.10) can be understood by remembering that the
amplitudes of all Kaluza-Klein modes add up and therefore increase the effective coupling
by a factor NKK. Inserting (2.10) into (2.9) yields the flow equation for ĝ2,

∂

∂t
ĝ2 = nĝ2 − Cnb0ĝ

4 = (n− Cnb0ĝ
2)ĝ2, for k2 ≫ M2

c . (2.11)

If we start at small values for ĝ2 the coupling increases toward the infrared until it reaches
a fixed point at ĝ2fixed = n

Cnb0
. The corresponding coupling of the 4-dimensional theory is

then

g2fixed(k) = ĝ2fixed

(

Mc

k

)n

=
n

Cnb0

(

Mc

k

)n

, (2.12)

in agreement with the last equation in (2.9). This discussion implies that power-law run-
ning in extra dimensions originates from a fixed point in the effective higher-dimensional
coupling constant ĝ2. This implies that the power-law running of g2 is a strong coupling
phenomenon in terms of ĝ2 and one should exercise caution since Eqs. (2.9) and (2.11) are
one-loop results. In particular a large number of extra-dimensions increases the value of
the fixed point coupling and the approximation may break down. The issues of existence
of a fixed point of ĝ2 were investigated in literature on extra-dimensional gauge theories,
see e.g. [20].

From now on we will continue assuming that (ordinary commutative) extra-dimensional
gauge theories do provide a power-law running of the coupling in the extreme ultravio-
let (i.e. at energies well above the compactification scale). We will then show that in
noncommutative settings the mixing between ultraviolet and infrared degrees of freedom
will induce in the extreme infrared a power-law decoupling of the trace-U(1) degrees of
freedom.
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2.2 The UV/IR mixing

A novel feature of quantum field theories formulated on noncommutative spaces is that
Wilsonian universality can be violated by the UV/IR mixing effects. As explained in
Refs. [14; 15] the use of the star product

(φ ∗ ϕ)(x) ≡ φ(x) e
i
2
θµν
←

∂µ
→

∂ν ϕ(x) (2.13)

in defining noncommutative field theories mixes up ultraviolet and infrared degrees of
freedom such that the high-energy degrees of freedom do not decouple completely. In-
stead they can affect degrees of freedom in the extreme infrared. The UV/IR mixing in
noncommutative theories arises from the fact that due to (2.13) certain classes of Feyn-
man diagrams acquire factors of the form eikµθ

µνpν (where k is an external momentum and
p is a loop momentum) compared to their commutative counter-parts. At large values of
the loop momentum p, the oscillations of eikµθ

µνpν improve the convergence of the loop
integrals. However, as the external momentum vanishes, k → 0, the divergence reappears
and what would have been a UV divergence is now reinterpreted as an IR divergence
instead.

Essentially, any effective field theory description of a noncommutative theory applies
at energy (or momentum) scales k in the window, Λinduced

IR < k < ΛUV. Here ΛUV is the UV
cut-off of the effective theory – which is the scale above which all higher-energy degrees of
freedom of microscopic theory were integrated out. Noncommutativity, and specifically
UV/IR mixing effects, then induce an effective IR cut-off, Λinduced

IR ∼ M2
NC/ΛUV, where

MNC is the noncommutativity mass-scale, M2
NC ∼ 1/|θ|. In order to be able to to probe

the physics below the IR cut-off Λinduced
IR , one needs to refine the effective field theory

description by raising appropriately the UV cut-off ΛUV. Every time physics above ΛUV

changes, this affects physics below Λinduced
IR .

In a noncommutative U(N) gauge theory the UV/IR mixing effects contribute to the
A = 0 = B component of the polarisation tensor ΠAB

µν in Eq. (2.1). This affects the running
coupling (1/g2) of the trace-U(1) gauge fields via (2.3). Our goal is to demonstrate that
starting with a 4-dimensional noncommutative effective theory and embedding it in the
UV into an extra-dimensional gauge theory will induce a rapid power-like decoupling of
the unwanted trace-U(1) degrees of freedom of the original theory in the infrared.

2.3 IR running – noncommutativity restricted to 4 dimensions

As specified in Eq. (2.1) Π1 and therefore the gauge coupling depends on the additional
scale k̃ (cf. [14; 15; 16; 17]) k̃µ = θµνkν . In fact, the coupling depends only on the absolute
values |k̃| as well as |k|, as can be seen from the discussion in the Appendix A.

Since we are mostly interested in low-energy physics (compared to the compactification
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scale) the effects of extra dimensions can contribute only through loops in perturbation
theory. Thus the external momenta kµ are taken to be 4-dimensional, i.e. external
particles will not include excited Kaluza-Klein modes, while internal loop momenta pµ (in
Feynman diagrams) are kept general.

In this section we consider a scenario where only the four infinite dimensions are
noncommutative,

θµν 6= 0, θµb = 0, θab = 0 (2.14)

where µ, ν = 0, . . . , 3 and a, b = 4, . . . , 3 + n.

