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Abstract

We study the effects of plasma viscosity on the dynamics of primordial mag-

netic fields by simulating magnetohydrodynamics in the early universe by appro-

priate non-linear cascade models. We find numerically that even in the presence

of large kinetic viscosity, magnetic energy is transferred to large length scales.

There are indications, however, that the inverse cascade stops at a given time

which depends on the magnitude of viscosity. For realistic viscosities we do not

find equipartition between magnetic and kinetic energies.
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There are many ways that magnetic fields could have been generated at various

stages in the early universe. In the theory of galactic magnetism such fields are often

referred to as “cosmological” or “primordial”, because they are created well before

galaxies are formed. These fields may play the role of an initial condition for the

galactic dynamo, a mechanism that would amplify magnetic fields and convert kinetic

energy into magnetic [1].

There are two major problems when invoking primordial magnetic fields as possible

seed magnetic fields for the galactic dynamo. One problem is the very small length

scale of such magnetic fields. The horizon scale at the time of the electroweak phase

transition is just a few centimeters, corresponding to about 1 AU at the present time.

This is nine orders of magnitude shorter than the radius of typical galaxies. However,

this view is too simplistic, because nonlinear effects inherent in the magnetohydrody-

namic (MHD) equations can lead to a redistribution of magnetic energy over different

length scales. Unfortunately, MHD in 3+1 exceeds the possibilities of present day com-

puters. Therefore one has to resort to models which simulate the MHD equations. In

a previous paper [2], hereafter referred to as Paper 1, we developed a fully relativistic

3+1 d version of the so-called cascade model [3] appropriate for MHD and found that

an inverse cascade is operative, whereby magnetic energy is continuously tranferred

to larger length scales. The other problem is that around the time of recombination

photon diffusion becomes very large and could smooth out all fluctuations [4]. This

may then also destroy the magnetic field [5]. The purpose of this paper is to show that

this too is too simplistic a viewpoint, and that nonlinear effects most likely prevent

this from happening.

The basic equations have been presented and discussed in Paper 1. We started out

from the fully relativistic MHD equations in expanding (flat) space and showed that

all the terms arising from the expansion can be removed by using rescaled quantities

and conformal time,

t =
∫

dtH/R(tH), (1)

where tH is the Hubble time and R(tH) is the expansion factor. Starting from random

initial conditions, we obtained turbulent velocity and magnetic fields, very much like

those in ordinary (nonrelativistic) decaying hydromagnetic turbulence. In order to

study the effects of this kind of turbulence we adopted a simple cascade model that

captures the qualitative features related to turbulent energy spectra. Such models [3]

have been rather successful in predicting even subtle corrections to Kolmogorov tur-

bulence due to intermittency effects [6]. (For a recent review, see ref. [7].) Our model

is more general in that it includes the effects of magnetic fields. Unlike nonmagnetic

turbulence, in the presence of magnetic fields there is an inverse cascade of magnetic

helicity, which leads to a transport of magnetic energy to larger and larger scales [8].
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Using our cascade model (also called shell model) we found that the integral scale

l0 =
∫

(2π/k)EM(k)dk
/
∫

EM(k)dk, (2)

where EM (k) is the magnetic energy spectrum, increases with the Hubble time ap-

proximately like t0.25H .

In Paper 1 we considered the case where the kinematic viscosity ν was equal to the

magnetic diffusivity η (inverse electrical conductivity) which, in turn, was assumed to

be small (correponding to a large magnetic Reynolds number). However, around the

time of recombination the photon mean free path λγ became very large and photon

diffusion became very efficient in smoothing out virtually all inhomogeneities of the

photon-baryon plasma [9]. This process if often referred to as Silk damping, which

corresponds to a kinematic viscosity ν ≃ λγ (in natural units). We have computed

numerically the evolution of magnetic and kinetic energy spectra in two completely

different cascade models and studied the effects of viscosity. Our results are presented

in Figs. 1 and 2 and the main point can be summarized as follows: in the cascade

models magnetic energy is transferred to large length scales even in the presence of

large viscosity. It seems likely that the same is true also in full 3+1 MHD.

Let us first use the cascade model of Paper 1 to investigate the effect of very

large values of ν on the magnetic field. In this model velocity and magnetic fields

are described by the variables vn and bn, representing the “collective” behavior at

wavenumber kn. In the original model, kn = rn with r = 2. Below we shall also

consider a continuous version of this model with r → 1, which was orginally studied

by Parisi [10] in a hydrodynamical context. We reiterate here the salient features of

the model. We present the equations of motion in a slightly different form with the

negative and positive helicity states split, to facilitate comparision with the subsequent

continuous model:

(dv+n /dt+ νk2
nv

+
n )

