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ABSTRACT

Manifestly Lorentz covariant Feynman rules are given in terms of a

“scalar” field for each helicity, dramatically simplifying the calculation of

amplitudes with massless particles. The spinor helicity formalism is prop-

erly identified as a null complex spacelike (not lightlike) gauge, where two

massless external momenta define the reference frame. Usually this gauge is

applied only to external line factors; we extend this method to vertices and

propagators by modifying the action itself using lightcone methods.
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1. Introduction

In other papers in this series [1] we describe a method to simplify Feynman di-

agram calculations for massive fields, based on the observation that fields with only

undotted spinor indices formally have the same structure as nonrelativistic fields,

since a Lorentz transformation on such fields is just a complex rotation. Thus spin

s is described by a field with 2s + 1 components in a manifestly covariant way: spin

1/2 by a chiral spinor, spin 1 by a self-dual tensor, without their complex conjugates.

The result is a unitary gauge where all propagators are simply 1/(p2 +m2). Also, ex-

ternal line factors are unconstrained (i.e., arbitrary), so amplitudes can be completely

evaluated covariantly (rather than leaving covariance for the more numerous squares

of terms in probabilities). Many supersymmetry relations are already obvious from

the graphs, since actions for spins 1/2 and 1 more closely resemble those for spin 0.

Much repetitive algebra ordinarily applied in graphs is already done once and for all

in the action itself (so the action has more vertices, such as seagulls for spinors, but

the amplitude has fewer terms). Since the fields are chiral/self-dual, this method is

particularly suited to graphs with maximal helicity violation (MHV), which are those

that have the simplest final form.

Although this method can be applied to massless theories by an appropriate

limiting procedure (which is trivial for spin 1/2), it is inherently tailored to massive

theories. In particular, the concept of using only the physical degrees of freedom

suggests the further reduction from 2s + 1 components for the massive case to just

2 for the massless case. In this paper we accomplish this task by combining two

well-known methods, the lightcone formalism [2] and twistors [3] (the spinor helicity

formalism [4] for external line factors).

The lightcone formalism is defined by choosing a fixed lightlike direction (“−”),

choosing the gauge where the corresponding lightlike components of gauge fields van-

ish, and eliminating all auxiliary degrees of freedom (“+”) by their nonpropagating

(no “+” derivatives) equations of motion. This last step is the most important one:

It reduces all nonzero spins to two degrees of freedom (corresponding to the two he-

licities); using 4-vectors to describe lightcone Yang-Mills would miss the whole point

of the lightcone approach. This gauge is manifestly unitary, and all propagators are

1/p2 because each field has a single component (complex to describe two helicities).

The main disadvantage of the lightcone is that Lorentz invariance is not manifest:

Although the action is Lorentz invariant, Lorentz transformations are nonlinear in
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the fields (and momenta), and the Feynman rules are asymmetric in the various com-

ponents of the momenta. An especially simple case is self-dual Yang-Mills theory [5],

whose Feynman rules [6] are manifestly covariant under half the Lorentz group (in

2+2 dimensions, one of the two SL(2)’s of SO(2,2) = SL(2)⊗SL(2)). In particular, the

self-dual rules are much simpler than the usual ones for deriving MHV amplitudes.

The spinor helicity method translates all external line factors into twistor nota-

tion, essentially using the Penrose transform for free fields. Each massless momentum

is expressed as the square of a momentum twistor, while the external line factor (i.e.,

the external free field) is expressed in terms of that and (for gauge fields) an arbitrary

gauge-dependent polarization twistor. If the polarization twistors for all external lines

are chosen to point in the same fixed direction, then the gauge is a lightcone gauge,

but only for the external fields (and not the internal lines). However, in practice

one chooses to equate the polarization twistors with some of the momentum twistors

of the other lines, so the amplitude is expressed completely in terms of momentum

twistors (and the probability completely in terms of momenta) [4]. Unlike the light-

cone formalism, with this approach not only the vertices but even the external line

factors are manifestly covariant.

On the other hand, spinor helicity modifies only the external line factors, and

does not simplify the vertices. The result is that, although the final expression for

MHV amplitudes is extremely simple [7], their calculation does not fully reflect this

simplicity. Explicitly, the first two steps in a spinor helicity calculation are: (1) Write

down all the terms that come from the various graphs, using the usual Feynman rules

in color-ordered form [4]. Some simplification comes from using the Gervais-Neveu

gauge, which gives only 3 terms for each 3-point vertex and 1 term for each 4-point

(for pure Yang-Mills theory). (2) Contract all the vector indices (and spinor ones

for quarks), coming from vertices, propagator numerators, and external line factors.