We can then simplify the discussion of UV/IR mixing by writing

|k̃| = M−2
NC|k|, (2.15)

whereMNC is the noncommutativity mass-scale. Heuristically, M−2
NC ∼ |θ|.More precisely,

for θµν in the canonical basis,

θµν =









0 θ1 0 0
−θ1 0 0 0
0 0 0 θ2
0 0 −θ2 0









, (2.16)

only when θ1 ≃ θ2 one has M−2
NC = |θ|. Otherwise the scale MNC depends on kµ,

M−2
NC = |θ2|

√

1 +
θ21 − θ22
θ22

k20 + k21
k2

. (2.17)

It is nevertheless a useful scale.

Following the approach of [16; 17] we show in Appendix A that in a 4-dimensional
noncommutative gauge theory with all particles of equal non-zero mass m, the trace-U(1)
couplings runs according to

∂

∂t
g2 = bnp0 g

4 for k2 ≪ min

(

M2
NC,

M4
NC

m2

)

. (2.18)

Here bnp0 is a positive number which is the non-planar contribution to the coefficient b0,
see Eq. (A.14).

From discussion of the UV/IR mixing in Appendix A and elsewhere one can see that
in general noncommutative theory when we lower momentum-scale k2 sufficiently, even
very massive modes start to contribute. This holds for Kaluza-Klein modes, too, as long
as we have noncommutativity only in the four infinite dimensions according to Eq. (2.14).
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In analogy to (2.9) we find (k2 ≪ min(M2
NC,

M4
NC

M2
c
))

∂

∂t
g2 = N IR

KK(k)b
np
0 g

4, (2.19)

N IR
KK(k) ≈ CIR

n

(

M2
NC

Mck

)n

,

g2 ≈ n

CIR
n bnp0

(

kMc

M2
NC

)n

.

The right hand side of the IR flow equation in (2.19) has the opposite sign to that of
the UV flow equation (2.9). This implies that the trace-U(1) coupling g2 becomes small
in the IR and the UV regimes. The enhancement by the N IR

KK(k) factor gives the power-

like decoupling of these unwanted degrees of freedom from the SU(N) theory (which is
unaffected by the UV/IR mixing effects).

The infrared decoupling of the trace-U(1) can be expressed as follows. As mentioned
earlier, our effective field-theoretical description is valid at energy scales in the region
below the ultraviolet cut-off and above the induced infrared cut-off, Λinduced

IR < k < ΛUV.
Naturally, we assume that ΛUV ≫ MNC so that Λinduced

IR = M2
NC/ΛUV ≪ MNC. The

extreme infrared region corresponds to k approaching Λinduced
IR . The IR-value of the trace-

U(1) coupling is then given by the last equation in (2.19),

g2IR ≈ n

CIR
n bnp0

(

Mc

ΛUV

)n

. (2.20)

At the same time, the last equation in (2.9) gives the U(N) coupling in the extreme UV:

g2UV ≈ n

Cnb0

(

Mc

ΛUV

)n

. (2.21)

Therefore, in the IR the trace-U(1) returns to the initial value of the U(N) gauge coupling
in the extreme UV up to a factor of order unity. Thus another way of expressing the
decoupling scenario is that all the U(N) gauge couplings are very small in the UV but that
the trace-U(1) part returns to approximately its UV value (or an even smaller one) whereas
the SU(N) factors attain physically acceptable large coupling by power law running in
the UV. This conclusion is also in agreement with the 4-dimensional results discussed in
detail in [16].

2.4 IR running for arbitrary noncommutativity

If the matrix θµν has nonvanishing entries that mix the ordinary four dimensions with the
extra dimensions we may have a non-vanishing

k̂a = θaνkν (a = 4 . . . , 3 + n). (2.22)
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In the calculation of the polarisation tensor this leads to phase factors in the sum over
the Kaluza-Klein modes,

∑

m∈Zn

ei
m
R
·k̂ (2.23)

(in addition to the usual θ-dependent phases in non-planar contributions). In this sit-
uation it is advantageous to directly perform the sum over Kaluza-Klein modes in the
polarisation tensor. We have done this explicitly in Appendix B. Here we will quote the
result (for an N = 2 supersymmetric U(N) theory without adjoint matter fields),

Π1 = const+ 2
C(G)

(4π)2
(4π)

n
2Γ

(n

2

)

∏

i

Ri

(

|k̃|−n
)

, (2.24)

where Ri are the compactification radii and k̃ is now the total noncommutative momentum
k̃M = θMνkν (M = 0 . . . 3 + n). This equation is valid for

k ≪ min

(

Mc,
M2

NC

Mc

)

. (2.25)

The fact that the actual running is now given by replacing the 4-dimensional compo-
nents of k̃ with the total k̃ is not too surprising since the infrared running comes from very
ultraviolet modes, i.e. it involves momenta much higher than the compactification scale
where the theory is effectively higher-dimensional. At these scales there is no distinction
between the ordinary four dimensions and the extra dimensions.