∗ = ikn(v
−

n+1v
+
n+2 +

1− r

r2
v−n−1v

−

n+1 −
1

r3
v−n−1v

+
n−2 − b−n+1b

+
n+2

− 1− r

r2
b−n−1b

−

n+1 +
1

r3
b−n−1b

+
n−2), (3)

and

(db+n /dt+ ηk2
nb

+
n )

∗ = i
kn

r(1 + r)
(v−n+1b

+
n+2 − b−n+1v

+
n+2 + v−n−1b

−

n+1 − b−n−1v
−

n+1

− v−n−1b
+
n−2 + b−n−1v

+
n−2), (4)

with similar equations with v+n ↔ v−n and b+n ↔ b−n . The model describes an expanding

radiation dominated magnetic universe (p = ρ/3). In Eqs. (3)-(4) t is the conformal

time, and the units are such that ρ ∼ T 4 (for details, see [2]). Eqs. (3)-(4) conserve
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energy and helicity in the absence of magnetic diffusion η and plasma viscosity ν, and

+ and – are related to magnetic helicity. Thus, if ν = η = 0, the quantities

E =
∑

(|b+n |2 + |b−n |2 + |u+
n |2 + |u−

n |2), H =
∑

(|b+n |2 − |b−n |2)/kn, (5)

are conserved. This is a direct consequence of Eqs. (3)-(4). In the case of ordinary

MHD b is just the magnetic field. In a cosmological setting with a flat universe, b is

the magnetic field multiplied by R(t)2, and t is conformal time. The conservation of

helicity exhibited above is nontrivial in three, but not in two dimensions, so that in

this sense the cascade model is three dimensional.

There does not exist any proof that the cascade model and the standard MHD

equations are equivalent. There are features which are similar in both cases: the

equations couple many different scales (making it hard to predict anything a priori,

especially when the Reynolds number is large and nonlinear effects are important),

they have similar conservation laws, and the equations of motion are similar. Also,

in the pure hydrodynamic case the cascade model equations have been compared to

experiments [6] and good results on intermittency have been obtained. In any case, the

properties of turbulence have not been derived from first principles, and the cascade

model is therefore an interesting (toy?) tool.

For large diffusion coefficients the equations become stiff and it is therefore essential

to solve for the diffusion term exactly. Using the identity

dvn
dt

+ νk2
nvn = e−νk2

n
t d

dt

(

vne
νk2

n
t
)

(6)

we solve equations of the form

dvn
dt

+ νk2
nvn = Nn(t) (7)

by a modified second order Adams-Bashforth scheme

vn(t+ δt) = Kn{vn(t) + 1
2
δt[3Nn(t)−KnN(t− δt)]} (8)

where

Kn = e−νδtk2
n . (9)

We start from an initial condition that yields a magnetic energy spectrum similar

to that found at later stages. Fig. 2 of Paper 1 suggests that the spectrum has

developed an inertial range which is approximately constant, EM (k) = const. for

kd < k < k0, where k0 = 2π/l0 is the wavenumber corresponding to the integral scale

and kd ≫ k0 the wavenumber of the diffusive cutoff scale. We adopt 30 wavenumber

shells (1 < n < N with N = 30) and place the cutoff wavenumber at n = 27 and use

η = 10−11. We put vn = 0 initially and compare the results for two different values of

ν (10−2 and 102).
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Figure 1: Magnetic and plasma kinetic energy spectrum as a function of the wave

number k in the cascade model for small (ν = 10−2) plasma viscosity (left) and large

(ν = 102) plasma viscosity (right). The highest time is t = 108, corresponding to a

Hubble time 1016

The resulting spectra are displayed in Fig. 1. The results show that vn is generated

from bn, but it gets weaker if ν is increased. At small ν and at large times there is an

approximate equipartition of the magnetic and kinetic energies with vn = bn = BnR
2,

where Bn is the unscaled magnetic field. Since we are using units in which the initial

effective energy density ρ + p = 4ρ/3 = 1 it follows that vn is the Alfven velocity

Bn/
√

4
3
ρ of the equilibrium plasma. For large ν equipartition is lost, which signals

the breakdown of the perturbative approach. As we shall argue later, the large ν case

is appropriate for the very early universe. More importantly, Fig. 1 shows that the

evolution of bn is not affected by vn and ν, but is rather governed by ohmic decay,

bn ∼ exp(−ηk2
nt). It may also be seen that in the case of large kinetic viscosity ν=100

the velocity modes decay approximately according to vn ∼ exp(−νk2
nt).

We shall now study the effect of a large ν on b. We have done some more detailed

calculations in order to investigate what is behind the behaviour shown in Fig. 1.