A remarkable feature of spinor helicity is the large number of terms that vanish in

the second step: Many vanish immediately, from the direct effect the external line

factors have on the vertices; but most vanish only after more careful inspection, when

polarization vectors are contracted from different parts of the graph via the Kronecker

deltas in the propagators. An equally remarkable feature of spinor helicity is that one

has to spend a considerable fraction of the calculation writing down these terms that

don’t contribute. Generally, any method that requires calculation to produce zeros

indicates a simpler method is missing for which the zeros would be automatic (e.g.,

supergraphs for the “miraculous cancellations” of supersymmetry).
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In this paper we derive new Feynman rules that avoid the second step above

altogether by eliminating Lorentz indices on all massless fields, while retaining all the

advantages of spinor helicity. This is accomplished by modifying the usual lightcone

method to incorporate the principles of the spinor helicity method: (1) Although we

choose arbitrary fixed vectors to define the reference frame used to derive the light-

cone action, in the amplitudes we choose to identify the two lightlike axes with two of

the physical external (“reference”) momenta (as allowed by Lorentz and gauge invari-

ance), which also defines the other two (spacelike) axes, using momentum twistors.

The result is then manifestly covariant, since explicit Lorentz components are replaced

with Lorentz invariants. On external lines, this is equivalent to spinor helicity, but

we have extended the method to internal lines. (2) As a result, the direction chosen

to define the gauge is not lightlike, but spacelike and complex, although it is still null.

The gauge condition is thus complex, like the Gervais-Neveu gauge, although it is

linear. (This distinction does not exist in 2 + 2 dimensions, but the Wick rotation to

3+1 is different.) We thus refer to our formalism as the “spacecone” (although, as for

“lightcone”, no cone is actually involved; it is an abbreviation for “complex spacelike

null hyperplane”). (3) In the usual lightcone approach, where a fixed component of

the gauge field vanishes, one takes care to avoid the vanishing of the corresponding

lightlike component of the momentum, which would produce singularities. In our

approach its vanishing is required by definition on the two reference lines. We show

that the external line factors cancel such singularities, and find the resulting vertices

for those two lines are much simpler than the rest. This accounts for much of the

simplification of the spinor helicity formalism. These external line factors follow from

the covariant ones used in the usual spinor helicity approach, and are not the trivial

ones normally used in the lightcone approach, although they are still simple. (The

field redefinition that relates the two is singular for the reference lines.)

The main advantage of our approach over the usual spinor helicity is that there

are no Lorentz indices associated with any lines, although they have an orientation (+

helicity at one end, − at the other); all indices show up at the final step, when Lorentz

invariants are expressed in terms of momentum twistors. In particular, this means

that vanishing graphs and terms in graphs, which in the spinor helicity approach

would be seen by expanding the vertices and performing the (vector and spinor)

index algebra, are avoided in the spacecone approach without performing any algebra

whatsoever.

In the following section we review the basic points of the lightcone formalism,

including special features of four dimensions, such as simplification of the interactions
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and self-duality. In the next section we review twistors and spinor helicity. The

spacecone is introduced in section 4. Examples are given in section 5 to illustrate the

improvement over previous techniques. Recursion relations are discussed in section

6. The final section contains our conclusions.

2. Lightning review of lightcone

We start with the Lagrangian for Yang-Mills theory, in a convenient normalization

(S = tr L/g2),

L = 1
8
F 2, F ab = ∂[aAb] + i[Aa, Ab] (1)

where ∂[aAb] = ∂aAb −∂bAa, and the indices a, b are vector indices. (Throughout this

paper we will use pure Yang-Mills theory as our standard example, with straightfor-

ward generalization to other spins.) We use upper-case letters to denote vectors and

lower-case to denote their (contravariant) lightcone components, as

Aa = (a, ā, a+, a−) (2)

In Minkowski space ā is the complex conjugate of a, while a± are real. Defining our

lightcone frame by the Minkowksi-space inner product

A · B = ab̄+ āb− a+b− − a−b+ (3)

we choose the lightcone gauge

a− = 0 (4)

(In the original description of the lightcone gauge, the formalism was described by an

“infinite-momentum frame”. Of course, Lorentz invariance means the equations are

frame-independent, and shortly thereafter it was realized that the infinite-momentum

limit was a misconception, and could be replaced with a simple change of variables.

Even the parton model was originally described in this language, until it was real-

ized that it was only hiding the Lorentz-invariant statement that the one physical

assumption of the parton model is a transverse momentum cutoff, which is realized

dynamically in QCD via asymptotic freedom.)