Eq. (2.24) has the additional advantage that it already corresponds to the integrated
result. It directly gives g(k) without the need to solve a differential equation (Ri = 1/Mc),

g2U(1)(k) =
1

AU(1) +
CIR

n bnp0
n

(

M2
NC

Mck

)n . (2.26)

Here we have fixed,

CIR
n =

n

2
(4π)

n
2 Γ

(n

2

)

, (2.27)

bnp0 =
4

(4π)2
C(G),

where we still consider the N = 2 case and none of the matter fields are in the adjoint
representation3. AU(1) is a renormalisation constant determined from the bare coupling
and the planar diagrams only. Therefore in the regime (2.25) this constant is connected to
the gauge coupling of the SU(N)-part (up to logarithmic corrections which we neglected
in our approximation)

g2SU(N)(k) ≈
1

ASU(N)

with AU(1) = ASU(N). (2.28)

3A generalisation to an arbitrary number of matter multiplets can be easily obtained from the results
given in the appendices.
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2.5 Physics in the |k̃| → 0 limit

In section 2.2 we noted that UV/IR mixing forces us to include an IR cut-off matching
the UV one, roughly given by

|k| > ΛIR =
M2

NC

ΛUV
.

In order to gain more insight about the nature of the physical cut-off it is instructive to
consider specific physical situations that at first sight seem to lead to difficulties. For
example consider the case where time and one space dimension, which we choose to be
x1, are completely commutative. (This corresponds to choosing θ1 = 0 in Eq. (2.16)). In
that case it seems that if we were to perform an experiment with k2 = k3 = 0 we have a
dichotomy: since k̃ = 0 we could argue that the trace-U(1) coupling is zero, but on the
other hand since θ1µ = 0 the noncommutativity cannot effect physics in the x1 direction
and the trace-U(1) coupling must therefore run in the same way as in a commutative
theory. This sort of discontinuity (i.e. physics in the θµν → 0 limit is not the same is
θµν = 0 physics) is a familiar aspect of UV/IR mixing.

To see that there is no paradox, we need to be more careful in considering the regions
of validity. We have seen that physics is only well defined within certain cut-offs: if θµν

vanishes in commutative planes, these will not be isotropic. Indeed if the ij plane has θij
then we must define an induced IR cut-off for each 2-plane (corresponding to applying
the UV cut-off ΛUV in each plane). This results in a region of physical validity for the
noncommutative field theory, outside which one requires a UV complete theory,

Λij
IR ∼ 1

|θij |ΛUV
< |k| < ΛUV.

We can now make two observations. Firstly the θij → 0 limit does not in fact exist since
by the above we must always have |θij | > Λ−2

UV. Second, even if θ01 = 0, there is no k̃ → 0
limit either since we have |k̃| > 1

ΛUV
. This means that in our experiment there is an

extremely narrow wedge near k̃ = 0 within which the field theory is no longer valid and
something else, presumably string physics, applies.

We can see this in more detail by repeating the analysis of Appendix B but using a
UV cut-off rather than dimensional regularization. We then find

Π1 = const+ 2
C(G)

(4π)2
(4π)

n
2 Γ

(n

2

)

∏

i

Ri

(

(|k̃|2 + Λ−2
UV )

)

−
n
2

. (2.29)

Thus for |k̃| < 1
ΛUV

the IR power-law running of the trace-U(1) coupling is simply frozen
by the UV cut-off, close to its small UV value. It is important to realise that in this sense
Λinduced

IR is not a separate object from ΛUV but it results in fact from the same cut-off being
applied to the same physical modes. Whatever happens below this cut-off is beyond our
control and belongs to the realm of the UV complete theory.
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Another set-up that is relevant in this context is an extra dimensional theory where
noncommutativity is confined entirely to the extra dimensions. Then the k̃ ≈ 0 wedge
is precisely where we are living since all our experiments are performed with zero extra-
dimensional momenta. Thankfully the above discussion means that we do not need string
theory to describe everyday physics: essentially all that is seen in the 4 commutative
dimensions is commutative physics, with the trace-U(1) gauge coupling remaining frozen
at its UV value4 (of course this may no longer be the case in processes involving external
Kaluza-Klein states).

3 Lorentz violating mass term for trace-U(1)

In noncommutative field theories the gauge coupling is not the only part of the polarisation
tensor that is affected by power law running. Recall that in noncommutative field theories
the (4-dimensional) polarisation tensor has an additional Lorentz symmetry violating part
[15; 16], which is called Π2 in Eq. (2.1).