The results are shown in Fig. 2, which shows that for a sufficiently large viscosity,

the inverse cascade stops. With a magnetic enegy of 10−8, the cascade goes over five

decades in the most unfavourable case ν=100. The inverse cascade stops at some low

value of k, and the field just disappears by Ohmic decay. One can then ask, at which

temperature does the inverse cascade stop? To estimate this, one studies the ratio

between the non-linear terms and the Silk viscosity term, i.e. the Reynolds number.
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Figure 2: The behaviour of the cascade model for ν = 102 (left) and ν = 10−2 (right)

at large times (the last time slice is t = 1037). The figure shows what happens to an

initially flat spectrum (which does not extend to k=0). Here η = 10−31.

We start at the annihilation tH ∼ 1 sec, where we assume that there are no velocity

fluctuations. This is not true if the primordial field originates at the electroweak phase

transition T ∼ 100 GeV, since there will always be velocity fluctuations associated with

the magnetic field. However, to allow for the optimal conditions for Silk diffusion, we

assume that there are no velocity fluctuations at the annihilation. We then have to

estimate the resulting Reynolds number,

Re ∼ v

kνSilk/R
, (10)

where the viscosity νSilk/R is effectively given by the photon diffusion length,

ν ∼ 106

T 3
GeV2. (11)

As mentioned above, the inverse cascade spans over five decades in k. Thus, the typical

k which enters in Re in eq. (10) is given by

k = 10−5/xtannH , (12)

where xtannH is the spatial scale scale of the magnetic field at the annihilation. The

fraction x is thus determined by the mechanism for producing the primordial field.

Before annihilation, we assume that the viscosity is so unimportant that it can be
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ignored. This is why we start at annihilation, where Silk diffusion becomes very large.

The inverse cascade stops when Re is of order one, i.e. when the diffusion equals the

non-linear terms. We may therefore conclude that in the particular case displayed in

Fig. 2 (ν=100), with v = 10−4, the cascade stops close to recombination.

To verify that the above results are generic and not just a feature of the model

adopted, we will now consider another model of the full 3+1 MHD [10]. Formally it

may be obtained from (3)-(4) by passing to the limit r →1, but it may also be viewed

as a completely independent model of MHD. Writing r = 1 + ǫ we get

(

∂v+(k, t)

∂ǫt
+ νk2

nv
+(k, t)

)

∗

= ik
(

4v−k
∂v+

∂k
+ 2v+k

∂v−

∂k
+ 3v−v+ − (v−)2

− 4b−k
∂b+

∂k
− 2b+k

∂b−

∂k
− 3b+b− + (b+)2

)

+O(ǫ)(13)

and
(

∂b+(k, t)

∂ǫt
+ ηk2

nb
+(k, t)

)

∗

= ik
(

b+k
∂v−

∂k
+ 2v−k

∂b+

∂k
− v+k

∂b−

∂k
− 2b−k

∂v+

∂k

+ v−k
∂b−

∂k
− b−k

∂v−

∂k

)

+O(ǫ). (14)

In addition to eqs. (13) and (14) there are two equations more, obtained by making

the replacements b+ ↔ b− and v+ ↔ v−. These equations conserve the quantities

E =
∫

dk

k
(|v+|2 + |v−|2 + |b+|2 + |b−|2), H =

∫

dk

k2
(|b+|2 − |b−|2), (15)

for ν = η =0, provided the following boundary conditions are satisfied for k →0 and

k → ∞,

kv−(v+)2 → 0, kv+b+b− → 0, kv−b+ → 0,

kv+(v−)2 → 0, kv−b+b− → 0, kv+(b−)2 → 0, (16)

and

v−(b+)2 → 0, v+(b−)2 → 0, b+b−v+ → 0, b+b−v− → 0, (17)

respectively. If the conditions at infinity are not satisfied, this corresponds to “diffusion

at infinity”.

We shall now simplify the continuous cascade model by using a scaling first intro-

duced by Parisi [10] for the case of pure hydrodynamics without helicity conservation.

If one considers the original discrete equations (3)-(4) in the absence of viscosity, and

assume that we start at time t=0 with a primordial spectrum

b+(k, 0) = b−(k, 0) = kp, v+(k, 0) = v−(k, 0) = 0, (18)
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then it is easy to see that the discrete cascade model equations have a solution with

the scaling form

b+(k, t) = kpB(k1+pt), b−(k, t) = kpM(k1+pt),

v+(k, t) = kpu(k1+pt), v−(k, t) = kpm(k1+pt). (19)

These equations imply that EB/k
2p−1 is a function of kp+1t only.

If we insert the scaling (19) in the continuous cascade model Eqs. (13)-(14), then

we see that powers of k cancel out neatly, and we are left with the coupled equations1

− u′(x) = 3(2p+ 1)um+ 4(1 + p)xmu′ + 2(1 + p)xum′ −m2

− 3(1 + 2p)MB − 4(1 + p)xMB′ − 2(1 + p)xBM ′ +M2, (20)

and

− B′(x) = 3pmB − 3puM + 2(1 + p)xmB′ + (1 + p)xBm′ − (1 + p)xuM ′

− 2(1 + p)xMu′ + (1 + p)xmM ′ − (1 + p)xMm′, (21)

as well as two equations where the interchanges B ↔ M and u ↔ m have been made.