The equation of motion for a+ now contains no “time” derivatives ∂+, so we use

this equation to eliminate this “auxiliary” component from the Lagrangian: After a

little algebra, we find

L = ā∂+∂−a+ 1
4
(F−+)2 − 1

4
(F tt̄)2 (5)
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F−+ = ∂ā + ∂̄a + i
1

∂−
([a, ∂−ā] + [ā, ∂−a]), F tt̄ = ∂ā− ∂̄a+ i[a, ā] (6)

Only in four dimensions can we simplify the Lagrangian by using the self-dual and

anti-self-dual combinations (which would have been indicated if we had used spinor

notation):

F = 1
2(F

−+ + F tt̄) = ∂ā + i
1

∂−
[a, ∂−ā], F̄ = 1

2(F
−+ − F tt̄) = ∂̄a + i

1

∂−
[ā, ∂−a]

L = ā∂+∂−a+ FF̄

= −1
2 ā a− i

(

∂̄

∂−
a

)

[a, ∂−ā] − i

(

∂

∂−
ā

)

[ā, ∂−a] + [a, ∂−ā]
1

(∂−)2
[ā, ∂−a]

1
2 = ∂∂̄ − ∂+∂− (7)

The Feynman rules may be obtained in a straigtforward fashion; for example, the

color-ordered three-point vertex contains only two terms and is thus simpler than

usual gauges, such as Fermi-Feynman or Gervais-Neveu.

Translation into van der Waerden notation for Weyl spinors is easy: In terms of

our lightcone basis, we have the Hermitian 2×2 matrix

Aα
.
β =

(

a+ ā

a a−

)

, A2 = −2 det A (8)

Spinor indices are raised and lowered with the antisymmetric symbol

Cαβ = C .
α
.
β

= −Cαβ = −C
.
α
.
β =

(

0
i

−i

0

)

(9)

ψα = Cαβψβ , ψα = ψβCβα, ψ̄
.
α = (ψα)† = C

.
α
.
βψ̄ .

β
(10)

A · B = Aα
.
βB

α
.
β

(11)

Note that each of the 4 lightcone/spinor-notation components is defined with respect

to a null direction: Two are real and lightlike (t̂± x̂), two are complex and spacelike

(ŷ ± iẑ). (In 2+2 dimensions all 4 are real and lightlike, while in 4+0 dimensions all

are complex and spacelike.)

Spinors can be treated similarly: There is no gauge condition for spin 1/2, but

half of the field is auxiliary. Now spinor notation is necessary, and in the lightcone a

Weyl spinor reduces to a single complex component, as did the vector.

Self-dual Yang-Mills theory also is described more easily in spinor notation, where

the field strength naturally separates into self-dual and anti-self-dual parts:

[∇α
.
β ,∇γ

.
δ] = i(Cαγf

.
β
.
δ + C

.
β
.
δfαγ) (12)
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Self-duality fαβ = 0 is then partially solved in the lightcone gauge by

f−− = 0 ⇒ [∇−
.
β,∇−

.
δ] = 0 ⇒ A−

.
β = 0 (a− = a = 0) (13)

f−+ = 0 ⇒ ∂−[
.
βA+

.
δ] = 0 ⇒ A+

.
β = ∂−

.
βφ (a+ = ∂φ, ā = ∂−φ) (14)

The remaining equation f++ = 0 is identical to that found from the above lightcone

action by varying with respect to a and then setting a = 0: It is the ordinary Yang-

Mills field equation restricted to one helicity. If we define self-dual Yang-Mills by the

Lagrangian Gαβf
αβ, then our lightcone analysis leads directly to the first two terms

of the above lightcone action, with (∂−)−1G++ acting as the replacement for a.

3. Twistors and spinor helicity

The basic principle of the twistor approach is that a lightlike 4-vector can be

written as the square of a commuting spinor (“twistor”):

P 2 = 0 ⇒ P α
.
β = ±pαp̄

.
β (15)

where the sign depends on whether the vector is forward or backward (with respect to

the time direction): In practice we ignore this sign, as justified by crossing symmetry,

or by Wick rotation from 2+2 dimensions, where pα and p̄
.
α are independent and

real (rather than complex conjugates), so the sign can be absorbed into either. This

representation is particularly useful for free, massless particles: Using this twistor to

describe the momentum, the usual free field equations can be solved for the free field

strengths as

fα1...α2h = pα1 · · · pα2hϕh (16)

for a spinor fα, vector field strength fαβ, Weyl tensor fαβγδ, etc. Thus, massless

degrees of freedom are immediately reduced to (complex) scalars. Actually, Lorentz

transformations are reduced to their little group, helicity, which transforms the twistor

by a phase (independently of the usual Lorentz), and thus the “scalar” by the helicity

h times the phase.

An old lesson learned from supersymmetry is that all spinor algebra in four dimen-

sions is performed most conveniently with two-component spinor indices exclusively,

and this rule also gives the simplest calculations in the spinor helicity formalism.

