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Earlier attempts to calculate the nonlinear dynamical evolution of Witten type superconducting
vacuum vortex defects relied on the use of approximate conducting string models that were too
simple to take proper account of the effect of current saturation. This effect is however allowed
for adequately in a newly developed class of rather more complicated, though still conveniently
analytic, conducting string models. These more realistic models have recently been employed by
Larsen and Axenides for investigating the collapse of circular string loops in the case for which
angular momentum is absent. The present work extends this investigation to the generic case of
circular string loops for which angular momentum is present, so that there will be a centrifugal
potential barrier. This barrier will prevent collapse unless the initial conditions are such that the
relevant current saturation limit is attained, in which case the string description of the vortex defect
will break down, so that its subsequent fate is hard to foresee. On the other hand if saturation is
avoided one would expect that the loop will eventually radiate away its excess energy and settle
down into a vorton type equilibrium state.

PACS numbers: 98.80.Cq, 11.27+d

I. INTRODUCTION

Among the conceivable varieties of topological defects
of the vacuum that might have been generated at early
phase transitions, the vortex type defects describable on
a macroscopic scale as cosmic strings are the kind that is
usually considered most likely to exist. This is because
even if they were formed at the Grand Unified (GUT)
scale, their density would be too low to induce a cos-
mological catastrophe, contrary to what happens in the
cases of domain walls and monopoles [1,2]. However this
consideration applies only to the case of ordinary Goto-
Nambu type strings, which ultimately radiate away their
energy and disappear. As was first pointed out by Davis
and Shellard [3], the situation is drastically different for
“superconducting” current-carrying strings of the kind
originally introduced by Witten [4]. Indeed, it is becom-
ing clearer and clearer [5,6] that the occurrence of stable
currents in strings can lead to a real problem because
loops can then be stabilized: the current, whether time-
like or spacelike, breaks the Lorentz invariance along the
string worldsheet [7,8,9,10], thereby leading to the pos-
sibility of rotation [5]. The centrifugal effect of this ro-
tation may then compensate the tension in such a way
as to produce an equilibrium configuration, which, if it is
stable, is what is known as a vorton. Whereas the energy
density of non-conducting string distribution decays like
that of a radiation gas, in contrast a distribution of relic

vortons would scale like matter. Thus, depending [6] on
when and how efficiently it was formed, such a vorton
distribution might eventually come to dominate the uni-
verse.
In view of this, it is very important to decide which

rotating equilibrium configurations really would be sta-
ble over cosmologically significant timescales, and what
fraction of the original population of cosmic string loops
would actually end up in such states. Dynamic stability
with respect to small perturbations has been established
[11,12,13] for most though not all of the relevant equilib-
rium states within the framework of the classical string
description, but the question of stability against quantum
tunneling processes remains entirely open, being presum-
ably dependent on the postulated details of the underly-
ing field theory. If the currents were rigourously con-
served the requirement that the corresponding quantum
numbers should lie in the range consistent with stability
would from the outset characterise the loops destined to
survive as vortons, but in practice things will be more
complicated: a lot of future work is needed to estimate
the fraction of losses that can be expected from mech-
anisms such as collisions, longitudinal shocks, cusp for-
mation, and occasional local violations of the permissi-
ble current magnitude limits, that may occur before a
protovorton loop has finished radiating away its excess
energy and settled down as an actual vorton.
A loss mechanism of a rather extreme kind – suggested
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originally for non conducting strings by Hawking [14],
and considered more recently in the context of conducting
models by Larsen and Axenides [15] – is that whereby a
sufficiently large string loop ends up by undergoing “run-
away collapse” to form a black hole. Events of this exotic
kind are of intrinsic theoretical interest in their own right,
even though it is evident that they must be far too rare
to be of cosmological importance, since they can only
occur for very exceptional cases of initial dynamical con-
figurations with an extremely high degree of symmetry,
meaning that they must be almost exactly circular.
The investigation by Larsen and Axenides was re-

stricted to the reflection symmetric case characterised
by absence of angular momentum, for which they
showed [15], subject to the neglect of gravitational and
electromagnetic self interaction, that the presence of a
current will not prevent an exactly circular loop from
collapsing to what in the framework of the string de-
scription would be just a point, corresponding at a mi-
croscopic level to a configuration compressed within the
radius characterising the vacuum vortex core of the string
– which will typically be of the order of the Compton
wavelength associated with the relevant Higgs mass, m
say – so that gravitational collapse would follow if the
total mass-energy M were sufficiently large, M >∼ m−1

in Planck units. In such a case the neglect [15] of an
electromagnetic Coulomb barrier will automatically be
justifiable, not because it is entirely absent but simply
because it will be dominated by gravitational attraction,
provided the charge Q (if any) on the loop is sufficiently
small, Q <∼ m−1. This condition will usually be satisfied
because we shall have Q = Ze where e is the relevant
particle charge coupling constant, which must either be
zero if the current is of electrically neutral type, or else
must be equal to the electron charge e ≃ 1/

√
137 ≈ 10−1,

while Z is the integral charge quantum number: since the
latter arises just from random fluctuations it will seldom
exceed the relevant limit e−1m−1, which is of order 104

in the GUT case m ≈ 10−3 and even higher for lighter
strings.
The present work extends the analysis of Larsen and

Axenides [15] by treating generic circular states, for
which the outcome is very different. Unlike the reflec-
tion symmetric zero angular momentum case (which is
the only possibility that can occur for a circular string
loop of the simple non-conducting kind) a generic circu-
lar state for a conducting string loop will be subject to
the centrifugal effect. Whereas the Coulomb barrier will
usually be negligible, on the other hand the centrifugal
barrier will usually be of dominant importance. It is the
centrifugal effect that makes possible the existence of vor-
ton type equilibrium states, and as will be seen below the
associated centrifugal barrier will generically prevent the
kind of collapse to a point that was envisaged by Larsen
and Axenides. This means that while such a collapse
must be very rare even in the non conducting string case
previously envisaged by Hawking, it will be much more
extremely rare in the conducting string case envisaged

here.
The motivation of the present work is not just to

provide an explicit quantitative demonstration of the
qualitatively obvious phenomenon of the existence of an
infinite centrifugal barrier preventing the collapse of a
generic circular configuration of a conducting vortex de-
fect of the vacuum within the framework of the cosmic
string description. A less trivial purpose is to explore the
limits of validity of this thin string description by investi-
gating the conditions under which the current may build
up to the saturation limit beyond which the thin string
approximation breaks down due to local (transverse or
longitudinal) instabilities – so that a non singular de-
scription of the subsequent evolution would require the
use of a more elaborate treatment beyond the scope of
the present work. In order to provide a physically com-
plete analysis of such current saturation phenomena, the
present study needs to be generalised to include non-
circular configurations, whose treatment will presumably
require the use of numerical as opposed to analytic meth-
ods. This consideration leads to a secondary motivation
for the analytic investigation provided here, which is to
provide some firm results that can be used for checking
the reliability of the numerical programs that are already
being developed for the purpose of treating conducting
string loop dynamics in the general case.
There have been been many previous studies of circu-

lar conducting string dynamics that – unlike the recent
analysis of Larsen and Axenides [15], but like that of the
present work – already included due allowance for the
centrifugal effect. However these earlier investigations
were based on the use of conducting string models that
were too highly simplified to provide a realistic descrip-
tion of Witten type vortex defects. The most obvious
example of such a highly simplified conducting string
model is the linear type, which has recently been ap-
plied to the case of circular loops by Boisseau, Giacomini
and Polarski [16]. A more elegant model originally ob-
tained from a Kaluza Klein type projection mechanism
by Nielsen [17] has been used for studies of circular loops
in various contexts by several authors [18], the applica-
tion that is most closely related to the present work being
that of Larsen [19]. The Nielsen model has the mathe-
matically convenient property of being transonic (mean-
ing that transverse and longitudinal perturbations travel
at the same speed) and has been shown to provide an
accurate macroscopic description of the effect of micro-
scopic wiggles in an underlying Goto-Nambu type (non
conducting) string [20]. However this transonic model
cannot describe the physically important saturation ef-
fect that arises for large currents in the more elaborate
kind of string model [21] that is needed for a realistic
description of the essential physical properties [9] of a
naturally occurring vacuum vortex such as would result
from the Witten mechanism [4].
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II. CURRENT AND THE EQUATION OF STATE