It is well known [15] that in noncommutative field theories it is only absent, if super-
symmetry is exact. For softly broken supersymmetry only the IR-singular (pole) contri-
bution to Π2 vanishes, but a constant term

Π2 ∼ ∆M2
SUSY, ∆M2

SUSY =
1

2

∑

s

M2
s −

∑

f

M2
f , (3.1)

remains. In (3.1) the sums run over all bosons and fermions. Therefore, if we have com-
pactified extra dimensions, we must include the Kaluza-Klein modes, effectively multiply-
ing the four-dimensional ∆M2

SUSY by the number of Kaluza-Klein modes. The number of
contributing Kaluza-Klein modes is, again, given roughly by N IR

KK of Eq. (2.19). Hence,
we find

Π2 ∼ N IR
KK(k)∆M

2
SUSY ∼

(

M2
NC

Mck

)n

for k2 ≪ min(M2
NC,

M4
NC

M2
c

). (3.2)

Solving the equation of motion for a photon propagating in the 3-direction kµ =
(k0, 0, 0, k3) and with θ13 = −θ31 6= 0 the only nonvanishing components in the noncom-
mutativity matrix we find for the two polarisation states of a zero mode of an unbroken
trace-U(1) (see [13] for more details),

(Π1k
2 − Π2) = 0 for Aµ = (0, 1, 0, 0) (3.3)

Π1k
2 = 0 for Aµ = (0, 0, 1, 0).

4This tacitly assumes that the effects of the UV completion can be qualitatively described by the
presence of a cutoff, i.e. the UV completion merely adds some threshold effects to the low energy physics.
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The second polarisation state has an ordinary dispersion relation of a massless particle.
The first, however has a Lorentz symmetry breaking mass

m2
LV ∼ Π2

Π1
∼ ∆M2

SUSY, (3.4)

which is roughly constant although both Π1 and Π2 scale with a power law. Yet, these
power laws cancel since they are the same for Π1 and Π2.

4 Weaker constraints from power law running

We found in Sect. 3 that the Lorentz violating mass term for the trace-U(1) factors
remains roughly constant. Hence trace-U(1)’s are unsuitable as photon candidates. With
a similar argument (see [13] for more details) one finds that this also holds for mixtures
of trace and traceless parts. Therefore a suitable photon candidate must be constructed
(as in four dimensions) from an unbroken combination of traceless generators. In [13] we
found that such a combination can only exist together with additional unbroken U(1)’s
which have nonvanishing trace. Here the results of Sect. 2 help us, since they allow
for a fast decoupling of trace-U(1) degrees of freedom. This is in contrast to the four-
dimensional case, where the (only) logarithmic decoupling necessitated incredibly large
noncommutativity scales MNC ≫ MP. With additional (compactified) space dimensions
we have power law running according to (2.19). This decouples the unwanted trace-U(1)’s
much faster in the IR thereby weakening the constraints dramatically.

Let us now estimate the new constraints obtained from power law running. As already
mentioned earlier, current experiments probe the regime well below Mc. To apply Eq.
(2.26) we also need k ≪ ks,

ks =
M2

NC

Mc

. (4.1)

This is also assured, since the discussion of Sect. 2.3 shows that for k ∼ ks the trace-U(1)
and the SU(N) have gauge couplings which are of the same order. (Until k ∼MNC both
gauge couplings are approximately equal and power law running sets in only below ks.)

Neglecting the slow logarithmic running of the SU(N) couplings we find from Eqs.
(2.26) and (2.28),

g2U(1)

g2SU(N)

≈ n

CIR
n bnp0

1

g2SU(N)(ks)

(

k

ks

)n

= Dkn
(

Mc

M2
NC

)n

for k ≪ ks (4.2)

D =
n

CIR
n bnp0

1

g2SU(N)(ks)
∼ (4π)2

4Ng2SU(N)

,

where the ∼ in the second line holds for a pure noncommutative U(N). To have

g2U(1)(k0)

g2SU(N)(k0)
< ǫ (4.3)
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Figure 1: Excluded regions in the (Mc,MNC)-plane (in TeV). The blue region is excluded
because the trace-U(1) still has nonnegligible coupling. We have chosen ǫ = 0.05, C1b

np
0 =

0.1, g2SU(N)(k0) = 0.2, k0 = 0.1TeV, and n = 1.

we need
M2

NC

Mc
> k0

(

D

ǫ

)
1
n

. (4.4)

As an illustration we have plotted the excluded region in Fig. 1. This shows that when
we allow for a 5% uncertainty in the electromagnetic coupling at 100 GeV, the allowed
region of MNC starts already at a few TeV, depending on the compactification scale.

5 Summary and conclusions

We have demonstrated that in a noncommutative U(N) gauge theory with compact extra
dimensions, the ultraviolet/infrared mixing effects lead to a fast power-like decoupling of
the trace-U(1) degrees of freedom.

The Lorentz violating mass term of the trace-U(1) degrees of freedom remains roughly
the same as in four dimensions. Therefore, the trace-U(1) or mixtures of trace and
traceless U(1) degrees of freedom are unacceptable as photon candidates. However, the
fast decoupling of trace-U(1) degrees of freedom allows to effectively hide them with only
relatively mild restrictions on MNC.