This is much simpler than algebra with four-component (Dirac) spinors. In partic-

ular, Fierz identities are avoided. This also means one should avoid all γ and σ
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matrices, since they are nothing more than Clebsch-Gordan coefficients. Vectors are

described only as objects with two two-component indices.

Since almost all spinor algebra for spins ≤ 1 involves objects carrying at most

two spinor indices (spinors, vectors, self-dual tensors), for such purposes it is usually

convenient to use matrix notation, defined by

〈p| = pα, |p〉 = pα; [p| = p
.
α, |p] = p .

α
(17)

As a result, we also have

〈pq〉 = pαqα, [pq] = p
.
αq .

α
; 〈pq〉* = [qp] = −[pq] (18)

P = Pα

.
β, P* = −P β .

α
, 〈k|P |q] = kαPα

.
βq .

β
, PK* +KP* = (P ·K)I (19)

f = fα
β, f* = f .

α

.
β, 〈p|f |q〉 = pαfα

βqβ (20)

〈pq〉〈rs〉+ 〈qr〉〈ps〉 + 〈rp〉〈qs〉 = 0 (21)

where the last (“Schouten”) identity is the result of antisymmetrizing 3 indices that

take only 2 values. (Note that 〈pq〉 = −〈qp〉, [pq] = −[qp] are consequences of using

twistors; when using physical, anticommuting spinors, 〈ψχ〉 = +〈χψ〉, and 〈ψψ〉 6= 0

occurs in mass terms.)

Although gauge-invariant objects can be written directly in terms of momentum

twistors and scalars, the same is not true for gauge fields. Thus for a gauge vector

we write (in matrix notation)

A =
|ǫ〉[p|

〈ǫp〉
ϕ̄ ⇒ f* = |p][p|ϕ̄, f = 0 (22)

for + helicity or

A =
|p〉[ǫ|

[ǫp]
ϕ ⇒ f = |p〉〈p|ϕ, f* = 0 (23)

for −. (Positive helicity is the same as self-duality, negative is anti-self-dual.) The

former agrees with the self-dual Yang-Mills result of the previous section, up to nor-

malization, if we choose

ǫα ∼ δα
+ (24)

These expressions are used for external lines in Feynman diagrams: Setting scalar

fields ϕ = 1 as usual, the factors multiplying ϕ and ϕ̄ are identified as the external

line factors for a massless vector. Thus, the twistor formalism is essentially a covariant

way of writing the axial gauge

N · A = 0, N = |ǫ〉[ǫ| (25)
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in terms of an arbitrary lightlike vector N .

However, a major simplification is achieved in applying spinor helicity methods

to explicit evaluation of Feynman diagrams: Instead of choosing the lightlike vectors

N to be the same on each external line, as in a lightcone gauge, they are chosen to

vary from line to line (i.e., to be momentum dependent). Furthermore, these lightlike

vectors, rather than being arbitrary, are identified with some of the external lightlike

(massless) momenta (although, of course, no N is identified with the momentum of

the same line). One result is that all amplitudes are manifestly Lorentz invariant,

since they are expressed completely in terms of invariant products of momentum

twistors (and no other Lorentz structures).

4. Spacecone

Although these principles should be enough to appreciate the advantages of spinor

helicity methods, there is one additional rule that, although not required, always gives

the simplest results in practice: All the N ’s are chosen the same for one sign of the

helicity, and all the same for the other sign. This means that all the ǫ’s (+ helicity)

are the same undotted spinor |+〉, and all the ǭ’s (− helicity) are the same dotted

spinor |−]. However, because no N can be identified with a P of the same line, this

means that the ǫ’s are identified with a P = |+〉[+| of a line with the opposite sign

helicity (−), and all ǭ’s with a P = |−〉[−| of a line with + helicity. In particular, this

means that the one ǭ used on all such lines is not the complex conjugate of the one ǫ

used on all the other lines. The naive way to interpret this would be to say that all

the lines of positive helicity are in one lightcone gauge, and all the lines of negative

helicity are in a different lightcone gauge. However, a much simpler way to interpret

this is to say that all lines are in the same gauge, defined by the vector

N = |+〉[−|, N ·A = 0 (26)

This N is complex; it is also spacelike, since 〈pp〉 = 0, so it is orthogonal to the two

lightlike vectors (external momenta) |±〉[±|, as well as being null. Thus, we have a

complex spacelike (axial) gauge.

Repeating the derivation of the lightcone action with the gauge

a = 0 (27)

eliminating ā by its equation of motion, we now have:

L = 1
2a

+ a−−i

(

∂−

∂
a+

)

[a+, ∂a−]−i

(

∂+

∂
a−

)

[a−, ∂a+]+[a+, ∂a−]
1

∂2
[a−, ∂a+] (28)
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The fact that the three vertices come in helicities ++−, −−+, and ++−− will prove

important later when writing Feynman graphs, since now the ± index on the field

labels its helicity (as seen, e.g., from the external line factors of the previous section

with our present choice of ǫ and ǭ). This action is complex because of the appearance

of ∂ without ∂̄.