To describe a vacuum vortex defect by a cosmic string
model, meaning an approximation in terms of a structure
confined to a two dimensional worldsheet, it is necessary
to know enough about the relevant underlying field the-
oretical model to be able to obtain the corresponding
cylindrical (Nielsen Olesen type) vortex configurations.
The quantities such as the tension T and the energy per
unit length U that are needed for the macroscopic de-
scription in terms of the appropriate thin string model
are obtained from the relevant underlying vortex config-
uration by integration over a transverse section [9,10]. In
simple non conducting cases, the cosmic string models
obtained in this way will be of the Goto-Nambu type for
which T and U are constant and equal to each other. For
more general vortex forming field theoretical models, the
corresponding cosmic string models will be characterised
by variable tension and energy which in a generic state
will be related by an inequality of the form T < U . In
many such cases, and in particular in the category en-
visaged by Witten [4] – to which the present analysis
like that of Larsen and Axenides [15] is restricted – the
only independent internal structure on the string world
sheet will consist of a simple surface current cµ say (which
may or may not be electrically charged), which implies
that the dynamical behaviour of the string model will be
governed by an equation of state specifying T and U as
functions of the current magnitude

χ = cµcµ , (1)

and hence as functions of each other [7,8]. In view of the
large number of different fields involved in realistic (GUT
and electroweak) field theoretical models it is not un-
likely that an accurate description of any vortex defects
that may occur would require allowance for several inde-
pendent currents, but even if that is the case one might
expect that in typical situations one particular current
would dominate the others so that as a good approxima-
tion the effects of the others could be neglected.
The following work, like that of Larsen and Axenides,

is based on the kind of string model [21] that is derivable
on the basis of Witten’s pioneering approach [4] to the
treatment of currents in vacuum vortex defects. This ap-
proach is based on the plausible supposition [9,10] that
the essential large scale features of such a phenomenon
can be understood on the basis of an appropriately sim-
plified field theoretical model governed by an effective
action involving, in the simplest case just the gauged
Higgs type scalar field responsible for the local symme-
try breaking on which the very existence of strings de-
pends, together with a complex scalar “carrier” field Σ,
that is subject to a local or global U(1) phase invari-
ance group, and that is confined to the vortex core of the
string with a phase that may vary along the string world
sheet, thereby determining a corresponding surface cur-
rent. Such a Witten type scalar field model is not only

applicable to cases where the underlying field responsi-
ble for the current is actually of this simple scalar type:
it can also provide a useful approximation for fermionic
fields [4] as well as for vector fields [23,24]. The carrier
field will be expressible in the form

Σ = |Σ| exp[iϕ{σ, τ}], (2)

with σ and τ respectively the spacelike and timelike pa-
rameters describing the string’s worldsheet, where ϕ is a
real phase variable, whose gradient will contain all the
information needed to characterise a particular cylindri-
cal equilibrium configuration of the vortex, and hence to
characterise the local state of the string in the cool limit
for which short wavelength excitations are neglected. In
conceivable cases for which short wavelength excitations
contribute significantly to the energy a more elaborate
“warm” string description would be needed [25], but on
the basis of the assumption (which is commonly taken
for granted in most applications) that the cool limit de-
scription is adequate, it follows that there will only be
a single independent state parameter, w say, that can
conveniently be taken [7,8,21] to be proportional to the
squared magnitude of the gauge covariant derivative of
the phase with components ϕ|a, using Latin indices for
the worldsheet coordinates σ1 = σ, σ2 = τ . We thus take
the state parameter to be

w = κ
0
γabϕ|aϕ|b , (3)

where κ
0
is an adjustable positive dimensionless normal-

isation constant, using the notation γab for the inverse
of the induced metric, γab on the worldsheet. The lat-
ter will be given, in terms of the background spacetime
metric gµν with respect to 4-dimensional background co-
ordinates xµ, by

γab = gµνx
µ
,ax

ν
,b , (4)

using a comma to denote simple partial differentiation
with respect to the worldsheet coordinates σa. The
gauge covariant derivative ϕ|a would be expressible in
the presence of a background electromagnetic field with
Maxwellian gauge covector Aµ by ϕ|a = ϕ,a−eAµx

µ
,a.

However in the application developed below it will be as-
sumed (as was done by Larsen and Axenides [15]) that
the gauge term can be omitted, either because the car-
rier field is uncoupled, meaning e = 0, or else because
the electromagnetic background field is too weak to be
important which (as discussed in the introduction) will
be a sufficiently good approximation for most relevant
applications, so that it will be sufficient just to take ϕ|a

to be the simple partial derivative operation, ϕ|a = ϕ,a.
With even stronger justification it will also be assumed
in the application to be developed below that the local
background gravitational field is negligible, so that gµν
can be taken to be flat.
Whether or not background electromagnetic and grav-

itational fields are present, the dynamics of such a sys-
tem will be governed [7,8] by a Lagrangian scalar, L
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say, that is a function only of the state parameter w,
and that determines the corresponding conserved parti-
cle current vector, za say, in the worldsheet, according to
the Noetherian prescription

za = − ∂L
∂ϕ|a

, (5)

which implies

Kza = κ
0
ϕ|a , (6)

(using the induced metric for internal index raising)
where K is given as a function of w by setting

2
dL
dw

= − 1

K . (7)

This current za in the worldsheet can be represented by
the corresponding tangential current vector zµ on the
worldsheet, where the latter is defined with respect to
the background coordinates, xµ, by

zµ = zaxµ
,a . (8)

The purpose of introducing the dimensionless scale
constant κ

0
is to simplify macroscopic dynamical cal-

culations by arranging for the variable coefficient K to
tend to unity when w tends to zero, i.e. in the limit
for which the current is null. To obtain the desired sim-
plification it is convenient not to work directly with the
fundamental current vector zµ that (in units such that
the Dirac Planck constant h̄ is set to unity) will represent
the quantized particle flux, but to work instead with a
corresponding rescaled particle current cµ that is got by
setting

zµ =
√
κ

0
cµ . (9)

In terms of the squared magnitude χ of this rescaled cur-
rent cµ, as given by (1) the primary state variable w will
be given simply by

w = K2χ . (10)

It is to be remarked that in the gauge coupled case, i.e. if
e is non zero, there will be a corresponding electromag-
netic current vector obtained by a prescription of the
usual form jµ = ∂L/∂Aµ which simply gives jµ = ezµ

= e
√
κ

0
cµ.

