
ar
X

iv
:h

ep
-p

h/
05

11
20

0v
2

 2
3

Ja
n

20
06

WUE-ITP-2005-014

Automatized analytic continuation of

Mellin-Barnes integrals

M. Czakon ∗

Institut für Theoretische Physik und Astrophysik, Universität Würzburg,
Am Hubland, D-97074 Würzburg, Germany

Department of Field Theory and Particle Physics, Institute of Physics,
University of Silesia, Uniwersytecka 4, PL-40007 Katowice, Poland

Abstract

I describe a package written in MATHEMATICA that automatizes typical operations
performed during evaluation of Feynman graphs with Mellin-Barnes (MB) tech-
niques. The main procedure allows to analytically continue a MB integral in a given
parameter without any intervention from the user and thus to resolve the singularity
structure in this parameter. The package can also perform numerical integrations
at specified kinematic points, as long as the integrands have satisfactory conver-
gence properties. I demonstrate that, at least in the case of massive graphs in the
physical region, the convergence may turn out to be poor, making näive numerical
integration of MB integrals unusable. I present possible solutions to this problem,
but argue that full automatization in such cases may not be achievable.

∗ e-mail: mczakon@physik.uni-wuerzburg.de

Preprint submitted to Elsevier Science 26 November 2024

http://arxiv.org/abs/hep-ph/0511200v2

PROGRAM SUMMARY

Title of program: MB

Version: 1.1

Catalogue identifier:

Program obtainable from: http://theorie.physik.uni-wuerzburg.de/~mczakon

Computers: All

Operating systems: All

Programming language used: MATHEMATICA, Fortran 77 for numerical evalu-
ation

Memory required to execute with typical data: Sufficient for a typical installa-
tion of MATHEMATICA.

No. of bytes in distributed program, including test data: 337900

Distribution format: ASCII

Libraries used: CUBA [1] for numerical evaluation of multidimensional integrals
and CERNlib [2] for the implementation of Γ and ψ functions in Fortran.

Keywords: Mellin-Barnes integrals, analytic continuation, numerical evalua-
tion, Feynman integrals.

Nature of physical problem: Analytic continuation of Mellin-Barnes integrals
in a parameter and subsequent numerical evaluation . This is necessary for
evaluation of Feynman integrals from Mellin-Barnes representations.

Method of solution: Recursive accumulation of residue terms occurring when
singularities cross integration contours. Numerical integration of multidimen-
sional integrals with the help of the CUBA library.

Restrictions on the complexity of the problem: Limited by the size of the avail-
able storage space.

Typical running time: Depending on the problem. Usually seconds for moder-
ate dimensionality integrals.

2

http://theorie.physik.uni-wuerzburg.de/~mczakon

1 Introduction

The synergy between experiment and theory in the area of elementary parti-
cle physics is constantly driving perturbative calculations to higher and higher
orders. This is particularly true close to the beginning of the Large Hadron
Collider’s operation. Therefore, recent years have seen the emergence of sev-
eral powerful methods of evaluation of subsequent terms of the perturbative
expansion. As far as multiloop Feynman integrals are concerned, the method
of differential equations Ref. [3,4] and Mellin-Barnes integral representations
Ref. [5,6] have proved to be the most successful. Some complicated problems
turned out to even require a mixed approach, as advocated, for example, in the
case of Bhabha scattering in Ref. [7]. In parallel to analytical approaches, new
numeric techniques have been devised, among which the sector decomposition
method Ref. [8] occupies a prominent place. Very recently in Ref. [9], the role
of Mellin-Barnes integral representations as sources of numeric approximations
in the physical region has also been stressed.

In the present work, I will concentrate on Mellin-Barnes integral representa-
tions. There are two advantages of this approach. First, it allows for systematic
extraction of singularities. Second, the dimensionality of the representation is
not directly connected to the number of lines in the graph and therefore, one
often arrives at integrals of low dimensionality even for complicated graphs.
The calculation of a Feynman integral proceeds in this method in three steps.
At first, one derives a representation, then performs the analytic continuation
in ǫ, where d = 4− 2ǫ is the dimension of spacetime, and finally evaluates the
resulting integrals. The first step above can be performed in several different
ways, aiming at the simplest possible representation. The various possibilities
are described in Ref. [10]. A general algorithm is here only interesting in the
case of subsequent numeric integration, see Ref. [9]. The third step cannot
be generalized apart from numerical integration, even though some classes of
problems can be solved algorithmically, e.g. by reduction to nested sums, see
Ref. [11]. It is only in the second step, the analytic continuation, that one
can provide an algorithmic solution that would be satisfactory for both ana-
lytic and numeric evaluation. This solution is provided by the MATHEMATICA

package MB introduced in the present work.