In spinor notation in matrix form, we use the basis |+〉[+|, |−〉[−|, |−〉[+|, |+〉[−|:

P = p+|+〉[+| + p−|−〉[−| + p|−〉[+| + p̄|+〉[−| (29)

with the normalization

〈+−〉 = [−+] = 1 (30)

so we can write, e.g., for massless momentum P = |p〉[p|,

p+ = 〈p−〉[−p], p− = 〈+p〉[p+], p = 〈+p〉[−p], p̄ = 〈p−〉[p+] (31)

(We can then identify ± as labelling rows and columns in 2×2 matrix notation; with

our normalization, 〈+| = δα
+ but 〈−| = −iδα

−, so this leads to the harmless redefinition

Aα
.
β = ( a+

−ia

iā

a−
).)

This is as much as we can do in the action; however, when we write down an

explicit amplitude, we identify |+〉[+| with the momentum of one line with negative

helicity (vector or, more generally, spinor), and |−〉[−| with that of a line of positive

helicity. (Alternatively, we can take one functional derivative each with respect to a+

and a− of the S-matrix generating functional, to get a propagator in a background,

and define the functional integral in terms of the momenta associated with the ends

of the propagator. Then the fields in the action in this functional integral become

true scalars.) This defines |±〉 up to phases, and thus |−〉[+| and |+〉[−|, on which

the phase transformation is a rotation in the plane orthogonal to the two momenta.

Thus our choice of the phase 〈+−〉/[−+] = 1 is a further specification of these phases,

while our choice of the magnitude 〈+−〉[−+] = −〈+|[+| · |−〉|−] = 1 is a choice of

(mass) units. In explicit calculations, we restore generality (in particular, to allow

momentum integration) by inserting appropriate powers of 〈+−〉 and [−+] at the end

of the calculations, as determined by simple dimensional and helicity analysis. (This

avoids a clutter of normalization factors
√

〈+−〉[−+] at intermediate stages.) For

example, looking at the form of the usual spinor helicity external line factors, and

counting momenta in the usual Feynman rules, we see that any tree amplitude (or

individual graph) in pure Yang-Mills must go as

〈 〉2−E+ [ ]2−E
− (32)
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where E± is the number of external lines with helicity ±.

We now return to external line factors. The naive factors for the above Lagrangian

are 1, since the kinetic term resembles that of a scalar. However, this would lead to

unusual normalization factors in probabilities, which are not obvious in this complex

gauge. Therefore, we determine external line factors from the earlier spinor helicity

expressions for external 4-vectors.

(ǫ+)+ = −〈−|[−| ·
|+〉|p]

〈+p〉
=

[−p]

〈+p〉
(33)

(ǫ−)− = −〈+|[+| ·
|p〉|−]

[−p]
=

〈+p〉

[−p]
(34)

Note that these factors are inverses of each other, consistent with leaving invariant

(the inner product defined by) the kinetic term.

An exception is the external line factors for the reference momenta themselves,

where |p〉 = |∓〉 for helicity ± gives vanishing results. However, examination of the

Lagrangian shows this zero can be canceled by by a 1/∂ in a vertex, since p = p̄ = 0 for

the reference momenta by definition. (Such cancellations occur automatically from

field redefinitions in the lightcone formulation of the self-dual theory.) The actual

expressions we want to evaluate, before choosing the reference lines, are then

p−

p
(ǫ+)+ =

〈+p〉[p+]

〈+p〉[−p]

[−p]

〈+p〉
=

[p+]

〈+p〉
(35)

p+

p
(ǫ−)− =

〈p−〉[−p]

〈+p〉[−p]

〈+p〉

[−p]
=

〈p−〉

[−p]
(36)

Evaluating the former at |p〉 = |−〉 and the latter at |p〉 = |+〉, we get 1 in both cases.

In summary, for reference lines: (1) use only the 3-point vertex of the corresponding

self-duality (± ± ∓ for helicity ±), and use only the term associating the singular

factor with the reference line (the other term and the other vertices give vanishing

contributions); (2) including the momentum factors on that line from the vertex, the

external line factor is 1.

Obviously, the uniqueness of the vertex term for a reference line is a considerable

additional simplification for the rules. As examples, consider the amplitudes in pure

Yang-Mills that are known to vanish by supersymmetry [8]: By simple counting of

+’s and −’s, we see that the tree graphs with the fewest external −’s, those with only

self-dual vertices (++−), have a single external −. Thus the all + amplitude vanishes

automatically. Furthermore, the diagrams with a single external − must have that
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line chosen as one of the reference lines. However, by the above rules that line can

carry only the anti -self-dual vertex (−−+), so those amplitudes also vanish.