An important role is played in the theory by the dual
Lagrangian, Λ that is obtainable [7] from the original La-
grangian function L by a Legendre type transformation
that gives

Λ = L+Kχ . (11)

In the timelike current range where w is negative the
tension and energy density will be respectively given by
T = −L, U = −Λ, whereas in the spacelike current
range where w is positive they will be given by T = −Λ,

U = −L. Local stability requires the positivity of the
squared speeds c 2

E
= T/U and c 2

L
= −dT/dU of extrinsic

(wiggle) and longitudinal (sound type) perturbations, so
the admissible range of variation of the state parameter
w – or equivalently of the squared current magnitude χ
– will be characterised by

L
Λ

> 0 >
dL
dΛ

. (12)

The appropriate function, L{w} for such a string
model is obtainable in principle by integrating the corre-
sponding Lagrangian scalar for the underlying field the-
oretical model over a two dimensional section through
the relevant cylindrical vortex configuration. In practice
this procedure can only be carried out with high preci-
sion by using a numerical treatment [9,10]. Progress was
delayed for several years by the difficulty of using the
output of such a numerical treatment for explicit dynam-
ical applications. This problem has recently been solved
by the discovery of very simple empirical formulae [21]
(originally expressed using a systematic notation scheme

employing a tilde for duality, so that Λ̃ and χ̃ represent
what are respectively expressed here as L and −w) that
provide a convenient analytic description, with sufficient
accuracy for realism, within the limited range (12) of w
for which the string description is actually valid.
The parameter w can take both positive and negative

values depending on whether the current is spacelike or
timelike, but for the Witten vortex model that we con-
sider here, it turns out that the corresponding string
description is valid only so long as it remains within a
bounded range [7,8,9,10] – outside which vortex equi-
librium states can still exist, but can no longer be sta-
ble. What transpires [21] is that the effective Lagrangian
for the thin string description can be represented with
reasonably good accuracy throughout the allowed range
(and with very high accuracy in the timelike part for
which w < 0) by a function L that – for a suitably ad-
justed (typically order of unity) value of the normalisa-
tion constant κ

0
) – is expressible (even in the presence of

electromagnetic and gravitational background fields) in
terms of just two independent parameters m and m∗ in
the form

L{w} = −m2 − m2
∗

2
ln

{

1 +
w

m2
∗

}

, (13)

which leads to the very simple formula

K = 1 +
w

m2
∗

(14)

for the function introduced above. The allowed param-
eter range (12) is specifiable by the condition that this
function should satisfy

e−2α < K < 2 (15)

where

4



α =
( m

m∗

)2
, (16)

(The lower limit is where the tension T , and hence also
the extrinsic “wiggle” speed tends to zero, while the up-
per limit is where the longitudinal perturbation speed
tends to zero.) The fixed parameters m and m∗ have the
dimensions of mass and can be interpreted as express-
ing the respective orders of magnitude of the relevant
Higgs and the (presumably rather smaller) carrier mass
scales. It is to be noted that the work of Larsen and
Axenides [15] was based on a previously proposed alter-
native Lagrangian [21] that (in terms of the same pa-
rameters m and m∗) provides a somewhat more accurate
treatment of the spacelike current range w > 0, whereas
the newer version (13) provides a treatment that is con-
siderably more accurate for large timelike currents. For
our present purpose the slight difference between these
alternative string models for Witten vortices is not of
qualitative physical importance: our main reason for pre-
ferring to use the newer version (13) has nothing to do
with considerations of very high precision, but is just that
it turns out to provide more conveniently explicit analytic
expressions for the quantities that we shall need.

III. CONSERVATION LAWS.

The dynamical equations for such a string model are
obtained from the Lagrangian L in the usual way, by ap-
plying the variation principle to a surface action integral
of the form

S =

∫

dσ dτ
√−γ L{w}, (17)

(using the notation γ ≡ det{γab}) in which the indepen-
dent variables are the phase field ϕ on the worldsheet
and the position of the worldsheet itself, as specified by
the functions xµ{σ, τ}.
Independently of the detailed form of the complete sys-

tem, one knows in advance, as a consequence of the local
or global U(1) phase invariance group, that the corre-
sponding Noether current will be conserved, a condition
which is expressible as

(√−γ za
)

,a
= 0 . (18)

For a closed string loop, this implies (by Green’s theo-
rem) the conservation of the corresponding flux integral

Z =

∮

dσaǫabz
b , (19)

where ǫ is the antisymmetric surface measure tensor
(whose square is the induced metric, ǫabǫ

b
c = γac), mean-

ing that for any circuit round the loop one will obtain
the same value for the quantum number Z, which is in-
terpretable as the integral value of the number of carrier

particles in the loop. The loop will also be characterised
by a second independent quantum number whose con-
servation is trivially obvious, namely the topologically
conserved phase winding number N that is defined by

2πN =

∮

dϕ =

∮

dσaϕ,a . (20)

As usual, the stress momentum energy density dis-
tribution T̂µν on the background spacetime is derivable
from this action by varying the background metric, ac-
cording to the specification

T̂µν ≡ 2√−g

δS
δgµν

≡ 2√−g

∂(
√−gL)
∂gµν

. (21)

This leads to an expression of the standard form

√−g T̂ µν =

∫

dσ dτ
√−γ δ(4) [xρ − xρ{σ, τ}] Tµν . (22)

in which the surface stress energy momentum tensor on
the worldsheet (from which the surface energy density U
and the string tension T are obtainable as the negatives
of its eigenvalues) can be seen to be given [7,8] by

Tµν = Lηµν +Kcµcν , (23)

using the notation

ηµν = γabxµ
,ax

ν
,b (24)

for what is interpretable as the (first) fundamental tensor
of the worldsheet.
Independently of the particular form of the La-

grangian, the equations of motion obtained from the ac-
tion (17) will be expressible in the standard form [7,8]

∇µT
µ
ν = fν , (25)

in which ∇µ denotes the operator of surface projected co-

variant differentiation, and where fµ is the external force
density acting on the worldsheet. When the effect of elec-
tromagnetic coupling is significant this will be given in
terms of the field Fµν = Aν,µ − Aµ,ν by fµ = eFµνz

ν .
Even if this force density is non zero, its contraction with
the current vector zµ, or with the corresponding rescaled
current vector cµ, will vanish, and hence it can be seen
from the preceding formulae that the equations of mo-
tions automatically imply the surface current conserva-
tion law

∇µc
µ = 0 , (26)

which is the equivalent, in background tensorial nota-
tion, of the condition expressed above in terms of za us-
ing what was expressed above in worldsheet coordinate
notation. The background tensorial operator ∇ in the
foregoing equations is definable formally by

∇µ ≡ ηµν∇ν ≡ xµ
,aγ

ab∇b (27)
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where ∇ is the usual operator of covariant differentiation
with respect to the Riemannian background connection.
Thus for any closed loop there will be a corresponding
conserved circuit integral C given by

C =

∮

dxµεµνc
ν , (28)

where εµν is the background spacetime version of the
surface measure tensor ǫab, which means that its con-
travariant version is the antisymmetric tangential tensor
that is given by

εµν = ǫabxµ
,ax

ν
b . (29)

This constant C is of course just a rescaled version of the
integer particle quantum number Z, which will be given
in terms of it by

Z =
√
κ

0
C . (30)

In the following work (as in the preceding work of
Larsen and Axenides [15]) it will be assumed either that
the current is uncoupled or else (as will more commonly
be the case) that Fµν is negligible, so that we can simply
take

fµ = 0 . (31)

As well as neglecting electromagnetic correction ef-
fects, we shall now also restrict our attention to cases
in which the background is both axisymmetric and sta-
tionary, as is the case for the flat space in which we are
in the end most particularly interested. This means that
there will be corresponding vectors, ℓµ and kµ say, that
satisfy the Killing equations

∇µℓν +∇νℓµ = 0 , ∇µkν +∇νkµ = 0 , (32)

and that will be respectively interpretable as generators
of rotations and time translations, so that when suitably
normalised, their effect can be expressed in the form

kµ
∂

∂xµ
=

∂

∂t
, ℓµ

∂

∂xµ
= 2π

∂

∂φ
, (33)

where t is an ignorable time coordinate and φ is an ig-
norable angle coordinate. This normalisation is such that
the total circumferential length of the circular trajectory
of the angle Killing vector will simply be given by ℓ where

ℓ2 = ℓµℓµ . (34)

These Killing vectors can be employed in the usual way
to define the corresponding angular momentum surface
current vector J µ, and the corresponding energy current
vector Eµ, by setting

Tµ
νℓ

ν = 2πJ µ, Tµ
νk

ν = −Eµ , (35)

These currents will then satisfy surface conservation laws

∇µJ µ = 0 , ∇µEµ = 0 , (36)

that have the same form as that satisfied by the current
cµ. This means that for a closed loop there will be corre-
sponding conserved angular momentum and mass-energy
integrals, J and M say, that will be given by

J =

∮

dxµεµνJ ν , M =

∮

dxµεµνEν . (37)

IV. CONSTANTS OF CIRCULAR MOTION

We now restrict ourselves to cases for which the
string configuration itself shares the background space-
time property of being symmetric with the action gener-
ated by the Killing vector ℓµ. This entails that ℓµ should
be tangential to the worldsheet, i.e.

