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Inflation generates gravitational waves, which may be observable in the low multipoles of the cosmic
microwave background (cmb) anisotropy but only if the inflaton field variation is at least of order
the Planck scale. Such a large variation would imply that the model of inflation cannot be part of
an ordinary extension of the standard model, and combined with the detection of the waves it would
also suggest that the inflaton field cannot be one of the superstring moduli. Another implication
of observable gravitational waves would be a potential V 1/4 = 2 to 4 × 1016 GeV, which is orders
of magnitude bigger than is expected on the basis of particle theory. It might emerge in a hybrid
inflation model where most of the energy density comes from the Higgs sector of a GUT, but only
if both the vacuum expectation values and the masses of the Higgs fields are of this order.

I. INTRODUCTION

Inflation generates a density perturbation and gravita-
tional waves. The density perturbation is thought to be
responsible for large scale structure and, together with
a possible gravitational wave contribution, for the cos-
mic microwave background (cmb) anisotropy. It is well
known that the detection of a gravitational wave con-
tribution to the cmb anisotropy would immediately de-
termine the value V and slope V ′ of the potential while
relevant scales are leaving the horizon during inflation
[1], with an eventual measurement of the spectral index
of the density perturbation fixing V ′′ [2,1] and additional
data providing limited additional information about the
shape of V [3]. Here I point out that a detection would
also tell one that the inflaton field variation during in-
flation is at least of order the Planck scale, and go on
to discuss the theoretical implications of both this result
and the value of V .

If δ2

H is the spectrum of the curvature perturbation
associated with the density perturbation, and Pg is the
spectrum of the gravitational waves (as defined for ex-
ample in [1]), it is convenient to consider the ratio
r(k) = 0.139Pg/δ2

H . The spectra are in general scale
dependent, and r(k) has been normalized so that it in
an analytic approximation [4] it gives the ratio of the
two contributions to the mean-square quadrupole of the
cmb anisotropy seen by a randomly placed observer. For
higher multipoles the corresponding ratio is roughly con-
stant in the range 1 < l <

∼ 100, but then it falls off sharply
so that it will be detected if at all in the above range.

The standard slow-roll paradigm of inflation [5] pre-
dicts [7–9,4]

δ2

H(k) =
1

75π2m6

Pl

V 3

V ′2
(1)

r(k) = 6.9m2

Pl(V
′/V )2 (2)

where mPl = (8πG)−1/2 = 2.4 × 1018 GeV is the Planck
scale. The right hand sides are evaluated when k = aH
where k/a is the wavenumber, a is the scale factor and
H = ȧ/a.

In an interval ∆ ln k ∼ 1, the fractional changes in
δ2

H and Pg are predicted to be ≪ 1. Since the lth
multipole of the cmb anisotropy corresponds to a scale
k−1 ≃ 2/(H0l) the relevant range 1 < l <

∼ 100 corre-
sponds to only ∆ ln k ≃ 4.6 so r(k) will have a roughly
constant value which from now on will be denoted sim-
ply by r. Ignoring any variation one can show [10] that
because of cosmic variance a value r > .07 is necessary in
in order to have a better than even chance of eventually
detecting the gravitational wave contribution, and ap-
proximately the same result should hold for the average
even if there is some variation.

At present observation provides only a weak upper
bound on r, which has not been quantified properly but
is something like r <

∼ 1 [12]. The COBE observations give
a good normalization, [13] δH ≃ 1.9(1+r)1/2×10−5, and
using it one finds [11]

V 1/4 ≃ (r/.07)1/4 × 1.8 × 1016 GeV (3)

Thus a detection of r would give a value V 1/4 = 2 to
4 × 1016 GeV.

The slow-roll paradigm also gives
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where dφ is the change in the inflaton field in dN =
Hdt ≃ d ln a Hubble times. While the scales correspond-
ing to 1 < l <

∼ 100 are leaving the horizon ∆N ≃ 4.6, so
the corresponding field variation is

∆φ/mPl ≃ 4.6(r/6.9)1/2 = 0.46(r/.07)1/2 (5)

We see that a detectable r requires ∆φ >
∼ 0.5mPl. This is

a minimum estimate for the total field variation, because
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inflation continues afterwards for some number N of e-
folds. The standard estimate [1] is N ≃ 50, but with late
reheating and a single epoch of thermal inflation [15,16]
N ≃ 25. In either case it is clear that r(k) can increase
significantly on smaller scales, making the total field vari-
ation much bigger than the estimate (5). In fact, there is
a whole class of models where the increase is typically so
strong that a detectable r requires ∆φ ≫ mPl. These are
the models where the inflaton field is near a maximum of
the potential.∗

Now let us consider inflation model-building in the
light of all this. In the earliest models [17] the infla-
ton field is rolling towards a vacuum expectation value
(vev) 〈φ〉 ≪ mPl, making ∆φ ≪ mPl and r negligi-
ble. These models were at best unattractive because the
inflaton field had to be very weakly coupled, so ‘primor-
dial’ models were suggested, where the vev and ∆φ are
of order mPl [18] or bigger [19]; these still give negligi-
ble r because inflation takes place near a maximum of
the potential. Then power-law potentials V ∝ φp were
considered [20], where the field during inflation is rolling
towards the origin with a value and a variation of order
10mPl, giving a detectable r. Finally (confining ourselves
to the case of Einstein gravity) ‘hybrid’ inflation has been
proposed [21], where the inflaton field is accompanied by
another field responsible for most of the potential en-
ergy, inflation ending when it is destabilized. Like the
earliest models, typical hybrid inflation models have [22]
∆φ ≪ mPl (and therefore negligible r) but unlike them
they need not involve very small couplings [23].