Numeric evaluation of MB integrals has already been mentioned more than
once above. Whether just for testing or for the actual calculation, automatiza-
tion of this step is of value by itself. The package MB can perform the necessary
integration by means of FORTRAN, the CUBA library [1] of integration rou-
tines, and the CERN library implementation of gamma and psi functions [2].
Since the integrals are infinite range and multidimensional, their feasibility
depends strongly on their convergence. In all tested examples, where invari-
ants are in the Euclidean range, the behaviour is exponential and therefore

3

poses no problems. In [9], physical kinematics have also been considered, but
the presented examples were restricted to massless graphs exclusively. Here, I
notice that massive graphs have worse properties. In fact, I give examples of
integrals, which are not even absolutely integrable, and the integral is similar
to the Fourier transform of the inverse square root. Such cases can still be
treated, but some initial analysis is necessary and it is difficult to see how it
could be automatized. Moreover, the techniques will rapidly become inefficient
for higher dimensional integrals.

The paper is organized as follows. In the next section, I define the main con-
cepts and present the algorithm for analytic continuation. Subsequently, I
describe the package starting with the user interface, low level routines, ex-
amples, numerical integration routines and some additional tools. Finally, I
briefly summarize and conclude the paper.

2 Analytic continuation of Mellin-Barnes integrals

At the core of the Mellin-Barnes method lies the following representation

1

(A+B)ν
=

1

Γ(ν)

1

2πi

i∞
∫

−i∞

dz
Az

Bν+z
Γ(−z)Γ(ν + z), (1)

where the contour is chosen in such a way, that the poles of the Γ function
with +z are separated from the poles of the Γ function with −z.

This representation can be used in Feynman integral computations in several
ways. The easiest is to turn massive propagators into massless and integrate
the massless integral, if a formula for general powers of propagators exists. In
more complicated cases, one can use some parametric representation of the
Feynman integral, which is usually an integral of a product of polynomials
raised to some powers, and split the polynomials into pieces that are then
integrable by some generalization of the Euler formula

1
∫

0

dx xα−1(1− x)β−1 =
Γ(α)Γ(β)

Γ(α + β)
. (2)

An extensive discussion of the methods with examples can be found in Ref. [10].
Irrespective of the method, however, the expression for any Feynman integral
assumes the form

4

1

(2πi)n

i∞
∫

−i∞

. . .

i∞
∫

−i∞

Πidzi f(z1, . . . , zn, s1, . . . , sp, a1, . . . , aq, ǫ)
ΠjΓ(Aj + Vj + cjǫ)

ΠkΓ(Bk +Wk + dkǫ)
,

(3)

where si are some kinematic parameters and masses; ai are the powers of the
propagators; Ai, Bi are linear combinations of the ai; Vi, Wi are linear com-
binations of zi; and ci, di are some numbers. The function f is analytic, in
practice a product of powers of the si, with exponents being linear combina-
tions of the remaining parameters.

Because of the assumptions inherent in Eq. (1), the above equation is well
defined and corresponds to the original Feynman integral, if the real parts of
all of the Γ functions have positive arguments. If these conditions cannot be
satisfied with ǫ = 0, then the integral may develop divergences and analytic
continuation to 0 is necessary to make an expansion in ǫ.

The purpose of the presented package is to perform the analytic continuation
of Eq. (3) in ǫ to some chosen value ǫ0. The algorithm requires to generalize
Eq. (3) to allow for ψ functions in the fraction, with ψ(z) = d log Γ(z)/dz and
ψ(n)(z) = dnψ(z)/dzn, with the same structure of arguments as those of the
Γ functions.

2.1 The algorithm

There are two known ways to perform the analytic continuation. The first,
introduced in Ref. [5] consists in deforming the integration contours and then
shifting them past the poles of the Γ functions, which results in residue in-
tegrals. It is not clear how to make this method algorithmic, although some
attempts in the specific case of massless on-shell double boxes have been un-
dertaken in [12].

The second method, introduced in Ref. [6] assumes fixed contours parallel
to the imaginary axis, and the analytic continuation consists in accounting
for pole crossings past the contours. As described in Ref. [6], this method is
an algorithm. I make one modification with respect to the original, namely
I assume that the contours are such that no two contours can be crossed
simultaneously. This assumption can always be satisfied by infinitesimal shifts
of one of the concerned contours.

It should be clear from the above considerations, that the imaginary parts of
the involved variables do not play any role. It is therefore assumed that zi, ai

and ǫ are real. With z = (z1, . . . , zn), a = (a1, . . . , aq), and (I, ǫI) some MB
integral with fixed contours and the value of ǫ fixed at ǫI , the algorithm can

5

let z, a and ǫ be such that all the arguments of the Γ functions be positive.

O ← {(I, ǫ)}, C ← ∅
while O 6= ∅
do

R← ∅
for all (I, ǫI) ∈ O

do

C ← C ∪ {I}
for all ǫ′I ∈ [ǫI , ǫ0], such that there is a F (z, a, ǫ), where Γ(F (z, a, ǫ)) ∈ I

and F (z, a, ǫ′I) = −n, n ∈ N ∪ {0}
do

if ǫ′I = ǫI or ǫ′I = ǫ0

then halt contour starts or ends on a pole of Γ(F (z, a, ǫ))
fi

let z′ ∈ F (z, a, ǫ)
let z′0 be such that F (z, a, ǫ)|z′=z′

0
= −n, n ∈ N ∪ {0}

let I = 1
2πi

∫ i∞
−i∞ dz′G(z′)

sz′ ← sign of the coefficient of z’ in F (z, a, ǫ)
I ′ ← sz′ sign (F (z, a, ǫI)− F (z, a, ǫ0)) Resz′=z′

0
G(z′)

R← R ∪ {(I ′, ǫ′I)}
od

od

O ← R

od

Fig. 1. Analytic continuation algorithm.

be formalized as in Fig. 1.