ℓµ = λaxµ
,a (38)

where λa is a corresponding Killing vector with respect
to the intrinsic geometry of the worldsheet, which – on
the understanding that ℓµ is interpretable, in the man-
ner described above, as the generator of angular rotation
about a symmetry axis – means that the string configu-
ration is circular, its circumference at any instant being
given by the local value of ℓ.
In such a case, this Killing vector ℓµ can be used to gen-

erate the – in that case circular – circuit used for evaluat-
ing these integrals, i.e. the infinitesimal displacement in
the integrand can be taken to be given by 2π dσa = λadφ
so that we obtain

2π dxµ = xµ
,aλ

adφ = ℓµdφ, (39)

where φ is an ignorable angle coordinate of the usual
kind with period 2π as introduced above. (Such an an-
gle coordinate can be conveniently used to specify the
first worldsheet coordinate, σ1 , by setting σ = φ, so that
by taking the second world sheet coordinate, σ2 = τ to
be constant on the circular symmetry trajectories, the
components of the intrinsic Killing vector are obtained
in the form {λ1 , λ2} = {1, 0}.) Substituting this ansatz
for dxµ in the corresponding integral formulae, it can be
seen that the global integrals (19) and (20) for the wind-
ing number N and the particle number Z will be given
directly in the circular case by corresponding locally de-

fined Bernoulli type constants of the motion B and C
say, according to the relations

B = 2π
√
κ

0
N , C =

Z
√
κ

0

. (40)

where these quantities – of which the latter, C is directly
identifiable with the global flux of the current cµ so that
it is justifiable to designate it by the same symbol – are
now to be thought of as being constructed according to
the prescriptions of the purely local form [26]
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B =
√
κ

0
λaϕ|a , C = ℓµεµνc

ν . (41)

The reason why the single symmetry generator ℓµ gives
rise to not just one but two independent Bernoulli type
constants in this way is attributable to the the string
duality property [7,8]. (It is to be noted that instead
of using the rationalised constants B and C, the work
of Larsen [15,19] uses corresponding unrationalised con-
stants n and Ω that are expressible in terms of our present
notation by Ω = −C/2π and n =

√
κ

0
N = B/2π.)

In a similar manner the mass (when it is defined) and
angular momentum integrals introduced in the previous
section will also be expressible in terms of purely locally
defined constants of the motion in the circular case. To
do this it is convenient [26] to start by introducing an
effective momentum tangent vector Πµ given in terms of
the relevant Killing vector, namely ℓµ in the case with
which we are concerned, by the ansatz

Πµ = ℓνενρT
ρµ . (42)

Since the surface stress momentum energy tensor, Tµν ,
only has components in directions tangential to the
worldsheet, it is evident that this formula provides a vec-
tor Πµ that automatically has the required property of
being tangent to the string worldsheet.
Whenever the background spacetime is invariant un-

der the action of another Killing vector kµ – which in the
application to be considered here will be interpreted as
expressing stationarity – so that the corresponding inte-
gral formula (37) for M is well defined, it can be seen
using (39) again that this globally defined quantity will
now be obtainable as a purely local constant of the mo-
tion from the formula

kµΠµ = −M . (43)

It can also be seen that whether or not the background
has a (stationary) symmetry generated by kµ, the other
(angular momentum) constant J provided according to
(37) by the original (axisymmetry) Killing vector ℓµ itself
will similarly be obtainable, in the circular case, as a
purely local constant of the motion given by

ℓµΠµ = 2πJ . (44)

It is however to be noted that this last constant is not in-
dependent of the ones presented above: it can be seen by
substituting the formula (23) in (42) and using the defin-
ing relations (6) and (9) for the current that it will be
expressible in terms of the two (mutually dual) Bernoulli
constants (41) by the simple product formula

J =
BC

2π
= NZ . (45)

This shows that the integral quantisation of the winding
and particle numbers N and Z automatically entails the
integral quantisation of the angular momentum J .

V. DYNAMICS OF CIRCULAR MOTION

Whenever the string motion shares the symmetry gen-
erated by a background spacetime Killing vector, the
problem of solving the equations of motion for its two
dimensional worldsheet can naturally be reduced to a
problem of finding a one dimensional trajectory tangen-
tial to the worldsheet but not aligned with the symmetry
generator, since when such a trajectory has been found
it is trivial to extend it to the complete two dimensional
world sheet by the symmetry action. The general proce-
dure for obtaining such a tangential trajectory for sym-
metric solutions of the equations of motion of conducting
string models was originally developed by Carter, Frolov,
and Heinrich [26], who applied this method to study sta-
tionary solutions in a Kerr black hole background. This
method was adapted to the kind of situation with which
the present application is concerned, namely circular in-
stead of stationary symmetry, by Larsen [19]. The origi-
nal derivation [26] involved the use of the quotient space
with respect to the relevant symmetry action, but a more
recent and general treatment [8] (including allowance for
the possibility of axionic as well as electromagnetic cou-
pling) has provided a more direct route that does not
need such an auxiliary construction.
What this procedure provides is a particular kind of

world sheet generating trajectory that is characterised by
having a tangent vectorΠµ given in terms of the relevant
Killing vector, namely ℓµ in the case with which we are
concerned, by the ansatz (42). The procedure makes use
of the fact [8,26] that, for given values of the Bernoulli
constants B and C, the state function w, and hence also
the squared magnitude of the tangent vector Πµ, namely
the quantity

Ψ = ΠµΠµ , (46)

(which will play the role of a potential) can be specified
in advance as a scalar field over the entire background
space (not just a single string worldsheet), in such a way
as to agree with the respective physical values of Ψ on
the particular worldsheet under consideration.
In the generic case this is done by expressing Ψ as

a function of one of the independent state variables, w
say, which will itself be expressible, as a function of
the squared Killing vector magnitude ℓ2, and hence as
a scalar field over the entire background space by solving
the equation

ℓ2 =
B2

w
− C2

χ
, (47)

where χ is the squared magnitude (1) of the current vec-
tor, which is obtainable from the Lagrangian L as a func-
tion of w in the manner described above. It is to be re-
marked that in the recent derivation [8] the correspond-

ing formula (expressed using the notation β for C, β̃ for
B, and −χ̃ for w) contains a transcription error that
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has the effect of replacing w and χ by their respective
squares. Except in the “chiral” – i.e. null current – limit
for which w and χ vanish so that a special treatment is
needed, the self dual formula (47) is immediately obtain-
able by using the Bernoulli formulae (41) to evaluate the
respective components of ℓµ parallel to and orthogonal
to the current.
Having used this procedure to obtain w as a field over

the background spacetime, one can then use the result to
obtain the corresponding value of the squared magnitude
Ψ – which, in the recent derivation [8] was written as X2,
though it need not be positive, since the vector Πµ may
be timelike or null as well as spacelike). This quantity
will be obtainable using (47) as a function of the squared
Killing vector magnitude ℓ2 (which in the case of sym-
metry must necessarily be positive) by the manifestly self
dual formula

Ψ =
C2Λ2

χ
− B2L2

w
, (48)

where Λ is the dual Lagrangian function, as given by (11).
In order to obtain a treatment that remains valid in

the “chiral” limit – for which w and χ vanish, so that
the formulae (47) and (48) become indeterminate – it
is convenient to rewrite Ψ in a manner that sacrifices
manifest self duality by expressing it in the form

