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Abstract

The leading-twist valence-quark distribution function in the pion is obtained at a
low normalization scale of an order of the inverse average size of an instanton ρc.
The momentum dependent quark mass and the quark-pion vertex are constructed
in the framework of the instanton liquid model, using a gauge invariant approach.
The parameters of instanton vacuum, the effective instanton radius and quark mass,
are related to the vacuum expectation values of the lowest dimension quark-gluon
operators and to the pion low energy observables. An analytic expression for the
quark distribution function in the pion for a general vertex function is derived.
The results are QCD evolved to higher momentum-transfer values, and reasonable
agreement with phenomenological analyzes of the data on parton distributions for
the pion is found.

Key words: Instanton liquid model, quark-pion coupling, pion distribution
function and moments, renormalization group evolution

1 Introduction

Hadron structure functions, in terms of quark and gluon distributions specifying the frac-
tion xp of the initial hadron momentum p carried by the active parton, play an important
role in QCD inclusive processes. Although the evolution of parton distributions at suffi-
ciently large virtuality Q2 is controlled by the renormalization scale dependence of twist-2
quark and gluon operators within QCD perturbation theory, the derivation of the parton
distributions themselves at an initial Q2 value from first principles still remains a chal-
lenge. Hence, central predictions unknown in QCD are parton distributions at relatively
low virtuality determined in a nonperturbative scheme.
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There is some recent progress in the calculation of moments of the pion and ρ− meson
parton distributions [1] within the lattice QCD (LQCD) using Wilson fermions in the
quenched approximation, where internal quark loops are neglected. These LQCD predic-
tions for the moments of the pion distribution function confirm the results of previous an-
alyzes [2], being also in qualitative agreement with that extracted phenomenologically[3,4]
from experiment[5]. However, the calculated moments are still of a relatively low accuracy.
Besides, only a few lowest-order moments are available, while the reconstruction of the
x-dependent distributions needs, in principle, the knowledge of all moments. Furthermore,
the QCD sum rules calculations of parton distributions in the pion are only moderately
successful [6], the results being justified in a limited region of the scaling variable x.

Recently, the quark distribution function in the pion was obtained [7] in the framework of
the Nambu - Jona - Lasinio (NJL) model [8]. These and similar studies are based on the
assumption that the calculation of the twist-2 matrix elements, within the QCD inspired
effective approaches, gives distributions at a low momentum scale µ0

<∼ 1 GeV, where
such effective theories make sense. The distributions obtained are extrapolated to higher
experimentally accessible momentum scales using perturbative QCD, so that comparison
with experimental data can be made. However, the problem of the NJL model is that it
is nonrenormalizable and thus, to avoid this defect, different ad hoc assumptions about
momentum cutoff parameters are introduced.

The instanton model of the QCD vacuum (for recent review see , e.g., [9,10]), which gives
the dynamical mechanism of chiral symmetry breaking and provides the solution of the
UA(1) problem[11], describes well the properties of pion [12–14] and kaon [15]. Moreover,
it dynamically generates the momentum-dependent effective quark mass Mq and quark-
-pion vertex gπqq, and, as a consequence, provides inherently a natural ultraviolet cutoff
parameter in the quark loop integrals through the effective instanton size ρc. On these
grounds, one may believe that the instanton vacuum framework represents an important
advance with respect to NJL-type models. The first attempt to calculate the pion structure
function within the instanton model has been made in [16]. More recently, important
progress has been achieved [17,18] in calculating quark distributions in the nucleon within
instanton-inspired approaches.

In the present paper, based on the quark-pion dynamics in the framework of the instan-
ton liquid model, we calculate the leading-twist valence-quark distribution in the pion
at a low normalization point of the order of the inverse average instanton size ρc. The
calculations are performed in a gauge-invariant manner by taking into account P − exp
factor explicitly in the definition of nonlocal quantities [19,20] and gauging the nonlocal
quark - pion interaction[21,22]. The momentum dependent quark mass and quark - pion
vertex are constructed. The parameters of the instanton vacuum, effective instanton ra-
dius and quark mass, are related to the vacuum expectation values (VEV) of the lowest
dimension quark-gluon operators and to the pion low energy observables. We derive the
quark distribution in the pion and all its moments for the general form of the effective
quark - pion vertex function. The validity of the isospin and total momentum parton sum
rules is ensured by the pion compositeness condition[23], and it is consistent with the
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gauge invariant approach. As the effective instanton model is valid for values of the quark
relative momentum up to p ∼ ρ−1

c ≈ 0.5−1 GeV, the parton distributions calculated here
are defined at this (low) normalization point µ0 ∼ ρ−1

c . The results are QCD evolved to
higher momentum-transfers, and we found reasonable agreement with phenomenological
analyzes of the data on the pion distribution function.