Should we care whether the field variation is big or
small, when building a model of inflation? In the con-
text of global supersymmetry (or no supersymmetry) the
answer would be no, because mPl makes no appearance
in the field theory. However, according to present ideas,
the extension of the standard model chosen by nature
is likely to involve supergravity. In that context, one
expects the potential to have an infinite power-series ex-
pansion in each field,

V = V0 +
1

2
m2φ2 + λφ4 + λ′m−2

Pl φ
6 + λ′′m−4

Pl φ
8 + · · ·

(6)

∗If the potential is V ≃ V0 − 1
2
m2φ2 one has (∆φ/mPl)

2 ≃
V0/(m

2
Plm

2) = 2/(1 − n) ≫ 1 (where 1 − n is the spec-
tral index), but r ≃ (6.9/2)(1 − n)e−(1−n)N < .051(25/N)
which is undetectable. If V ≃ V0[1 − (φ/M)p], with p >
2 and M >

∼ mPl, one has ∆φ ≃ M >
∼ mPl but r =

6.9p2(M/mPl)
2p

p−2 [Np(p − 2)]−
2p−2

p−2 which is detectable only
if M is very big (M > 6.3mPl if p = 3 and M > 8.4mPl if
p = 4). Similar results hold if V is a mixture of terms, say
quadratic at small φ and quartic at larger φ, provided that
all terms have the same sign.

(For simplicity I am supposing that odd powers are ex-
cluded by a symmetry.) Ordinary field theory corre-
sponds to a truncation at low order, which is justified
if all fields are small. This is indeed the case for the
usual applications of field theory, involving the standard
model, its minimal supersymmetric extension and more
ambitious extensions invoking such things as neutrino
masses, Peccei-Quinn symmetry or a GUT.

So the answer to the question is that we should care
very much. Small-field models, which in practice seems to
mean hybrid inflation models, are under relatively good
control; it will be enough to keep one or two dominant,
low-order terms in expansion (6) of V (with perhaps
quantum corrections [17,26]) and one can hope to fur-
ther restrict V by requiring that the fields relevant for
inflation already appear in an extension of the standard
model designed for some other purpose [27].

If a gravitational wave effect is detected in the cmb
anisotropy, we shall need a model of inflation in which
the inflaton field is of order mPl or bigger. For a generic
field one has no idea what to expect in this regime. The
only exception is for the superstring moduli, where su-
perstring theory provides some guidance. The moduli
potential looks [28,29] as if it might be marginally capa-
ble of supporting inflation, in that the expected values
of m2

Pl(V
′/V )2 and m2

PlV
′′/V at a generic point are of

order 1 so that there could be an exceptional region in
the moduli space where these quantities are both small.
Investigations using specific models [28,30,31] have actu-
ally concluded that viable inflation does not occur, but
even if it does it will probably not give a detectable r.
The reason is that one expects the size of the region in
field space where inflation can occur to be only of order
mPl, and in order to motivate the initial condition by
invoking eternal inflation [32] one will probably want to
start inflation near a maximum of the potential. As we
saw earlier, the combination of these two requirements
will probably not give a detectable r.

The conclusion is that a model of inflation giving a de-
tectable r will probably live in uncharted territory, where
there is as yet no theoretical guidance as to the form of
the potential. There is no particular reason to invoke the
usually-considered forms V ≃ A±Bφp, though of course
one should still test such forms against observation by
measuring both r and the spectral index of the density
perturbation [1].

Finally let us return to the result that V 1/4 will have
to be a few times 1016 GeV if there is a detection. It
has pointed out by several authors [33,34,29,35,27] that
such a big inflationary potential is difficult to understand
on the basis of particle theory, which might generically
suggest a scale of order (mmPl)

1/2 or (mm2

Pl)
1/3 with

m ∼ 102 GeV. More particularly, one does not expect

such a potential to be generated by the Higgs sector
of a GUT, because this would give (at the maximum)
V ∼ m2

h〈φh〉
2 and although coupling constant unifica-
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tion suggests vevs 〈φh〉 ∼ 1016 GeV there is no reason for
the masses mh to be so big [36]. But in the face of a mea-
sured V 1/4 of this order one might set aside all prejudice,
and look at the viablity of a hybrid inflation model with
a GUT higgs as the non-inflaton field and a large inflaton
field variation.

To summarize, the observation of a gravitational wave
signal in the cmb anisotropy would require a revision of
current thinking about the likely form of the inflationary
potential, in respect of both the field variation and the
height of the potential. Turning the viewpoint around,
it is fair to say that there is at present a considerable
theoretical prejudice against the likelyhood of such an
observation.
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