Ψ =
B2C2

ℓ2
− Υ 2 , (49)

where (unlike the quantity X =
√
Ψ which may be imag-

inary) the quantity Υ defined in this way will always be
real in the admissible range (12), as can be seen by ex-
pressing it in either of the equivalent – mutually dual –
alternative forms

Υ =
B2

Kℓ
− Λℓ =

C2K
ℓ

− Lℓ , (50)

of which the latter is the most convenient for practical
calculations starting from a given form of the Lagrangian
L.
In the generic case, B2 6= C2, the required quantities K

and L are obtained indirectly as functions of ℓ by solving
(47) which will give a result that is always non-null, i.e
w and χ will never pass through zero, so the current will
preserve a character that is permanently timelike or per-
manently spacelike as the case may be. The exception is
the “chiral” case, which is characterised by the equality
B2 = C2, and for which the only possible states are of
the null kind characterised by w = χ = 0, so that the
required quantities K and L will be given directly, inde-
pendently of ℓ, as the constants K = 1 and L = −m2.
It is of particular interest for the dynamical applica-

tions that follow to obtain the derivative of the field Υ
with respect to the cylindrical radial coordinate ℓ with
respect to which it is implicitly or (in the chiral case)
explicitly defined: it is obvious in the chiral case since

in this case Λ = L, and can also be verified (using the
relation

dℓ

dw
= − ℓ

2w
+

C2(dK/dw)

2ℓw(dL/dw) (51)

for the variations of ℓ) in the generic case for which L and
K are variable, that this derivative will be expressible in
either of the very simple – mutually dual – equivalent
forms

dΥ

dℓ
= −C2K

ℓ2
− Λ = − B2

Kℓ2
− L (52)

of which again it is the latter that is most convenient for
practical calculations starting from a given form of the
Lagrangian L.
After having obtained the field Ψ in this way, the final

step in the procedure for obtaining the string tangent
vector Πµ is to integrate its equations of motion, which
can easily be shown [8,26,27] to have the form

2Πν∇νΠµ = ∇µΨ , (53)

subject to the constraint

ℓµΠµ = BC , (54)

whose conservation is an automatic consequence of the
symmetry. This constant is interpretable according to
(45) as being proportional to the angular momentum J .
The foregoing formulation depends only on the exis-

tence of the symmetry generated by ℓµ, which is postu-
lated to apply not only to the background but also to
the string solution itself – so that the further supposi-
tion that this symmetry is that of rotation about an axis
means that the string configuration is circular. It does
not depend on the additional postulate that the back-
ground space time is also subject to another symmetry
generated by the independent Killing vector, kµ that is
responsible for the existence of the mass-energy constant
M given by (43).
In order to solve the equation of motion (53), which

can be seen to be interpretable as that of a geodesic with
respect to a conformal modified background metric given
by Ψgµν , it is useful to employ a Hamiltonian formulation
of the standard form

dxµ

dτ
=

∂H

∂Πµ

,
dΠµ

dτ
= − ∂H

∂xµ
, (55)

where τ is parameter along the trajectory, that can con-
veniently be used to specify the choice of the second inter-
nal coordinate σ2 (the first one, σ1 , having already been
chosen to be the angle coordinate φ). Such a formulation
of the conformal geodesic equation is readily obtainable
by taking the Hamiltonian to be given by

2H = gµνΠµΠν − Ψ , (56)

with the understanding that the system is to be solved
subject to the constraint
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H = 0 , (57)

which ensures the correct normalisation of the tangent
vector, which by the first Hamiltonian equation will be
given directly by

Πµ =
dxµ

dτ
. (58)

VI. SOLUTION FOR THE STATE FUNCTION.

In order to carry out the procedure summarised in the
preceding section, we first have to solve the equation (47)
for the state variable w. In terms of the magnitude ℓ of
the axisymmetry generator ℓµ, which will give the local
value of the circumference of the circular string loop, this
equation will be expressible as

ℓ2w = B2 − C2K2 . (59)

For a general conducting string model this equation
would be hard to solve explicitly, but there are special
cases for which a convenient analytic solution is avail-
able, the first known example being that of the transonic
string model, for which the equation for the field w is
found to be simply linear, so that it can immediately be
solved to provide a system that turns out to be com-
pletely integrable by separation of variables in a Kerr
black hole background when the symmetry under con-
sideration is stationarity [26], though unfortunately not
when it is axisymmetry [19], in which case such complete
integrability is available only for purely equatorial con-
figurations, including in the limit, the kind of flat space
ring configurations with which the present study is ul-
timately concerned. Another case whose application to
circular configurations has recently been considered [16],
and in which the equation (47) is also simply linear, is
that of the even cruder fixed trace model (for which K is
just a constant) that was originally suggested by Witten
himself [4] to describe the effect of his mechanism for cur-
rents that are very small compared with saturation, but
which turns out [9] to be misleading (because subsonic)
even in that limit.
The more recent work of Larsen and Axenides [15] was

more advanced in that it used the newer kind of string
model [21] that (unlike the simple transonic model and
its cruder fixed trace predecessor) can provide a realistic
account of the current saturation effect that is a salient
feature of the Witten mechanism; this work was however
much more specialised than the preceding investigations
cited above, as it only considered the non rotating case
of vanishing winding number N , which in our present
notation means B = 0. As well as allowing for non-
zero winding number, the present work involves a physi-
cally unimportant but technically valuable improvement
in that we use more recently proposed [21] string model
characterised by (13), which turns out to be particularly

convenient for the present stage in our analysis since it
leads to an equation for w that although not actually lin-
ear, as was the case for the transonic model, can be seen
to be the next best thing, meaning that it is just quadratic
(whereas the version used by Larsen and Axenides gives
an equation for w that has a much more awkward quartic
form). The result of using (13) is expressible in the form

C2K2 +m 2
∗ ℓ

2
(

K − 1
)

−B2 = 0 , (60)

which can immediately be solved to give

K =
−m 2

∗ ℓ
2 +

√

4C2(B2 +m 2
∗ ℓ

2) +m 4
∗ ℓ

4

2C2
, (61)

choosing the positive sign for the square root because K
is positive throughout the admissible range (12) for the
state parameter w.
In terms of this explicit formula for K the state func-

tion w itself is immediately obtainable using the expres-
sion

w = m 2
∗

(

K− 1
)

(62)

that applies for this model. Since our Lagrangian (13)
can be expressed directly in terms of K as

L = −m 2
∗

(

α+ ln
√
K
)

, (63)

our explicit formula for K can also be directly applied to
obtain the required potential Ψ , for which we obtain the
formula

Ψ =
B2C2

ℓ2
− ℓ2

(C2K
ℓ2

+m2
∗(α+ ln

√
K)

)2

. (64)

VII. MOTION IN A FLAT BACKGROUND

Up to this point we have been using a formulation that
is valid for an arbitrary stationary axisymmetric back-
ground, including for example that of a Kerr black hole.
In order to obtain a result that is completely integral in
explicit form, and because it is the case of greatest phys-
ical importance, we shall now restrict our attention to
the case of a flat space background, for which there will
be no loss of generality in supposing the circular string
loop to be confined to an equatorial hyperplane with 3-
dimensional spacetime metric given in terms of circular
coordinates {r, φ, t} by

ds2 = dr2 + r2dφ2 − dt2 , (65)

so that the Killing vectors used in the discussion
above will be identifiable as {k1 , k2 , k3} = {0, 0, 1} and
{ℓ1, ℓ2 , ℓ3} = {0, 2π, 0}.
In these circumstances the circumferential length field

ℓ that played a fundamental role in the preceding discus-
sion will be given simply by

9



ℓ = 2πr , (66)

and the evolution of the circular string worldsheet will be
given simply by specifying the radius r as a function of
the background time t. We shall use a dot to denote dif-
ferentiation with respect to this time t, which will vary
proportionally to the Hamiltonian time, τ , with coeffi-
cient given by the energy constant, so that we shall have

dt

dτ
= M . (67)