The vanishing of these amplitudes is also easy to see in the usual spinor he-

licity formalism: In the spacecone gauge, the only nonvanishing inner products of

polarization vectors are between those of opposite helicity, neither of which can be a

reference line. Since by momentum counting a tree graph in pure Yang-Mills theory

must have at least one such product (as opposed to momentum times polarization),

nonvanishing graphs must have at least two external lines of each helicity (including

reference lines) [4]. The amazing thing about our spacecone approach is that our

corresponding arguments of the previous paragraph make no reference to momenta

or inner products; this extends to the avoidance of vanishing terms in nonvanishing

amplitudes, where the usual spinor helicity methods require explicit index algebra.

The vanishing amplitudes can also be seen from supersymmetry. On the other

hand, supersymmetry is not required on the spacecone, because it is already built in:

The half of the supersymmetry transformations actually used are trivial on the space-

cone (or lightcone), reflecting the fact that the terms in the Lagrangian are identical

for different helicities except for the placement of factors of the transverse momentum

component p (or, in the usual lightcone formalism, the longitudinal component p+).

In fact, in the self-dual theory, because of field redefinitions, the terms are identical

without exception.

5. More examples

The simplest nonvanishing amplitude is ++−−. We use color ordering; i.e., we

examine only planar diagrams for each permutation of external lines. We consider

the case where the helicities are cyclically ordered as ++−−; we label them 1234,

and choose 1 and 4 as the reference lines; this amplitude can be denoted as ⊕+−⊖.

(P4 = |+〉[+], P1 = |−〉[−|: The positive-helicity reference line gives the reference

momentum for negative helicity, and vice versa.) There are only three diagrams;

however, the + reference line uses only the ++− vertex, while the − reference line uses

only the −−+ vertex, so the 4-point-vertex diagram vanishes, as does the diagram

with both reference lines at the same vertex. Thus, we are left with only 1 graph.

Furthermore, we know that the 3-point vertices contribute only 1 term to the reference

line, so this graph has only 1 term. This means we can immediately write down the

answer:

Atree(+ + −−) = ǫ2+
+ǫ3−

−p2p3
1

1
2(P3 + P4)2
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=
[−2]

〈+2〉

〈+3〉

[−3]
〈+2〉[−2]〈+3〉[−3]

1

〈34〉[34]

1

〈+−〉[−+]
=

[12]2〈34〉

[34][41]〈14〉
(37)

where we have restored helicity and dimensions. Using the identities, following from

overall momentum conservation,

(P1 + P4)
2 = (P2 + P3)

2 ⇒ [41]〈14〉 = [23]〈32〉 (38)

∑

|p〉[p| = 0 ⇒ 〈34〉[14] = −〈32〉[12] (39)

this can be put in the standard form

Atree(+ + −−) =
[12]4

[12][23][34][41]
(40)

(Similar manipulations cast it into the form 〈34〉4/〈12〉〈23〉〈34〉〈41〉.)

By comparison, the Fermi-Feynman gauge would produce 75 terms for this cal-

culation, and the Gervais-Neveu gauge 19 terms. The usual spinor helicity methods

eventually reduce this to the same 1 graph and 1 term, but only after examining the

vector products among polarization vectors and momenta. Although relatively simple

in this example (the easiest), tracking indices across diagrams (through propagators)

can be tedious in general. The spacecone eliminates this index algebra, since the

fields are effectively scalars. Similar remarks apply to amplitudes involving fermions,

where spinor algebra is involved when spinor helicity is applied to the usual Feynman

rules, but no such algebra appears on the spacecone. Of course, the final result will

always contain Lorentz products, and some manipulation may be used for further

simplification, but no algebra whatsoever is required on the spacecone to eliminate

vanishing graphs or terms.

A more complicated example is the +++−− amplitude. Again taking color-

ordered (planar) amplitudes, we choose the amplitude cyclically ordered as +++−−

with lines labeled 12345, picking 1 and 5 as the reference lines, which we denote as

⊕++−⊖. Again dropping all graphs with a reference line at a 4-point vertex or 2

references lines at a 3-point, all 5 graphs with a 4-point vertex are killed, and only

3 of the remaining 5 survive. Since 3-point vertices with (without) a reference line

have 1 (2) terms, we are left with only 6 terms. (We also need to consider various

combinations of + and − indices, but only 1 survives for each graph because of the

chirality of 3-vertices with reference lines.) The initial result for the amplitude is then

Atree(+ + + −−) =

13



ǫ2+ǫ3+ǫ4−





p2p
2
4

(

p−
2

+1

p2
−

p−
3

p3

)

(P1 · P2)(P4 · P5)
−

p3
4

(

p−
2

p2
−

p−
3

p3

)

(P2 · P3)(P4 · P5)
−
p2

2p4

(

p−
2

+1

p2
−

p−
3

p3

)

(P1 · P2)(P3 · P4)



 (41)

where we have used the fact that the reference lines have trivial momenta: 1 for the

component with ± index opposite to its helicity, 0 for the remaining components.