This allows a situation similar to the one considered in [7] where a gauge group U(4)×
U(3)×U(2) was broken down to SU(3)×SU(2)×U(1)4, where three of the four U(1)’s have
non vanishing trace. In four dimensions these trace-U(1) would have led to observable
Lorentz symmetry violation. In a scenario with compact extra dimensions, however, the
additional trace-U(1) groups may have very small couplings to the Standard Model matter

12



due to the power-law decoupling in the infrared.
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A Infrared running from UV/IR mixing

In this appendix we concentrate on the case of a noncommutative theory with commuta-
tive compact extra dimensions, i.e. θµν is nonvanishing in 4 dimensions and

θab = 0, θµb = 0, for all a, b = 4, . . . , 3 + n. (A.1)

The more complicated case of noncommutativity extending also to compact extra dimen-
sions will be discussed in Appendix B.

Since θab = 0 compact extra dimensions appear in the analysis only via additional sum-
mations over the tower of Kaluza-Klein modes. Hence we can follow the four-dimensional
approach of [16; 17] in a noncommutative gauge theory with generic massive fields, and
sum over Kaluza-Klein modes in the end.

The running (Wilsonian) gauge coupling is defined via

(

1

g2

)AB

=

(

1

g20

)AB

+ΠAB
1 (k), (A.2)

where Π1 is part of the polarisation tensor given in Eq. (2.1). UV/IR mixing appears
only in the trace-U(1) part of the gauge coupling, corresponding to the (0, 0) component
in our conventions. The SU(N) part is unaffected by the UV/IR effects and behaves like
in a usual commutative gauge theory. Therefore, we will concern ourselves only with the
trace-U(1), i.e. the (0, 0) component and drop the index. In noncommutative field theories

loop integrals contain additional factors of exp(ipk̃
2
) where p is the loop momentum and k

an external momentum. Using trigonometric relations one can combine these factors into
parts proportional to unity, the so called planar parts, and parts proportional to exp(ipk̃),
the non-planar parts. For the Π1 part we explicitly write

Π1 = Πplanar
1 +Πnp

1 . (A.3)
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j= scalar Weyl fermion gauge boson ghost
αj -1 1

2
−1

2
1

Cj 0 1
2

2 0
dj 1 2 4 1

Table 1: Coefficients appearing in the evaluation of the loop diagrams.

At one loop and using dimensional regularisation one finds [16; 17]

Π1 planar(k
2) = − 4

(4π)2

(

∑

j,r

αjC(r)

[

2Cj +
8

9
dj (A.4)

+

∫ 1

0

dx
(

Cj − (1− 2x)2dj
)

log
A(k2, x,m2

j,r)

Λ2

])

,

where mj,r is the mass of a spin j particle belonging to the representation r of the gauge
group,

A(k2, x,m2
j,r) = k2x(1− x) +m2

j,r, (A.5)

and Λ appears via dimensional transmutation similar to ΛMS in QCD. We have chosen
the renormalisation scheme, i.e. the finite constants, such that Π1 planar vanishes at k = Λ.

For the trace-U(1) part the nonplanar parts do not vanish and we find

Πnp
1 =

1

2k2

(

Π̂− Π̃
)

, (A.6)

with

Π̂ = 2
C(G)

(4π)2

∑

j

αj

{

8dj

k̃2
− k2 [12Cj − dj]

∫ 1

0

dx K0(
√
A|k̃|)

}

, (A.7)

Π̃ =
8C(G)

(4π)2

∑

j

αj

{

dj

k̃2
−
(

Cjk
2 − dj

∂2

∂2|k̃|

)
∫ 1

0

dx K0(
√
A|k̃|)

}

, (A.8)

where C(G) = N is the Casimir operator in the adjoint representation.

In a supersymmetric theory the numbers of bosonic and fermionic degrees of freedom
match, and the above expressions can be considerably simplified by using the relation

∑

j

αjdj = 0. (A.9)

It follows that

Πplanar
1 (k) = − 4

(4π)2

(

∑

j,r

αjC(r)Cj

[

2 +

∫ 1

0

dx log
A(k2, x,m2

j,r)

Λ2

])

(A.10)

Πnp
1 (k) = −8C(G)

(4π)2

∑

j

αjCj

∫ 1

0

dx K0(
√
A|k̃|) (A.11)
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where in Πnp
1 only adjoint representations contribute.