Thus, the original set of 2N (with n ≤ 2N) coupled differential equations have been

replaced by only four. In these equations

x = k1+pt (22)

is the scaling variable.

It should be emphasized that the continuous cascade model is a priori “as good

as” the discrete one, since in both cases the conservation equations are satisfied when

there is no diffusion (except for possible diffusion at infinity). It may of course turn

out that phenomenologically one type is better than the other.

In Paper 1 we found that if one starts with a primordial spectrum p =3/2, then

there is an inverse cascade, transferring energy from large to small k. The scaling

eqs. (19) satisfy this: For a fixed value of the variable x in (22), the functions

B,M, u, and m have some definite values. Thus, as time is increased, these val-

ues remain the same if k is diminished in such a way that x remains constant. Thus,

the scaling relations (19) predicts an inverse cascade.

This is also seen if we consider the integral scale (the “correlation length”), given

by Eq. (2), which measures the large scale structures in comoving coordinates. We

may consider l0 as the expectation value of 1/k. From scaling we therefore expect that

l0 ≈ t1/(1+p) ≈ t
1/2(1+p)
H , (23)

1We have here selected the phase of b and v to be -π/2. With a dynamical phase the number of

equations double from four to eight, since each b and v have a real and imaginary part.
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Figure 3: The energy spectra in the continuous cascade model for (a) small (ν = 10−2)

plasma viscosity; in this case there is equipartition and magnetic and kinetic energies

are equal; (b) large (ν = 102) plasma viscosity; absence of equipartition is apparent.

In both figures the curves are, from right to left, for conformal times t=1,10,100 and

1000, and η = 10−9.

where kp is the initial primordial spectrum. From this we see that for p=3/2 one

obtains

l0 ≈ t0.2H , (24)

where the power is in essential agreement with the previously found [2] value p ≈ 0.25.

Since we do not commit ourselves to any specific model, let us consider an initial

spectrum kp. The integral scale then behaves as in (23) in comoving coordinates,

which means that in physical coordinates it goes like

lphysical0 ≈ t
2+p

2(1+p)

H . (25)

Thus, if there exists a model with p=0, in such a case the large scale structures are

of the order the horizon. The case p=0 corresponds to a scale invariant primordial

spectrum dk/k.

The scaling relation is in general only valid in the “inertial range” where viscosity

can be ignored, because the viscosity term is inconsistent with the scaling. There is,

however, one exception, where scaling and viscosity are consistent, namely p=1. Here

−u′(x) on the left hand side of eq. (20) is replaced by

− u′(x)− νu(x). (26)

Similarly, in eq.(21) −B′(x) is replaced by

− B′(x)− ηB(x). (27)
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Figure 4: The scaled energy spectrum of the discrete cascade model at different times

(neglecting viscosity).

This is the reason we have preferred to perform the numerical calculations in the

scaled version of the continuous cascade model for the case p=1. We took as the

initial conditions u = m = 0, M = B = 1 and as in the discrete case, considered two

viscosities (ν = 10−2 and ν = 102). The units are again such that initially ρ = ρ0 = 1.

Magnetic diffusion was set to η = 10−9. The difference with respect to the discrete

case is the shape of the initial spectrum of bn. In the discrete case bn was initially

given by
√
k, whereas here we took bn(k, 0) = k. The results are depicted in Fig. 3,

where the inverse cascade can clearly be seen, virtually independent of viscosity. They

also confirm that equipartition is lost at large ν.

We have also checked the scaling of b for the data presented in paper 1. This

corresponds to p=3/2. The scaling variable is thus x = k5/2t, where it is important

that t is the conformal time; in terms of the Hubble time, the scaling variable is

kt0.2H . From its derivation, scaling is only valid in this case in the inertial range, where

viscosity can be ignored. We see that within the fluctuations of the raw data, the

predictions are approximately valid for large times (see Fig. 4).

Our results very much suggest that in the real MHD, inverse cascade is operative

and is essentially not affected by Silk damping, except very late and perhaps for very

weak fields (which anyhow are not interesting). In our units, in the early universe

ν ≃≫ 1. Thus we may conclude that it is unlikely that there is equipartition in the very

early universe. Our relativistic approach remains valid roughly until recombination,

after which the plasma becomes matter dominated. (In the non-relativistic regime ρ ∼
R−3, which effectively produces an extra term of the form −(Ṙ/R)v in the equations of

motion. However, because photon diffusion is so large, this braking due to expansion is

unimportant and conclusions presented above still hold.) Therefore, it seems plausible
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that small random magnetic domains of the very early universe may grow to large

scale fields, irrespective of the Silk diffusion.
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