The two terms for each diagram simplify to one, using

p−

p
=

[p+]

[−p]
⇒

p−2
p2

−
p−3
p3

=
[2+][−3] − [3+][−2]

[−2][−3]
=

[23]

[−2][−3]
(42)

with our normalization. Using this result, we find the similar result

p−2 + 1

p2
−
p−3
p3

=
〈+−〉[−3] + 〈+2〉[23]

〈+2〉[−2][−3]
=

〈+4〉[34]

〈+2〉[−2][−3]
(43)

applying momentum conservation. We next translate the momentum denominators

into twistor notation, and also substitute the spacecone expressions for the polar-

izations and numerators. Cancelling identical factors in numerator and denominator

(but no further use of identities), the amplitude becomes (+ = 5, − = 1)

〈+4〉3

〈+2〉〈+3〉

(

[−4][34]

〈2−〉[4+]
+

[−4]2

〈23〉[4+]
+

〈+2〉[−2]

〈2−〉〈34〉

)

=
〈+4〉3

〈+2〉〈+3〉

(

−
〈+2〉[−4]

〈2−〉〈23〉
+

〈+2〉[−2]

〈2−〉〈34〉

)

= −
〈+4〉3

〈2−〉〈23〉〈34〉

= −
〈45〉4

〈12〉〈23〉〈34〉〈45〉〈51〉
(44)

applying momentum conservation twice, restoring normalization, and replacing the

numerals for ±.

By comparison, in the usual spinor helicity formalism we find only the same 3

diagrams contribute: In this formalism also, the two reference momenta can’t be on

the same 3-point vertex. Unlike the spacecone, a reference momentum can attach to

a 4-point vertex as long as the opposite line is off-shell; fortunately, that isn’t possible

in this example. In general, a 3-point vertex with an attached reference line and one

other external line can now have 2 terms instead of 3; the same is true for a 3-point

vertex with two external lines of the same helicity. This reduces the naive 81 terms

to 42. More detailed algebra eventually reduces this to 8 terms. The algebra involved

in enumerating these terms is comparable in difficulty to that of all the rest of the

calculation. (In practice, this amplitude is evaluated by applying supersymmetry to

the 3-gluon-2-quark amplitude.)
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Furthermore, the algebra of the nonvanishing terms is more complicated with the

usual spinor helicity, because vector products have to be evaluated in terms of spinor

products, after which terms can be collected. For example, the inner product of two

polarization vectors in the usual spinor helicity formalism is

ǫi+ · ǫj− =
〈+|[i|

〈+i〉
·
|j〉|−]

[−j]
= −

[−i]

〈+i〉

〈+j〉

[−j]
= −(ǫi+)+(ǫj−)− (45)

in spacecone language; the inner product of two vectors has been replaced with the

product of two scalars. Similar remarks apply to

ǫi±,ref · Pj = 〈+|[−| · |j〉|j] = 〈+j〉[−j] = pj (46)

which is just the transverse momentum component, appearing in the spacecone 3-

point vertex. With the spacecone method, this algebra has already been done, which

allows some collection of terms and common factors even before substituting explicit

twistor expressions. In particular, the polarizations now appear as an overall scalar

factor for the whole amplitude; the rest is all momenta, so identities involving mo-

mentum conservation can be applied more generally between graphs.

6. Recursion relations

Another method used to derive higher-point amplitudes is the classical Schwinger-

Dyson equations, i.e., the classical field equations with perturbative (multiparticle)

boundary conditions at infinite times. (In the literature, the field has often been

mistaken for the current; as usual, these are distinguished by the fact the field always

has an external propagator, while the current has it amputated, since φ+ ... = J .)

The steps are: (1) Calculate the first few terms in the series (enumerated by the

number of external lines). (2) Guess the general result. (3) Prove that it is correct

by induction, using the Schwinger-Dyson equations. Of course, the second part is

the hardest in general (at least when one simplifies the third step by using spacecone

methods), and has been possible for just a couple of cases, only because the results

for those cases are so simple.