For a complete physical description of the solution, it
would also be necessary to specify the distribution over
the worldsheet of the phase field ϕ, which must evidently
have the form

ϕ = q +Nφ , (68)

where N is the conserved winding number as defined
above and q is a function only of t.
The fact that the fourth (azimuthal) direction can be

ignored in this particularly simple case means that the
complete set of equations of motion is provided directly
in first integrated form by the constants of the motion.
Using the formulae (6) and (9) to work out the expression
(41) for the Bernoulli constant C, it can be seen that the
time derivative of this function q will be given in terms
of that of the radius r by

q̇ = CK
√
1− ṙ2

2πr
√
κ

0

. (69)

By similarly using the formula (23) to work out the ex-
pression (43) for the mass-energy constant M the evolu-
tion equation for r can be obtained in the first integrated
form

M
√

1− ṙ2 = Υ (70)

where Υ is the quantity that is given by the formula (50),
whose evaluation as a function of the circumference, ℓ =
2πr is discussed in Section V.
Instead of going through the detailed evaluation of the

expression (43) using (23), a more elegant albeit less di-
rect way of obtaining the same equation of motion for r is
to apply the Hamiltonian formalism described in Section
V. It is evident from (67) that in the flat background (65)
the radial momentum component Π

1
will be given by

Π
1
=

dr

dτ
= Mṙ , (71)

and under these conditions the Hamiltonian (56) will re-
duce to the simple form

H =
1

2

(

Π 2
1
+

J2

r2
−M2 − Ψ

)

. (72)

It is to be remarked that the term J2/r2 in this formula
has the form of the centrifugal barrier potential that is fa-
miliar in the context of the analogous problem for a point

particle. By what is a rather remarkable cancellation, it
can be seen that the effect of the extra potential Ψ tak-
ing account of the elastic internal structure of the string
is merely to replace the familiar centrifugal barrier con-
tribution J2/r2 by a modified barrier contribution given
simply by Υ 2 where Υ is the scalar field (50) introduced
in the previous section, since it can be seen that the rel-
evant combination of terms turns out to be expressible
simply as

J2

r2
− Ψ = Υ 2 (73)

The normalisation expressed by the constraint that the
Hamiltonian should vanish can thus be seen to give the
equation of motion for r in the convenient first integrated
form

M2ṙ2 = M2 − Υ 2 , (74)

which is evidently equivalent to the radial evolution equa-
tion (70) given above.

VIII. STATIONARY “VORTON” STATES

As an immediate particular consequence of this equa-
tion of motion, it can be seen that there will be vorton

type equilibrium solutions, with mass energy given by

M = Υ , (75)

wherever the relevant effective energy function Υ satisfies
the stationarity condition

dΥ

dr
= 0 . (76)

The formula (52) given above for the derivative of Υ
can be used to write this stationarity condition in the
form

C2Lw = B2Λχ . (77)

This is recogniseable as the equilibrium requirement that
is well known from previous more specialised studies of
circular equilibrium states [28], according to which the
propagation speed c

E
of extrinsic (wiggle) perturbations

determines the effective rotation velocity v, namely that
of the current in the timelike case, for which one obtains
v2 = T/U = L/Λ, and that of the orthonormal tangent
direction if the current is spacelike, in which case one
obtains v2 = T/U = Λ/L. Finally in the “chiral” case
for which the current is null, both formulae are valid
simultaneously: one will have Λ = L and v = 1.
In all of these cases the vorton circumference will be

given by

ℓv =
|B|√
−KL

, (78)
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and the equilibrium condition to be solved for the state
function of the vorton will be expressible in the more
directly utilisable form

K2L
Λ

= b2 (79)

using the abbreviation b for the Bernoulli ratio, as defined
by

b =
B

C
= 2πκ

0

N

Z
, (80)

where N and Z are the corresponding integer valued
winding number and particle quantum number (of which,
if the current were characterised by a non zero electric
coupling constant e, the latter would determine the vor-
ton’s total ionic charge, namely Q = Ze, as in ordinary
atomic physics).
From the well known theorem [11] that (although there

may be instabilities with respect to non axisymmetric
perturbations in certain cases) the circular equilibrium
states are always stable with respect to perturbations
that preserve their circular symmetry, it follows that
within the admissible range (12) the effective energy
function Υ can be extreme only at a minimum but never
at a maximum. This evidently implies that, within a
continuously connected segment of the admissible range,
there can be at most a single such extremum: in other
words for a given value of the conserved ratio b2, the vor-
ton equation can have at most one solution for the state
variable w – and hence for any function thereof, such as
the derived variable K and the corresponding vorton cir-
cumference ℓ, which will thus be uniquely determined. It
will be seen in the next section that in some cases there
will be no solution at all, i.e. there are values of the ra-
tio b2 for which Υ is monotonic throughout the allowed
range, so that a corresponding vorton state does not even
exist.

IX. SOLUTION OF THE EQUATIONS OF

MOTION.

The results in the immediately preceding section are
independent of the particular form of the Lagrangian L.
If we now restrict ourselves to the specific case of the
model (13), we can use the results of the earlier sections
to rewrite the effective barrier energy function Υ in the
form

Υ = m 2
∗ ℓ

(

α+ ln
√
K +

( C

m∗ℓ

)2

K
)

. (81)

with K given explicitly as a function of ℓ by (61). A
convenient way of applying this formula is to think of
K as the independent variable, with the circumference ℓ
(and hence the radius r = ℓ/2π) given by

m 2
∗ ℓ

2 =
B2− C2K2

K − 1
. (82)

In the case b2 < 1, which means B2 < C2, this deter-
mines ℓ as a monotonically increasing function of K in
the timelike current range, e−2α < K < 1. In the case
b2 > 1, which means B2 > C2, this determines ℓ as a
monotonically decreasing function of K in the spacelike

current range, 1 < K < 2. In either case, we finally
obtain the effective barrier energy function in the form

Υ = m∗|C|
√

b2 −K2

K − 1

(

α+ ln
√
K +

K(K − 1)

b2 −K2

)

(83)

as a fully explicit function just of K. The formula (52)
for the derivative of this function gives

dΥ

dℓ
= m2

∗

(

α+ ln
√
K − b2(K − 1)

K(b2 −K2)

)

. (84)

It can thus be seen that the vorton equilibrium re-
quirement (79) – expressing the condition (76) that this
derivative should vanish – will be given for this particular
string model by

K = Kv (85)

where Kv is obtained by solving the equation

b2 =
Kv

2(α+ ln
√
Kv)

α− 1 + ln
√
Kv +Kv

−1 . (86)

Whenever an admissible solution exits, it can be seen
that the corresponding value

M = Mv (87)

of the mass of the vorton state will be given by

Mv

m∗
= |C|

√

Kv − 1

b2 −Kv
2

(

b2

Kv
+Kv

)

. (88)

X. THE CONFINEMENT EFFECT AND

CLASSIFICATION OF SOLUTIONS

Since K tends to unity for large values of ℓ, it can be
seen from Eq. (81) that the effective potential Υ grows
linearly with radius at large distances. This means that
no matter how large its energy may be, the loop can never
expand to infinity: it is subject to a confinement effect
(not unlike that which motivated early attempts to use
string models to account for the phenomenon of quark
confinement in hadron theory [29]).
The fact that it admits no possibility of unbound tra-

jectories distinguishes the loop problem considered here
from cases such as the familiar example a point particle,
of mass m say, moving in the Newtonian gravitational
field of a central mass, M∗, say. In that case, the orbits
can be classified as Type 0, Type 1, and Type 2, where
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Type 0 means the special case of constant radius (circu-
lar) orbits, Type 1 means the generic case of varying ra-
dius but nevertheless bound orbits, and Type 2 denotes
unbound orbits. These types can be subclassified into
categories A and B, where A stands for “always regular”
or “avoiding trouble” and B stands for “badly terminat-
ing”. For Type 0 orbits, the “good” subcategory A is
clearly the only possibility. However while Type 1 orbits
are generically of type 1A, which for an inverse square
law means the elliptic case, there is also the possibility
of type 1B orbits, meaning bound trajectories of purely
radially moving type, which end by plunging into the cen-
tral singularity. Similarly Type 2 orbits are generically
of type 2A, which for an inverse square law means the
parabolic and hyperbolic cases, but there is also the pos-
sibility of type 2B orbits, meaning unbound trajectories
of purely radially moving type which begin or end at the
central singularity. In the simple point particle case the
only relevant parameters are the orbital binding energy
E say and the angular momentum J say. Subcategory
B corresponds to the special case J = 0. In the inverse
square law case the classification is simplified by the prop-
erty of self symmetry with respect to the transformations
E 7→ E/s, J 7→ J