The algorithm has been written for Γ functions, but one should add ψ func-
tions, wherever Γ functions occur. Upon termination, the set C contains all
the integrals following from the analytic continuation. It should be clear that
it is the “if” clause that does not allow for crossings of two different contours
at a time.

A comment about the choice of the contours is in order. Even though all
the choices are equivalent, one would like to have the smallest possible num-
ber of contributions. An improvement implemented in the package is to first
gather all the residue points, and then try to add additional constraints on the
contours such that these residues would not occur. If some subset of these con-
straints can be satisfied, then the number of residues will be reduced. This is
not an algorithm that leads to an absolute minimum of the number of residues,
it gives, however, at least some reduction of the number of contributions.

6

Finally, one should notice that the technique of Ref. [6] has been similarly
formalized in Ref. [9].

3 The package

3.1 User interface

The main routine performing the analytic continuation is

MBcontinue[integrand, limit, {fixedVarRules, intVarRules}, options]

where the input arguments are

• integrand: any object accepted by MATHEMATICA. Notice that the singu-
larities are determined by analyzing Γ and ψ functions only.
• limit: a rule, x -> x0, which specifies at the same time the variable, x, in

which the analytic continuation is performed and the point, x0, which the
user wants to reach.
• fixedVarRules: a list of rules giving the values of the real parts of the

variables, which are not integrated over. In particular, it must contain the
starting value of the variable, in which the analytic continuation is per-
formed.
• intVarRules: a list of rules giving the real parts of the integration variables.
• options:

· Level: an integer specifying the level at which the recursive analytic
continuation will be stopped. By default, it is set to infinity.
· Skeleton: a boolean value. If True, the residues will be identified, but

not calculated. This is achieved by replacing all Γ and ψ functions by a
dummy function MBgam. The purpose of this option is to quickly determine
the total number of integrals. By default this option is set to False.
· Residues: a boolean value. If True, the output will also contain the list

of Residue points besides the actual values of the residues. This is mainly
for internal use and is set by default to False.
· Verbose: a boolean value. If True, the level is printed as well as the

position on the list of the currently continued integral and the residue
points together with the signs of the residues. This option is switched on
by default.

The output is a nested list obtained by replacing, at every level, the integral
to be continued by its residues and the original integral at the limit. The
elements are

7

MBint[integrand, {fixedVarRules, intVarRules}]

objects, where the integrand can be expanded around the limit, which is placed
on the fixedVarRules list. If the user specified a finite level, then there might
also occur

MBitc[integrand, limit, {fixedVarRules, intVarRules}, Options]

objects, where “itc” stands for “integral to continue”. These are not yet regular
at the limit and require further recursive analytic continuation. Furthermore,
if the user set the Residues option to True, there will also be a list of

MBres[sign, var, val],

objects, which signal that there was a residue taken in the variable, var, at
the value, val, with sign.

Restricted input checking has been implemented, and as long as the input
is syntactically correct, the only error that may occur is (see Section 2.1 for
further details)

contour starts and/or ends on a pole of Gamma[z]

In this case the procedure stops and gives an inequality for an integration
variable that is sufficient to remove the problem.

The integration contours are found with

MBoptimizedRules[integrand, limit, constraints, fixedVars, options]

For a description of the integrand and limit see MBcontinue. The remaining
input parameters are as follows

• constraints: a list of additional constraints (inequalities) specified by the
user. This should usually be left empty, but might be used for experimen-
tation in order to search for contours that might possibly give less residues.
• fixedVars: a list of variables, which should be considered fixed during an-

alytic continuation. The integration variables are determined automatically
from the arguments of the Γ and ψ functions.
• options:

· Level: specifies the level up to which optimization of the contours will
be performed. This option should only be used for very large calculations.
Since in this case, the contours are only partially tested, the user will have
to correct them himself, if poles lying on a contour are encountered. In
practice, independent, small shifts should be sufficient for this purpose.

8

The output matches precisely the form needed in the input of MBcontinue,
i.e.

{fixedVarRules, intVarRules}

Notice that this procedure not only reduces the number of residues, but also
generates such contours that, during analytic continuation, no contours will
start or end on a pole.

During the determination of the real parts, warning messages are generated.
These can be ignored apart from the case when there is a single message

no rules could be found to regulate this integral

and the output is an empty list. In this case, the integral cannot be regulated
and the user has to provide another one, e.g. by introducing a further regulator
parameter, for example a propagator power, and performing two subsequent
analytic continuations.

Once the integrals are determined, they can be either merged, i.e. those that
have the same contour will be added by linearity; preselected, i.e. those that
would vanish in a given order of expansion in some parameter are rejected; or
expanded. These tasks are achieved with the following utilities.

MBmerge[integrals]

Merges MBint objects on the integrals list by linearity, if they have the same
contours. Vanishing integrals are rejected.