The solution to the classical field equations is given by tree graphs with all exter-

nal lines but one (the field itself) amputated and put on shell [9]. (The usual external-

line wave functions describe the asymptotic field, which is free.) This method has

been used to find several tree amplitudes at finite point order as well as the two well

known cases with all the on-shell lines possessing the same helicity, or one different
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[4,7]. Note that the field a± has a ∓ associated with the opposite end of its external

propagator. We then see in the former case, with all +’s on on-shell lines, that a−

vanishes because there are no fully-amputated diagrams, even off-shell, with only +’s

externally (again counting +’s and −’s on vertices). Similarly, for the latter case, with

only one − on an on-shell line, we see that a− has only ++− vertices; but setting that

one on-shell − to be a reference line (which by definition must be on-shell), it is not

allowed such a vertex, so a− vanishes also in this case. This constrasts with the usual

spinor helicity method, where the analog of the vanishing of a− requires an inductive

proof. By similar reasoning, we see that a+ in the former case consists entirely of

++− vertices; and in the latter case consists of all ++− except for one −−+ (no

++−−), which must have the − reference line directly attached. The appearance of

only the self-dual field (a+) and almost only the self-dual vertex (++−) means that

in both cases one is essentially solving the field equations in the self-dual theory [6].

We now consider in more detail the simpler (former) example (the one which

does not directly give a nontrivial scattering amplitude). As a slight simplification,

we look at the recursion relation for the field as defined in the self-dual theory: From

the results at the end of section 2, we write

a+ = pφ (47)

(Implicitly, we also have a− = p−1φ̂. These redefinitions make the ++− vertex local.)

The recursion relation is now

φ(1, n) =
1

1
2P

2(1, n)

n−1
∑

i=1

φ(1, i)φ(i+ 1, n)[p−(1, i)p(i+ 1, n)− p(1, i)p−(i+ 1, n)] (48)

P (j, k) ≡
k

∑

m=j

Pm (49)

where we again use color ordering, number the external lines cyclically, and φ(j, k)

denotes the field with on-shell lines with momenta Pj through Pk. (Thus, on the

left-hand side of the equation the field has n on-shell lines, while on the right-hand

side the two fields have i and n−i.) Plugging in the twistor expressions for the vertex

momenta, we find

p−(1, i)p(i+ 1, n) − p(1, i)p−(i+ 1, n) =

i
∑

j=1

n
∑

k=i+1

〈+j〉[jk]〈+k〉 (50)
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If we are clever we can guess the general result from explicit evaluation of the

lower-order graphs; instead we find in the literature [7], after the above redefinition,

φ(i, j) =
1

〈+i〉〈i, i+ 1〉 · · · 〈j − 1, j〉〈+j〉
(51)

For the initial-condition case n = 1 this is simply the statement that the external line

factor for φ is now

ǫφ =
(ǫ+)+

p
=

1

〈+p〉2
(52)

The induction hypothesis is also easy to check: The product of the two φ’s from the

induction hypothesis gives the desired result by itself up to a simple factor:

φ(1, i)φ(i+ 1, n) = φ(1, n)
〈i, i+ 1〉

〈+i〉〈+, i+ 1〉
(53)

(The algebra of the color indices works as usual.) We then perform the sum over i

before that over j and k (the complete sum is over all i, j, k with 1 ≤ j ≤ i < k ≤ n),

making use of one of the identities used in the usual spinor helicity evaluation,

〈ab〉

〈+a〉〈+b〉
+

〈bc〉

〈+b〉〈+c〉
=

〈ac〉

〈+a〉〈+c〉
⇒

k−1
∑

i=j

〈i, i+ 1〉

〈+i〉〈+, i+ 1〉
=

〈jk〉

〈+j〉〈+k〉
(54)

Multiplying this by the vertex momentum factor gives a sum over j < k of 〈jk〉[jk] =

Pj · Pk, cancelling the external propagator, yielding the desired result.

7. Conclusions

We have introduced a complex gauge formalism useful for reducing further the

algebraic complexity associated with vector amplitude calculations. The results here

generalize naturally to theories containing additional matter. We have seen that the

spacecone formalism simplifies the algebra in massless Feynman diagrams to such

an extent that supersymmetry identities are no longer needed. Index algebra at

intermediate stages of the calculation is eliminated; the only remnant of spin indices

on fields is the ± label for helicity of the two components of the spacecone Yang-Mills

field. Our complex spacelike gauge, together with the use of reference momenta,

incorporates all the ideas of spinor helicity, and extends them to internal lines and

vertices through lightcone-type techniques.

Although we have considered only tree graphs in this paper, the method applies

straightforwardly to loops. Alternatively, since auxiliary fields are often useful in the

analysis of effective actions (including renormalization), one might use a background
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field formalism, where a Fermi-Feynman or Gervais-Neveu gauge would be used to

calculate the gauge-invariant effective action first, and then the effective action would

be evaluated in the spacecone gauge to derive S-matrix elements.
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