We are now ready to take into account effects of the tower of Kaluza-Klein modes. In
a supersymmetric theory all members of a supermultiplet have the same mass mn for each
Kaluza-Klein mode n. Thus the contribution of the each non-zero Kaluza-Klein mode into
the polarisation tensor (and the running of the coupling) is obtained from the equations
above by setting all masses equal to mn. We find,

Πplanar
1 (k;mn) =

1

2
bp0F

p(k,mn) , Πnp
1 (k;mn) = bnp0 F

np(k̃, mn) , (A.12)

where we have defined

bp0 = − 8

(4π)2

∑

j,r

αjC(r)Cj > 0 (A.13)

bnp0 = −8C(G)

(4π)2

∑

j

αjCj > 0 (A.14)

F p(k,mn) = 2 +

∫ 1

0

dx log
A(k2, x,m2

n)

Λ2
(A.15)

F np(k̃, mn) =

∫ 1

0

dx K0(
√
A|k̃|) (A.16)

As we have indicated above, both the “planar” and “non-planar” β-function coefficients
bp0 and bnp0 are positive in asymptotically free theories. (For an example, each non-zero
KK mode of a simple N = 2 SYM pure gauge theory contributes bp0 = N/(4π2) and bnp0 =
N/(4π2).) The planar coefficient bp0 receives contributions from all allowed representations:
adjoint and fundamental, while the non-planar one, bnp0 , receives contributions only from
adjoint fields.

The task is now boiled down to deriving approximate formulas for F p and F np. We
note that F p depends on the scale Λ but not on θ as appropriate for a planar part, while
F np depends on θ (|k̃| = θ|k|, see Eqs. (2.2) and (2.15)) but not on Λ. The latter is a
consequence of the fact that the non-planar parts are finite.

To illustrate the behavior of F p and F np we have plotted them in Fig. 2. From the
figure it is already clear that the lowest order approximations will be either constants or
linear functions of log(k), depending on the regime we are looking at.

An important point is that F p determines the KK-mode contribution to the running of
the 1/g2 coupling in the UV regime (large momenta), while F np contributes to the running
only in the IR region (small momenta). Also the slopes of F p and F np are opposite which
leads to asymptotic freedom in the UV and simultaneously to a decoupling of the trace-
U(1) factor in the IR5. The change of slope from UV to IR leads to the opposite sign in

5We note that F np is entirely due to UV/IR mixing, and it is non-zero only for the trace-U(1) coupling,
while the planar term F p is present for all U(N) degrees of freedom.
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Figure 2: Functions F p (left panel) and F np (right panel) appearing in the 1-loop calcu-
lation of the gauge coupling. In the left panel the blue and red solid lines are for m = 1Λ
and m = 100Λ, respectively. The dashed lines give the leading order result for k ≪ m
while the thin black line depicts the leading order result for k ≫ m. In the right panel
the solid lines are for m = 0.01 θ−

1
2 (green), m = θ−

1
2 (blue) and m = 100 θ−

1
2 (red). The

dashed lines depict the approximation for k ≫ m and k ≫ θ−
1
2 . The black dot dashed

line approximates in the intermediate range m≪ k ≪ θ−
1
2 .

the right hand sides of the flow equations for the UV running (2.9) and the IR running
(2.19) of the trace-U(1) factor.

Both functions F p and F np can be well approximated analytically. Let us start with
F p. Making a series expansion of the integrand in (A.15) and then integrating over x we
find,

F p ≈ 2 + log(m2) for k2 ≪ m2, (A.17)

F p ≈ log(k2) for k2 ≫ m2.

Combining these two limits at their intersection we find

F p ≈ (2 + log(m2))Θ

(

1− e2
k2

m2

)

+ log(k2)Θ

(

e2
k2

m2
− 1

)

, (A.18)

where Θ(z) is the step-function. As we can see from Fig. 2 these approximations work
very well aside from some (small) threshold effects around k2 = m2.

The same procedure can be applied to F np,

F np = 0 for (k2 ≫ m2 ∧ k2 ≫ θ−1) (A.19)

F np = 1− γ + log(2)− log(k2θ) for (k2 ≪ θ−1 and k2 ≫ m2)

F np = −γ + log(2)− log(kmθ) for (k2 ≪ θ−1 and k2 ≪ m2),

where γ is Euler’s constant. Combining we find,

F np = 1− γ + log(2)− log(k2θ)Θ

(

1− k2θ

2e1−γ

)

+
1

2
log

(

k2

e2m2

)

Θ

(

1− k2

e2m2

)

. (A.20)
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Our results for F np together with Eq. (A.12) determine the contributions of each non-
zero Kaluza-Klein mode to the running coupling 1/g2 and the corresponding flow equation
(2.19) in the infrared. The factor N IR

KK(k) on the right hand side of (2.19) arises from
summing over all contributing Kaluza-Klein modes.

Similarly and as a bonus the asymptotic expression for F p together with Eq. (A.12)
also confirm the UV flow equation (2.9) for the U(N) coupling.

B Detailed calculation of the running gauge coupling

In this appendix we perform a detailed calculation for the sum over the Kaluza-Klein
modes. This will result in a better determination of the prefactor of the power law and a
more general applicability. In particular, the calculation is also valid for noncommutativity
that extends to the extra dimensions. It is convenient to stick with the dimensional
regularisation, and in fact, as we shall see this makes little difference for the IR regime.