MBpreselect[integrals, {x, x0, n}]

Rejects those MBint objects on the integrals list that would vanish after
expansion in the variable x, around the point x0, up to order n.

MBexpand[integrals, norm, {x, x0, n}]

Expands MBint objects on the integrals list around the point x0, in the
variable x, up to order n. A normalization factor, norm, is included in every
integrand.

9

m

p

m

Fig. 2. The B0(s,ms,ms) function, with s = p2 and ms = m2.

3.2 Low level routines

The routines described in the previous section form the interface. It might
happen that the user would like to use the low level routines, which actually
perform the calculation.

MBresidues[integrand, limit, {fixedVarRules, intVarRules}, options]

Performs a single step in the recursive analytic continuation algorithm, i.e. it
finds all the residues for a given integral, but does not proceed with the analytic
continuation of the resulting integrals. All the arguments and options are the
same as in MBcontinue, apart from Level, which is in this case meaningless.

MBrules[integrand, constraints, fixedVars]

Finds the real parts of all the fixed and integration variables, such that the
real parts of the arguments of all the Γ and ψ functions be positive. The
difference to MBoptimizedRules is that no attempt is made to optimize the
number of residues or even check whether the contours will not lead to prob-
lems with MBcontinue. To perform these tests, MBoptimizedRules needs the
limit of the continuation, which is left unspecified here. This routine is of par-
ticular interest, because one may use it to write another contour optimization
algorithm.

MBrules[integrand, limit, constraints, fixedVars]

Same as MBrules, but check the contours, so that a complete analytic contin-
uation with MBcontinue can be performed.

3.3 Examples

As a first example, I consider the B0 function with two equal masses, Fig. 2.
After introduction of two MB integrations (the integral can be further simpli-
fied by the use of the first Barnes lemma, see Section 3.5) and normalization

10

of the integration measure with 1/(iπd/2), the expression reads

In[1]:= int = b0[s, 1+z1, 1+z2]*ms^z1*ms^z2*

Gamma[-z1]*Gamma[1+z1]*Gamma[-z2]*Gamma[1+z2] /. z1 -> z1-z2

Out[1]:= (m1s^z1*(-s)^(-ep - z1)*Gamma[ep + z1]*Gamma[1 - ep - z2]*

Gamma[-z2]*Gamma[-z1 + z2]*Gamma[1 - ep - z1 + z2])/ Gamma[2

- 2*ep - z1]

The user must now determine the contours, or more precisely, the real parts
of the contours.

In[2]:= rules = MBoptimizedRules[int, ep -> 0, {}, {ep}]

MBrules::norules: no rules could be found to regulate this integral

MBrules::norules: no rules could be found to regulate this integral

Out[2]:= {{ep -> 7/8}, {z1 -> -3/4, z2 -> -1/2}}

As explained above, the two warning messages have been generated during
the determination of the contours, and since some real parts have been found,
they are harmless.

The user can now perform the analytic continuation

In[3]:= cont = MBcontinue[int, ep -> 0, rules]

Level 1

Taking +residue in z1 = -ep

Level 2

Integral {1}

Taking +residue in z2 = -ep

Level 3

Integral {1, 1}

3 integral(s) found

Out[3]:= {{{MBint[(Gamma[1 - ep]*Gamma[ep])/ (m1s^ep*Gamma[2 - ep]),

{{ep -> 0}, {}}]}, MBint[(Gamma[1 - ep -

11

Fig. 3. First planar QED box master integral, B1. The wavy lines are massless,
whereas the continuous are massive and on-shell.

Fig. 4. Second planar QED box master integral, B2. The notation is the same as
in Fig. 3.

z2]*Gamma[-z2]*Gamma[1 + z2]* Gamma[ep +

z2])/(m1s^ep*Gamma[2 - ep]), {{ep -> 0}, {z2 ->

-1/2}}]}, MBint[(m1s^z1*(-s)^(-ep - z1)*Gamma[ep + z1]*

Gamma[1 - ep - z2]*Gamma[-z2]*Gamma[-z1 + z2]* Gamma[1 -

ep - z1 + z2])/Gamma[2 - 2*ep - z1], {{ep -> 0}, {z1 ->

-3/4, z2 -> -1/2}}]}

At this stage, the user can, for example, expand the integrals to determine the
divergence

In[4]:= div = MBexpand[cont, Exp[ep EulerGamma], {ep, 0, -1}]

Out[4]:= {{{MBint[ep^(-1), {{ep -> 0}, {}}]}}}

This is the well known value for the B0 function. The integral header, MBint,
is kept, because in general, even the divergences may be given by nontrivial
MB integrals.

Together with the MB.m package, two example notebooks are provided. The
first one, MBexamples1.nb, contains massive box integrals, in particular, the
first and the second planar 7-line QED box master integrals, Fig. 3 and Fig. 4
respectively. It is found that in the first case, only 5 integrals contribute to
the finite part, which is less than has been determined in Ref. [13] by another
method of analytic continuation. After merging, both integrals have just 4
contributions. I have checked by numerical integration that the results agree
with Ref. [13] and Ref. [14].