√
s where s is a scale factor: thus for

the generic subcategory A, the classification depends just
on the invariant dimensionless combination EJ2/m3M 2

∗ ,
being Type 0 for its absolute minimum value, which is
−1/2, Type 1 for a higher but still negative value, and
Type 2 otherwise.
The same principles can be applied to the classification

of solutions of the circular string loop problem, for which
one only needs the Type 1 – with “good” and “bad” sub-
categories 1A and 1B – and the Type 0 – which in this
case means a vorton state, which can only be “good”.
There is no analogue of Type 2 for the string loop prob-
lem because the possibility of an unbound orbit does
not exist. This is because the relevant effective poten-
tial function Υ does not only diverge to infinity (due to
the centrifugal effect) as the radius r becomes small, i.e.
as ℓ → 0, which corresponds to K → |b|: it is evident
that Υ must also diverge (due to the energy needed for
stretching the string) in the large r limit, i.e. as ℓ → ∞
which corresponds to K → 1.
Despite the fact that instead of the five possibilities

(namely 0, 1A, 1B, 2A, 2B) needed or the point particle
problem there are only three (namely 0, 1A, 1B) in the
circular string loop problem, the state of affairs for this
latter problem is considerably more complicated because
the orbits are not fully characterised just by the mass en-
ergy parameterM and the angular momentum parameter
J : they also depend on the Bernoulli constants B and C
[which, by (40), are respectively proportional to the mi-
croscopic winding number N and the particle number Z].
According to (45) these constants are related by the con-
dition BC = 2πJ , but that still leaves three independent
parameters which may conveniently be taken to be M ,
B, C say – instead of the two that were sufficient for the
point particle case. As in the inverse square law case for

a point particle, the flat space string loop problem is self
similar with respect to scale transformations, which are
expressible in this case by B 7→ Bs, and C 7→ Cs and
M 7→ Ms (so that J 7→ Js2). Thus whereas all that mat-
tered qualitatively in the inverse square law was a single

dimensionless ratio (namely that between J2 and E−1),
in a corresponding manner the not so simple behaviour
of the circular string loop is qualitatively dependent on
the two independent dimensionless ratios relating B2, C2

and M2. A further complication is that the nature of this
dependence depends on the dimensionless parameter α
characterising the underlying string model.
Unlike the mass-energy parameter M , whose conser-

vation depends on the stationary character of the space
time background, and would no longer hold exactly when
allowance is made for losses from gravitational radiation,
the winding number and particle number satisfy conser-
vation laws of a less conditional nature, so (although their
local conservation is also symmetry dependent) the cor-
responding Bernoulli parameters B and C provide more
fundamental information about the string loop. It is
therefore appropriate to use their ratio b as the primary
variable in a classification of the solution (with the un-
derstanding that b = ∞ means C = 0).
Proceeding on this basis, the relevant parameter space

can be described in terms of five consecutive zones for the
parameter b2. The reason why there are so many possi-
bilities is that the range of ℓ, from 0 to ∞ corresponds,
according to (82), to a range of K from 1 to |b|, which
may extend beyond the range (15) that is physically ad-
missible according to the criterion (12).
Between the limits where it diverges, Υ → +∞, as

K → 1 and K → |b|, the effective potential energy func-
tion Υ will vary smoothly with at least one local mini-
mum. However according to the theorem recalled at the
end of the previous section, Υ can have at most one local
minimum and no local maximum within the admissible
range (15). Moreover, since α is strictly positive by its
construction (16), it is evident that the large radius limit
K → 1 will always lie safely within the physically admis-
sible range (15). This leaves only two alternative pos-
sibilities, which are either that Υ should be monotonic,
with dΥ/dℓ > 0, throughout the physically admissible
range (15), or else that this admissible range should in-
clude a turning point at a critical value of ℓ within which
the derivative dΥ/dℓ will become negative, in which case
it will have to remain negative all the way to the inner
limit of the admissible range. It is directly apparent from
the expression (84) for dΥ/dℓ that there is no possibility
for it to remain positive near the limit of the admissible
range in the timelike current case, i.e. as ln

√
K → −α,

so for b2 < 1 the vorton equilibrium equation (86) will
always have a physically admissible solution. However in
the spacelike current case, b2 > 1, for which the relevant
limit of the admissible range is given (independently of
α) by K → 2, it can be seen that it is indeed possible for
the gradient (84) to remain positive, the condition for
this being the criterion for the first of the qualitatively
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different zones listed as follows.

Zone I. This is the “fatal” spacelike zone charac-
terised by

b2
(

1− 1

2α+ ln 2

)

≥ 4 (89)

for which no admissible vorton solution exists. For such
a scenario it can be seen from (83) that the mass energy
must necessarily satisfy the condition

M ≥ Ms (90)

where the mass limit Ms is given by

Ms

m∗
=

√

B2 − 4C2

(

α+
1

2
ln 2 +

2

b2 − 4

)

. (91)

In this case, after a possible phase of expansion to a max-
imum radius obtained by solving Υ = M , the loop will
inevitably contract until it reaches the current saturation
limit at K = 2 at which stage our classical string descrip-
tion will break down. This means that in terms of the
terminology introduced above, all Zone I trajectories are
of Type 1B. On Fig. 1 is displayed the potential Υ against
(top) the value of K and (bottom) that of the circumfer-
ence ℓ, all quantities being rescaled with the Kibble mass

m. It should be noted that for α >∼ 1, the potential is
roughly (i.e., up to negligible logarithmic corrections) in-
dependent of α when seen as function of ℓ but not as
a function of K. This shows that the most relevant pa-
rameter for cosmological applications is m and not m∗

even though the latter is essential for the very existence
of vorton states. The starting point of this zone marks
the end of the curves on Fig. 6.
It is to be remarked that in order for this zone to be

of finite extent, the carrier mass scale m∗ must not be
too large compared with the Kibble mass scale m, the
precise condition being that the value of α given by (16)
should satisfy the inequality

α > (1− ln 2)/2 (92)

If this condition were not satisfied – which would be un-
likely in a realistic model, since the Witten mechanism
cannot be expected to work if the carrier mass is too
large [4,9,10] – then Zone I would consist only of the ex-
treme limit b2 = ∞ i.e. the case C = 0, for which the
string falls radially inwards with a spacelike current but
zero angular momentum.

Zone II. This is the “dangerous” spacelike zone char-
acterised by

b2 ≥ 4 > b2
(

1− 1

2α+ ln 2

)

(93)

[which would consist of the entire range b2 ≥ 4 if (92)
were not satisfied] for which the trajectory may be of (sta-
tionary) Type 0, (well behaved oscillatory) Type 1A, or

(badly behaved) Type 1B, depending on its energy. The
Type 1B case is that for which M satisfies an inequality
of the form (90), in which case the loop will evolve in the
same way as in the previous scenario, and thus will again
end up by contracting to a state of current saturation.
The “good” type 1A possibility, is characterised by the
condition that the mass should lie in the range

Ms > M > Mv (94)

where the maximum beyond which the current will ul-
timately saturate is given by the preceding formula (91)
for Ms, and the minimum value Mv is the mass of the
relevant vorton state as characterised by (88): when this
latter condition is satisfied the loop will oscillate in a
well behaved manner between a minimum and a maxi-
mum radius that are obtained by solving Υ = M . Finally
the Type 0 possibility is that of the vorton state itself,
as given by the minimum value M = Mv. Similarly to
Fig. 1, Fig. 2 shows the potential in this zone II, against
either K (top) and ℓm/|C| (bottom), with the same re-
mark as before when α >∼ 1.