As already mentioned earlier, we restrict ourselves to the case that the external mo-
mentum k is purely four dimensional, i.e. we are interested in situations where the external
particles are the (approximate) zero modes of the Kaluza-Klein spectrum.

We start from the four-dimensional one loop formula for the polarisation tensor and
re-express the decomposition (A.3) as follows (cf. [16; 17; 21]):

Π4-dim
µν (k) = Π4-dim

µν (k, ℓ = 0)− Π4-dim
µν (k, ℓ = k̃) (B.1)

with

Π4-dim
µν (k, ℓ) = C(G)

∑

j

αj

∫

d4p

(2π)4

{

dj

[

(2p+ k)µ(2p+ k)ν
(p2 +m2

j )[(p+ k)2 +m2
j ]
− 2δµν
p2 +m2

j

]

+ 4Cj
k2δµν − kµkν

(p2 +m2
j )[(p+ k)2 +m2

j ]

}

eip·ℓ. (B.2)

Equation (B.2) is essentially the original expression for the polarisation tensor, which
after being integrated would lead to equations such as (A.4). The coefficients αj , Cj, dj
were already given in Table 1 in Appendix A.

At present we will restrict ourselves to a supersymmetric theory. In this case the first
two terms drop out, due to Eq. (A.9), and we get

Π4-dim
µν (k, ℓ) = 4C(G)

∑

j

Cjαj

∫

d4p

(2π)4
k2δµν − kµkν

(p2 +m2
j )[(p+ k)2 +m2

j ]
eip·ℓ. (B.3)

Before continuing we introduce some notation. In the following the “inverse” (similarly
for division by a vector) of a vector is simply the vector where we have taken the inverse
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of every component, i.e.

(a1, a2, . . . , aN )
−1 = (a−1

1 , a−1
2 , . . . , a−1

N ). (B.4)

In the same spirit component-wise multiplication of vectors is understood, when the ap-
propriate result is a vector. To avoid confusion we denote the ordinary scalar product by
a dot: k · l. Moreover, we abbreviate,

k̃µ = θµνkν (µ = 0 . . . , 3) (B.5)

k̂a = θaνkν (a = 4 . . . , 3 + n). (B.6)

We will denote the Kaluza-Klein mode vector by n, and the vector of compactification
radii as R. In particular,

∣

∣

∣

n

R

∣

∣

∣

is the mass of the Kaluza-Klein mode6.

To account for the Kaluza-Klein modes we introduce the following sum as a prefactor
in front of the non-planar term in (B.3),

∑

n∈Zn

ei
n
R
·k̂. (B.7)

This is the obvious multi-dimensional expression restoring as it does the D-dimensional
Lorentz invariance of the phase factor in (B.3).

We now use the Poisson resummation identity

∑

n∈Zn

δ(π̂ − n) =
∑

m∈Zn

e2πim·π̂ (B.8)

where we introduced a “dummy” n-momentum for the extra dimensions, π̂. The idea is
to replace the KK-sum in the integral with a loop momentum integration. Calling for
convenience L = (l, l̂) so that we can treat planar and non-planar terms at the same time,
the phase factor in the integrals can be written as

∫

dnπ̂
∑

n∈Zn

δ(π̂ − n)(ei
n
R
·l̂eip·l) =

∑

m∈Zn

∫

dnπ̂ e2πim·π̂(ei
π̂
R
·l̂eip·l).

Rescaling p̂ = π̂/R we get a prefactor of

(
∏

i

2πRi)
∑

m∈Zn

∫

dnp̂

(2π)n
e2πi(mR)·p̂(eiP ·L)

= (
∏

i

2πRi)
∑

m∈Zn

∫

dnp̂

(2π)n
(eiP ·Lm) (B.9)

6Note that n which labels Kaluza-Klein modes should not be confused with n which counts extra
dimensions n = D − 4.
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where
Lm = L+ (0, 2πmR) (B.10)

As usual the point of this procedure is that eventually the leading m = 0 term dominates.
For the moment however we will keep the m summation. On replacing the masses in the
propagators in (B.3) with the KK masses mj = |p̂|, the task is reduced to evaluating the
following D = 4 + n dimensional integral in P = (p, p̂) where K = (k, 0):

Πµν(K,L) = 4
∑

j

αjCj C(G)(
∏

i

2πRi) (k
2δµν − kµkν)

∑

m∈Zn

∫

dDP

(2π)D
eiP ·Lm

|P |2|K + P |2 .