12

Fig. 5. The B5l3md2 integral. The notation is the same as in Fig. 3.

a6

Fig. 6. A regularized version of the B5l3md2 integral. A finite result can be derived
from the general representation for B2, when a6 → 0.

An interesting example is the B5l3md2 integral, Fig. 5, from Ref. [15]. If one
uses the general representation from Ref. [14], and simply sets the powers of
the propagators to appropriate values, then the integral seems to vanish, due
to a Γ function in the denominator, 1/Γ(0) = 0. To overcome this problem,
one keeps one of the powers as a parameter, as in Fig. 6 and does first an
analytic continuation in this parameter. In this way, one obtains the following
MB representation

1

(2πi)4

1

Γ(−2ǫ)

i∞
∫

−i∞

i∞
∫

−i∞

i∞
∫

−i∞

i∞
∫

−i∞

dz1 dz2 dz5 dz6 (−s)−2−2ǫ−z5−z6

(

t

s

)z1

× Γ(−z1)Γ(1 + z1)Γ(−1− 2ǫ− z2)Γ(1 + z2)Γ(−3− 4ǫ− 2z1 − z2 − 2z5)

Γ(−1− 2ǫ− z2 − 2z5)Γ(−3ǫ− z5)Γ(−3− 4ǫ− 2z1 − z2 − 2z5 − 2z6)

×Γ(−1− ǫ− z5)Γ(−ǫ− z2 − z5)Γ(−z5)Γ(2 + ǫ+ z1 + z2 + z5)

×Γ(−1− 2ǫ− z1 − z5 − z6)Γ(−2− 2ǫ− z1 − z2 − z5 − z6)Γ(−z6)
×Γ(2 + 2ǫ+ z1 + z5 + z6).

The presence of the 1/Γ(−2ǫ) factor means that as long as we are only inter-
ested in the finite part, the integral is just threefold. This is, of course, con-
firmed by explicit continuation as can be checked in MBexamples1.nb, where
three contributions are obtained. This result has been numerically checked
against the one obtained by the sector decomposition method.

The second notebook, MBexamples2.nb, contains two massless on-shell box
integrals, the two-loop non-planar NP, Fig. 7, and the three-loop planar T,
Fig. 8. In the first case, I evaluate the first three poles of the expansion and

13

Fig. 7. Massless on-shell non-planar double box integral, NP.

Fig. 8. Massless on-shell triple box integral, T.

obtain at the symmetric point, s = −1, t = −1, u = −1

NP = Γ(3 + 2ǫ)

(

7

4ǫ4
− 3

ǫ3
− 1

ǫ2

(

7

2
+

47π2

24

)

+ . . .

)

, (4)

in perfect agreement with Ref. [6]. Similarly, I recover the value of the first
three poles of the triple-box integral Ref. [16]

T = − e−3ǫγE

s3(−t)1+3ǫ

(

16

9ǫ6
− 5 log(s/t)

3ǫ5
− 3π2

2ǫ4
+ . . .

)

. (5)

In both cases the lowest order pole was given by one-dimensional integrals
that could be made with the first Barnes lemma, see Section 3.5.

3.4 Numerical integration

There are two factors determining the rate of convergence of MB integrals
Eq. (3): the behaviour of the product of gamma functions for large imaginary
arguments and the behaviour of the analytic f function.

In the limit of large imaginary argument, the Γ function exhibits an oscillatory
behaviour, an exponential damping factor and a power law. Indeed, for a, b ∈
IR and b≫ 0

Γ(a+ ib)≃
√

2π ei π

4
(2a−1) eib (log b−1) e−

bπ

2 ba−1/2, (6)

Γ(a− ib)≃
√

2π e−i π

4
(2a−1) e−ib (log b−1) e−

bπ

2 ba−1/2. (7)

14

If we combine different gamma functions the exponential factor might in prin-
ciple disappear, but fortunately in all cases studied it did not.

On the other hand, as explained in Ref. [10], the f function is usually a product
of terms of the form

(−s)−z, (8)

where s is some kinematic invariant (e.g. a Mandelstam variable) and z is one
of the integration variables. As long, as we are in the Euclidean regime, i.e.

s < 0, Eq. (8) contributes another oscillatory factor and cannot influence the
convergence of the integral. For positive values, however, we will have

(−s)−z = e−z log(−s) = e−z(log(s)−iπ) = eiaπ sz ebπ, (9)

where z = a − ib. It is clear, that the exponential factor can compensate the
damping from the product of gamma functions.