Zone III. This is the “safe” zone characterised by

4 > b2 > e−4α (95)

for which there is no danger of bad behaviour, i.e. the
only possibilities are the well behaved Type 1A, which
applies to the entire range

M > Mv (96)

and the vortonic Type 0, as given by M = Mv.
It is to be remarked that this “safe” zone consists

of three qualitatively distinct parts, namely a subrange
of spacelike current solutions, Zone III{+} say (Fig. 3),
given by

2 > |b| > 1 , (97)

a subrange of timelike current solutions, Zone III{-} say
(Fig. 4), given by

1 > |b| > e−2α , (98)

and in between the special “chiral” case of null current
solutions, Zone III{0} say, which is given just by |b| = 1.

Zone IV. This is the “dangerous” timelike zone char-
acterised by

e−4α ≥ b2 > 0 (99)

for which (as in Zone II) the trajectory may be of (sta-
tionary ) Type 0, (well behaved oscillatory) Type 1A , or
(badly behaved) Type 1B, depending on its energy (see
Fig. 5). The latter will occur whenever

M ≥ Mr , (100)
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where the relevant minimum mass – above which the loop
will contract to a state of complete relaxation, i.e. zero
tension – is given by

Mr

m∗
= |C|e−2α

√

1− e−2α

e−4α − b2
. (101)

The “good” type 1A possibility, is characterised by the
condition that the mass should lie in the range

Mr > M > Mv (102)

where as before Mv is the vorton mass value given by
(88), while finally the Type 0 possibility occurs when
M = Mv. It is to be remarked that the zone (99) includes
a subzone characterized by the strict condition c

E
< c

L
,

where c2
L
= −dT/dU is the woggle velocity, a condition

that is expressible as [21] K < e2(1−2α) and which has
been conjectured to be sufficient to ensure classical sta-
bility of the corresponding vorton state.

Zone V. This is the “fatal” timelike zone charac-
terised by

b2 = 0 (103)

i.e. the case for which B = 0 (to which the investigation
of Larsen and Axenides [15] was devoted) for which it
can be seen that the mass must satisfy the inequality

M

m∗
> |C|

√

1− e−2α . (104)

(in which the lower bound is the common limit to which
Mv and Mr converge as B tends to zero). In this case
(as in the more extensive range covered by Zone I) the
trajectory must be of Type 1B, its ultimate fate being to
reach a state of relaxation, T → 0, as in Zone IV when
(100) is satisfied.
All these zones are shown on Fig. 6 where, as functions

of the parameter |b| are plotted the value of the function
K that minimizes the potential in all but Zone I (top),
the corresponding value of the vorton mass M

V
(middle)

and length ℓ (bottom), all in units of the Kibble mass
m. It should be clear on this figure that in most cases,
the latter two are almost independent of α, the largest
dependence occurring in zones II and IV.

XI. CONCLUSIONS

In view of the potential cosmological interest of vorton
formation, it is of interest to distinguish the range of con-
ditions under which a cosmic string loop can survive in
an “A type” oscillatory state – that will ultimately damp
down towards a stationary vorton configuration – from
the alternative range of conditions under which the loop
will undergo a “B type” evolution, whereby it reaches
a configuration for which the classical string description

breaks down, in which case the investigation of its subse-
quent fate – and in particular of the question of whether
the underlying vacuum vortex defect will ultimately sur-
vive at all – will need more sophisticated methods of
analysis than are presently available.
The present investigation is restricted to the case of

exactly circular loops for which it is shown, on the basis
of the best available classical string model [21] that there
is an extensive range of parameter space, including the
whole of Zone III in the above classification, for which
the “A type” solutions (that are propitious for ultimate
vorton formation) will indeed be obtained. On the other
hand it is also shown that (unlike what occurs in the
classical point particle problem) badly behaved “B type”
solutions are not limited to the special zero angular mo-
mentum case, Zone V, to which a preceding study [15]
of this problem was restricted, but are of generic occur-
rence, occupying the whole of Zone I and extensive parts
of Zones II and IV. It remains an open question whether
these results are representative of what will happen in
the more general case of initially non-circular loops.
The foregoing results are based on an analysis that is

purely classical in the sense that it neglects both quan-
tum effects and also the General Relativistic effects of
the gravitational field. In realistic cases of cosmolog-
ical interest – involving cosmic strings produced at or
below the GUT transition level – it is to be expected
that the neglect of gravitational effects will be a very
good approximation: as remarked in the introduction,
the relevant Schwarzschild radius will usually be so small
that the question of black hole formation will be utterly
academic, while the effect of gravitational radiation, al-
though it may become cumulatively important, will be
allowable for in the short run in terms of a very slow
“secular” variation of the mass parameter M , whereby
an oscillatory (Type 1A) trajectory will gradually settle
down towards a stationary (Type 0) vorton state.
Unlike the usually small corrections that will arise from

gravitation, the effects of quantum limitations may be of
dominant importance for realistic cosmological applica-
tions. The preceding analysis should be valid for loops
characterised by sufficiently large values of the winding
number N and particle quantum number Z, and thus for
correspondingly large values of the Bernoulli constants
B and C and hence of M . However it can be expected
to break down whenever the loop length ℓ becomes small
enough to be comparable with the Compton wavelength

ℓ∗ = m−1
∗ (105)

associated with the carrier mass scale m∗. It can be seen
from (82) that the current saturation limit K → 2 cannot
be attained without violating the classicality condition

ℓ ≫ ℓ∗ (106)

unless the corresponding dimensionless Bernoulli con-
stants B and C [which by (40) will have the same order
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of magnitude provided κ
0
is of order unity] are such as

to satisfy the condition

B2 − 4C2 >∼ 1 . (107)

This differs from the corresponding purely classical condi-
tion B2 > 4C2 (characterising Zones I and II) by having 1
instead of zero on the right hand side. It can similarly be
seen that the relaxation (T → 0) limit, K → e−2α, cannot
be obtained without violating the classicality condition
(106) unless the Bernoulli constants satisfies the condi-
tion

C2e−4α −B2 >∼ 1− e−2α . (108)

which is similarly stronger than the corresponding purely
classical condition C2e−4α > B2 (characterising Zones IV
and V).
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Fig. 1: The potential Υ/(m|C|) as a function of K (top)
and mℓ/|C| (bottom) for zone I. Here and on the follow-
ing figures, it is found that for α >∼ 1, the curves as func-
tions of mℓ/|C| all coincide (up to negligible logarithmic
corrections) so they can be shown for different values of
α ranging from 1 to 100 by the same thick curve. (Note
that this simplification depends on normalising with re-
spect to the Higgs mass m rather than the carrier mass
scale m∗). It is clear however that the variations with K
are strongly dependent on the ratio α.

Fig. 2: Same as Fig. 1 for zone II.

Fig. 3: Same as Fig. 1 for zone III{ -}.

Fig. 4: Same as Fig. 1 for zone III{ +}.

Fig. 5: Same as Fig. 1 for zone IV. In this zone, for
large values of α, the minimum value of the potential is
attained only for very small values of K and hence are
not visible on the figure.

Fig. 6: The vorton state function K
V
, mass M

V
/m|C|

and length mℓ/|C| against the Bernoulli ratio |b|. From
α = (1−ln 2)/2 to α = 1, the curve is smoothly deformed
from the long-dashed one to the thick one which includes
many values of α, showing explicitly the independence in
α.
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