Using the identity
1

A1A2

= −
∫ 1

0

dx

∫

∞

0

dt teit (xA1+(1−x)A2)

for the propagators, integrating over P ′ = P+(1−x)K, and using dDP = 2π
D
2

Γ(D
2
)
|P |D−1d|P |

we find for Lm 6= 0,

∫

dDP

(2π)D
eiP ·Lm

|P |2|K + P |2 = (4π)−
D
2

∫ 1

0

dx ei(1−x)K·Lm ×
∫

∞

0

dt t(1−
D
2
) exp(−t x(1− x)K2 − L2

m

4t
) (B.11)

=
1

2
(2π)−

D
2

∫ 1

0

dx ei(1−x)K·Lm |Lm|−n(|Lm|∆)
n
2Kn

2
(|Lm|∆) ,

where
∆ = |K|

√

x(1− x). (B.12)

Note that the length |Lm| is acting as an effective UV cut-off on the Schwinger parameter
t. When Lm = 0, (the m = 0 planar term) we find

∫

dDP

(2π)D
1

|P |2|K + P |2 = (4π)−
D
2

∫ 1

0

dx∆nΓ(−n
2
). (B.13)

When D = 4 these expressions agree with Ref. [21].

Next we consider the summation over m in order to justify throwing away everything
except the first term. First we should point out that the summation is formally divergent.
We will return to this fact shortly, but for the moment we shall neglect it and concentrate
on just the leading terms. The asymptotic behaviour of the Bessel function in the two
limits is

Kν(z) =

√

π

2z
e−z z → ∞,

Kν(z) =
Γ(ν)

2

(z

2

)

−ν

z → 0. (B.14)
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The control parameter is z = |Lm|∆ ∼ |Lm||K|. Hence in the UV regime (defined as
|K| ≫ MNC) as long as 2πRi|K| ≫ 1 the leading term in the m summation dominates
exponentially. This is of course true by assumption since |K| ≫ 1/Ri ∼ Mc is also the
condition that MNC is well above the mass of the lightest KK states, Mc. For the IR
regime (|K| ≪MNC) recall that Lm = (0, k̃ + 2πRm) ∼ (0, |k|/M2

NC + 2πRimi). Hence if

|k| ≪ 2π
MNC

Mc

MNC (B.15)

then the leading m = 0 term is dominant, the others still being suppressed. Again this
condition is always true since MNC ≫ Mc and |k| ≪ MNC in this regime, however the
suppression is now only polynomial when z ∼ |2πR||K| ≪ 1 or in other words when |k|
is less than the lightest KK states. But since the Bessel functions go as (|Lm||K|)−n

2 the
leading term has an IR pole (|k|/MNC)

−n, with the subleading terms in the m summation
contributing only finite corrections. The problem is exactly equivalent to that of finding
the Green function on a n-torus: close to the δ-function source one recovers the usual non-
compact r−n result one would expect. Indeed, returning to the question of convergence of
the whole series, the m summation corresponds to the lattice of δ-function images on the
covering space, and is formally infinite. By Poisson resummation the sum is equivalent
to a generalized Riemann ζ-function and indeed one can use ζ-function regularisation to
regulate it: for more details, see Ref. [22]. The net result of such a procedure is that the
leading k → 0 pole dominates as one would expect and the two point function is well
approximated by the first term

Πµν(K,L) = 4
∑

j

αjCj C(G)(
∏

i

2πRi) (k
2δµν − kµkν)

∫

dDP

(2π)D
eiP ·L

|P |2|K + P |2 .

The planar term gives the usual UV divergence and needs to be regularised. This has
been the subject of quite a few papers (for example refs.[19; 23]) but for completeness we
will do a naive dimensional regularisation here. For ease of notation define η ≈ ǫ + n/2
with η being the continuously varying dimensionality, ǫ → 0 and n being integer. We
then get

Πµν(K, 0) = 4
∑

j

αjCj C(G)(
∏

i

2πRi) (k
2δµν − kµkν) (4π)

−
D
2

∫ 1

0

dx∆2ηΓ(−η) (B.16)

= −4
∑

j

αjCj C(G)(
∏

i

2πRi) (k
2δµν − kµkν) (4π)

−(2+η) |k|2η πΓ(1 + η)

sin(πη)Γ(2 + 2η)

which gives (for even d)

(−1)
n
2 (4π)−

D
2 |k|nΓ(1 +

n
2
)

Γ(2 + n)
×

(

1

ǫ
+ ψ(1 +

n

2
) + 2ψ(2 + n) + log(4π|k|2)

)

(B.17)

For n odd the term converges. The nonplanar term can be evaluated in the small |k||k̃| =
k2/M2

NC limit as
1

(4π)2
π−

n
2 Γ

(n

2

)

|k̃|n (B.18)
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This is the IR power law running advertised in the main body of the paper.

What the rather broadbrush approach presented here misses are the contributions in
the sum where some of the m- modes are zero and others infinite (when D ≥ 6). This is a
different kind of UV/IR effect, that leads to higher dimensional operators in the effective
Lagrangian. Since this is a technicality at the UV end of things and relevant only for
D ≥ 6, we simply refer the reader to Ref. [19] for more details.
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