An interesting example, which illustrates the problem is provided by the lead-
ing pole term of the first planar 7-line QED box integral, Fig. 3, which is given
by

− e−2ǫγE

2s2(−t)1+2ǫ

1

ǫ2
1

(2πi)2

i∞
∫

−i∞

i∞
∫

−i∞

dz1 dz2 (−s)−z1−z2

× Γ3(−z1)Γ(1 + z1)Γ
3(−z2)Γ(1 + z2)

Γ(−2z1)Γ(−2z2)
, (10)

where ℜ z1 = ℜ z2 = −1/2. This is just a product of two one-dimensional
integrals, which can be done by closing contours and resumming the residues,
with the result

1

2πi

i∞
∫

−i∞

dz1 (−s)−z1
Γ3(−z1)Γ(1 + z1)

Γ(−2z1)
= − 4

√

4
s
− 1

arcsin

√

s

4
, (11)

below threshold, i.e. for 0 ≤ s ≤ 4. For z1 = −1/2− ib, b≫ 0, the integrand
behaves as

− 1 + i√
2

√
πs

ei log (s/4) b

√
b

. (12)

As anticipated, the exponential factor disappeared. Worse even, the integrand
is not absolutely integrable. It is interesting to note, that the frequency of the

15

-20

-15

-10

-5

 0

 5

 10

 15

 20

-40 -35 -30 -25 -20 -15 -10 -5 0 5
Im(z1)

Fig. 9. Real part of the integral Eq. (14) at s = 2.

oscillation, log (s/4), encodes the threshold. Further examples seem to confirm
that this is a general property. Fortunately, this integral can be evaluated using
standard techniques for infinite range oscillatory integrands. With the Pantis’
method [17]

∞
∫

−∞

db e−iωbf(b) ≃
∞
∫

−b0

db e−iωbf(b) +
1

iω
eiωb0f(−b0), (13)

setting s = 2 and b0 = 40 the value of the integral in Eq. (11) is≃ −3.17−0.09i,
to be compared to the exact result, which is −π.

One would be tempted to assume that the slowly convergent oscillatory be-
haviour can be factorized in one integration variable and that the remain-
ing integrations are fast convergent. This assumption is false, as shown in
Fig. (9), which represents the integrand in z1 of the original integral after
shifting z1 → z1 − z2 and up to normalization factors

1

(2πi)2
(−s)−z1

i∞
∫

−i∞

dz2
Γ3(−z1 + z2)Γ(1 + z1 − z2)Γ3(−z2)Γ(1 + z2)

Γ(−2z1 + 2z2)Γ(−2z2)
. (14)

Apparently, this does not seem to be integrable at all, and certainly no numeri-
cal method would provide a reasonable estimate, even if it would be integrable.

In conclusion, one encounters massive Feynman integrals, which require, in the
physical regime, multidimensional integration of slowly convergent oscillatory
functions over infinite range. This problem can be solved, but the efficiency of
the methods is very low and acceptable only for low dimensions. Furthermore,
it might be necessary to shift the integration variables to obtain convergent
representations. The latter task is certainly very difficult to automatize.

16

The above discussion does not change anything to the fact that MB integrals
provide reliable numerics in the Euclidean regime for all encountered integrals
and in the Minkowski regime for the massless ones. It is of course not excluded
that some massive integrals can also be done reliably without special methods,
but this has to be checked in specific cases.

The MB package provides routines that can perform numerical integrations of
MB representations. In order to work, the libraries libcuba.a from CUBA [1],
libkernlib.a and libmathlib.a from CERNlib [2] have to be installed either
in the working directory or in a globally accessible directory with libraries, and
the Fortran compiler has to be called f77. In case, the user wanted to change
these defaults, it would be necessary to change the internal code of MB.m.

The main routine for numerical integration is

MBintegrate[integrals, kinematics, options]

where the input arguments are

• integrals: a list of integrals as provided by MBexpand.
• kinematics: a list of rules providing numeric values for all the parameters

(usually kinematic invariants) besides the expansion variable and the inte-
gration variables. If the user is interested in Minkowski kinematics then a
small imaginary part should be added. Even though this is just an approx-
imation, it is justified by the fact, that the final result has usually much
lower precision than the error introduced by such a procedure.
• options:

· NamePrefix: by default the Fortran programs generated for integrals in
more than one variable are called MBpart1x0, etc. where the last number is
the power of the expansion variable x and part1 denotes the first integral
at this order. With this option one can change the prefix MB.
· PrecisionGoal, AccuracyGoal, MaxPoints, MaxRecursion: numerical

integration options as in NIntegrate. The defaults are respectively 4, 12,
106, 103, and have been tuned to several problems solved with the package.
· MaxCuhreDim: dimension threshold, 4 by default, above which Vegas will

be used for the evaluation of the integrals instead of Cuhre.
· Complex: by default, only the real part of the integrals is evaluated, with

this option set to True, the imaginary part will also be given.
· FixedContours: contours will not be shifted if this option is set to True.

For a detailed explanation, see MBshiftContours below.
· NoHigherDimensional: by default, the complete integration is performed

within MBintegrate, however with this option set to True, 1-dimensional
integrals are evaluated and the Fortran programs are prepared, but not
run. This may be used to run them in parallel for example.
· Debug: with this option set to True, the Fortran programs are kept after

17

p q

r

Fig. 10. Tennis court integral, I
(3)b
4 , containing a factor of (p + r)2.

evaluation and the value of every integral is given within MBval[value,

error, probability, part] objects, where value, error and probability

are given by CUBA, and part is the number of the integral. This provides
a primitive means of improving the calculation by tuning only specific
integrals, since the integration parameters can be easily changed in the
Fortran programs.
· Verbose: by default the progress of the integration is printed to the screen.

This can be switched off by setting this option to False.

Instead of providing a detailed description of the output, I illustrate MBintegrate
on the example of the “tennis court integral”, Fig. (10), introduced and cal-
culated analytically in [18]. Since, it has never been confirmed independently,
this example supports the correctness of the analytical result.

Similarly as in [18], a factor of −(−s)−1−3ǫt−2 has been taken out. If expanded
is the result provided by MBexpand, which contains 65 integrals, then the
numerical evaluation proceeds as follows

In[3] := MBintegrate[expanded, {s -> -2, t -> -3}]

Shifting contours...

Performing 30 1-dimensional integrations...1...2...3...4...5...6...

7...8...9...10...11...12...13...14...15...16...17...18...19...20...

21...22...23...24...25...26...27...28...29...30

Higher-dimensional integrals

Preparing MBpart1ep0 (dim 6)

Preparing MBpart2ep0 (dim 6)

.

.

.

18

Preparing MBpart58ep-1 (dim 4)

.

.

.

Running MBpart1ep0

Running MBpart2ep0

.

.

.

{154.50857084232496 + 1.7777777777777777/ep^6 -

0.8785077342343561/ep^5 - 15.544672574293408/ep^4 -

20.903348302858618/ep^3 + 20.868443575404378/ep^2 +

84.4035478542778/ep,

{1.454748334713152 + 0.0012476956259284788/ep^3 +

0.01736836792954924/ep^2 + 0.3243732528120632/ep, 0}}

At a first stage, the contours are shifted with MBshiftContours, then the 1-
dimensional integrals are evaluated in MATHEMATICA. Subsequently, Fortran
programs for the higher dimensional integrals are prepared and run. The user
can easily see the names of the programs and the dimensions of the integrals.
Finally, the result is given in the form of a list. The first element is the result
itself, whereas the second element is a sublist giving the errors on the real
and imaginary parts respectively. It is important to note, that the errors are
estimated from the square root of the sum of the squares of the errors of each
of the higher dimensional integrals. Therefore, in the example above, the errors
start at 1/ǫ3, because up to this pole, there were only 1-dimensional integrals.
This also implies that it is assumed that the error from the 1-dimensional
integrals is negligible. The above calculation took about 1 hour on a 2.4 GHz
notebook, with a claimed error on the finite part of about 1% (1.4 against
154.5 above). If compared to the exact result

1.77778

ǫ6
− 0.878508

ǫ5
− 15.5447

ǫ4
− 20.9033

ǫ3
+

20.8679

ǫ2
+

84.4068

ǫ
+ 154.379,

(15)

the error is rather at the permille level. Further numerical evaluation examples
can be found in the two notebooks provided with the package.

A utility related to numerical integration, which is of interest by itself is

MBshiftContours[integrals]

where the only argument is a list of integrals as provided by MBexpand. The

19

idea here, is that if there is a contour passing between two poles of a Γ func-
tion, then the further it will stay from both of them, the less peaked will the
integrand be. Since the contours have more or less random distances to the
poles, it is wise to shift them before numerics to improve stability. This is
achieved by the above utility.

3.5 Additional tools

Apart from performing the analytic continuation of a MB integral, one is
usually interested in simplifying the integrals as much as possible. This is of
utmost importance, if one is interested in obtaining analytic results. It is often
the case, that some of the integrations can be performed exactly with the help
of Barnes’ lemmas.

1st Barnes’ lemma

i∞
∫

−i∞

dz Γ(a+ z)Γ(b+ z)Γ(c− z)Γ(d− z) =

Γ(a+ c)Γ(a+ d)Γ(b+ c)Γ(b+ d)

Γ(a+ b+ c+ d)
. (16)

2nd Barnes’ lemma

i∞
∫

−i∞

dz
Γ(a+ z)Γ(b+ z)Γ(c + z)Γ(d− z)Γ(e− z)

Γ(a + b+ c+ d+ e+ z)
=

Γ(a+ d)Γ(a+ e)Γ(b+ d)Γ(b+ e)Γ(c+ d)Γ(c+ e)

Γ(a+ b+ d+ e)Γ(a+ c+ d+ e)Γ(b+ c+ d+ e)
. (17)

Both of them are valid only if the integration contour is such that the poles
corresponding to Γ’s with positive z are separated from the poles with negative
z. If this is the case, the user can apply the rules defined as

barnes1[z] and barnes2[z] ,

where z is the integration variable. An example is the simplification of the
integral for the B0 function

In[1]:= int = b0[s, 1 + z1, 1 + z2]*ms^z1*ms^z2* Gamma[-z1]*Gamma[1 +

z1]*Gamma[-z2]*Gamma[1 + z2] /. z1 -> z1 - z2 /. barnes1[z2]

20

Fig. 11. Regularization of the integrals in the Barnes lemmas by shifting the poles,
in such a way that the contour separates the poles.

Out[1]:= (ms^z1*(-s)^(-ep - z1)*Gamma[1 - ep - z1]^2*Gamma[-z1]*

Gamma[ep + z1])/Gamma[2 - 2*ep - 2*z1]

This is, however, a rare situation. Most of the time, the Barnes’ lemmas are
applicable to integrals after analytic continuation and expansion. In this case,
the procedure generates integrals with contours parallel to the imaginary axis
and the contour might not separate the poles of the Γ functions. In such cases
one uses various corollaries to the lemmas, see e.g. Ref. [5].

I propose here an automatic procedure based on MBcontinue. The idea is to
shift all of the a, b, ... variables by ǫ, such that the contours be separated and
then analytically continue with ǫ to 0, as illustrated in Fig. 11. In the case of
the first Barnes lemma, the shift is determined by the condition

ǫ > max (−min(a, b)− ℜ(z), ℜ(z)−min(c, d)) . (18)

This algorithm is implemented in the following two routines:

Barnes1[MBint[integrand,{fixedVarRules,intVarRules}],z]

and

Barnes2[MBint[integrand,{fixedVarRules,intVarRules}],z]

The arguments are as described in MBcontinue and z is the integration variable
that should be eliminated by Barnes’ lemma. An example usage can be found
in MBexamples2.nb.

In the case, where the integral contains a ψ function, the user has to apply
the lemma to the corresponding integrand with a Γ function and only then
derive the result. This might be automatized in the future.

21

Of lesser importance are the remaining tools. To help in the construction of
efficient MB integrals, there are several known exact expressions for the A0,
B0 and C0 functions taken from the Appendix of Ref. [10]. Details can be
found directly in the code of MB.m. In case the user would like to construct his
representation directly from a Feynman parameter integral as is done e.g. in
Ref. [6], there is also a routine

FUPolynomials[integrand, momenta, invariants]

that generates the F and U polynomials in the notation of Ref. [8]. The input
is

• integrand: a product of propagators DS[k,m,n] = 1/(k2 −m2)n.
• momenta: the loop momenta.
• invariants: a list of rules, e.g. p1*p2 -> 1/2*s-m^2, which transform

products of external momenta into some suitable notation, for example the
Mandelstam variables.

In the output, one obtains a list of four elements. First come the F and U
polynomials, then the M matrix and Q vector again in the notation of Ref. [8].

4 Conclusions

I presented a practical tool for automatic analytic continuation of MB inte-
grals. It can be used either as part of a Feynman diagram calculation leading to
an analytic result in terms of some known functions, or as a tool for directly
providing numerical results. Irrespective of the aim, the most cumbersome
part of the MB technique has been reduced to a mere use of one MATHEMATICA
function, making high order calculations in perturbation theory significantly
easier and more accessible to the interested.

Acknowledgements

I would like to thank J. Gluza for testing the package and V. A. Smirnov for
motivating me to make it public through the present work. The development
of this package profited very much from a long collaboration with J. Gluza
and T. Riemann on the NNLO corrections to Bhabha scattering in QED.

This work was supported by the Sofja Kovalevskaja Award of the Alexan-
der von Humboldt Foundation sponsored by the German Federal Ministry of

22

Education and Research, and by the Polish State Committee for Scientific
Research (KBN) for the research project in years 2004-2005.

References

[1] T. Hahn, Comput. Phys. Commun. 168 (2005) 78.

[2] CERN Program Library, obtainable from http://cernlib.web.cern.ch/cernlib/

[3] A. V. Kotikov, Phys. Lett. B 267 (1991) 123.

[4] E. Remiddi, Nuovo Cim. A 110 (1997) 1435.

[5] V. A. Smirnov, Phys. Lett. B 460 (1999) 397.

[6] J. B. Tausk, Phys. Lett. B 469 (1999) 225.

[7] M. Czakon, J. Gluza and T. Riemann, arXiv:hep-ph/0511187.

[8] T. Binoth and G. Heinrich, Nucl. Phys. B 585 (2000) 741.

[9] C. Anastasiou and A. Daleo, arXiv:hep-ph/0511176.

[10] V. A. Smirnov, “Evaluating Feynman integrals”, Springer (Berlin, Germany)
2002.

[11] J. A. M. Vermaseren, Int. J. Mod. Phys. A 14 (1999) 2037,

S. Moch, P. Uwer and S. Weinzierl, J. Math. Phys. 43 (2002) 3363;

S. Moch and P. Uwer, arXiv:math-ph/0508008.

[12] V. A. Smirnov and O. L. Veretin, Nucl. Phys. B 566 (2000) 469.

[13] V. A. Smirnov, Phys. Lett. B 524 (2002) 129.

[14] G. Heinrich and V. A. Smirnov, Phys. Lett. B 598 (2004) 55.

[15] M. Czakon, J. Gluza and T. Riemann, Nucl. Phys. Proc. Suppl. 135 (2004) 83;

M. Czakon, J. Gluza and T. Riemann, Phys. Rev. D 71 (2005) 073009.

[16] V. A. Smirnov, Phys. Lett. B 567 (2003) 193.

[17] P. K. Kythe, M. R. Schäferkotter, “Computational Methods for Integration”,
Chapman & Hall/CRC, 2005.

[18] Z. Bern, L. J. Dixon and V. A. Smirnov, Phys. Rev. D 72 (2005) 085001

23

http://cernlib.web.cern.ch/cernlib/
http://arxiv.org/abs/hep-ph/0511187
http://arxiv.org/abs/hep-ph/0511176
http://arxiv.org/abs/math-ph/0508008