The paper is organized as follows. In Sect. 2, we briefly outline the instanton liquid model
and introduce the quark-pion vertex. In Sects. 3 and 4, the parameters of the instanton
vacuum model are related to the vacuum expectation values of the lowest dimension quark-
gluon operators and to the pion low energy observables. Then, we derive the expressions
for the moments of the pion distribution (Sect. 5) and for the x-dependent distribution
itself (Sect. 6), followed by the QCD evolution to higher values of the momentum transfer.
In the last section, the results are discussed.

2 The instanton liquid model and the quark-pion vertex

We start with the nonlocal, chirally invariant Lagrangian of the instanton liquid model[9,10],
which describes the soft quark fields with the soft gluon fields being integrated out. The
corresponding action for quarks interacting through the ’t Hooft vertices[11] can be ex-
pressed in a form similar to that of the NJL model

Sinst =
∫

d4x q̄(x)i∂̂q(x) +
∫

d4xd4x′d4yd4y′ K(x, x′; y, y′) ·

· 1

4(N2
c − 1)

{[

2Nc − 1

2Nc
(q̄R(x

′)τaqL(x)) (q̄R(y
′)τaqL(y))+ (1)

+
1

8Nc

(q̄R(x
′)τaσµνqL(x)) (q̄R(y

′)τaσµνqL(y))
]

+ (R ↔ L)
}

.

Here, τa = (1, i~τ) are the matrices for the flavor space, Nc = 3 is the number of colors,
and

qR(L)(x) =
1± γ5

2
q(x)

are the quark fields with definite chirality. In the following we neglect the current quark
mass and restrict ourselves only by the nonstrange quark sector. In eq. (1), the kernel of
the four-quark interaction K(x, x′; y, y′) characterizes the region of the non-local quark--
(anti)quark instanton induced interaction. It is dominated by the contribution of the zero
mode quark wave functions in the field of (anti-)instanton:

K(x, x′; y, y′) =
∫

dn(ρ)d4zdU
[(

i∂̂ϕρ(x− z)
)(

i∂̂ϕ†
ρ(x

′ − z)
)]

·

·
[(

i∂̂ϕρ(y − z)
)(

i∂̂ϕ†
ρ(y

′ − z)
)]

, (2)
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where ϕρ(x) is a quark zero mode profile function. In eq. (2), n(ρ) denotes the density of
instantons with size ρ, z is the position of the instanton in the configuration space, and
dU is the color-space phase factor.

The spin-flavor structure of the action eq. (1) is invariant under the global axial q(x) →
exp (iγ5τ · θ)q(x) and vector transformations q(x) → exp (iτ · θ)q(x) and it anomalously
violates the UA(1) symmetry: q(x) → exp (iγ5θ)q(x). Within the instanton liquid model
[24,13,14] it is argued that due to the long range instanton - anti-instanton interaction,
configurations with large size instantons are strongly suppressed and the instanton density
is sharply peaked at some finite average instanton size ρc in the form n(ρ) = ncδ(ρ −
ρc). Since the instanton liquid is assumed to be dilute, the mean separation between
instantons is much larger than the average instanton size and the effective density nc

is a small parameter of the approach. The values of nc and ρc are estimated from the
phenomenology of the QCD vacuum and hadron spectroscopy to be nc ∼ 1 fm−4, and
ρc changes within an interval (1.5 − 2) GeV −1, where we put less restrictive limits on
the range of values. It is important to note that the effective instanton size ρc, which
defines the range of nonlocality, serves as a natural cutoff parameter of the effective low
energy model. Moreover, the coupling constants of the model, eq. (2), are also expressed
through the fundamental parameters describing the QCD instanton vacuum, nc and ρc.
The model incorporates all attractive features of the NJL model and, at the same time,
is free of arbitrariness in the choice of the ultraviolet cutoff procedure and physically all
parameters are well understood. These peculiarities provide important advantages of the
instanton model as compared to different versions of the NJL model (for a review, see,
e.g., [8]).

The instanton induced interaction of quarks is responsible for strong spin-dependent forces
in hadron multiplets[25]. In particular, this force is attractive for quark-antiquark states
with vacuum and pion quantum numbers, repulsive for the singlet part of η′, and absent
(in the zero mode approximation) in the vector-like channels ρ, ω, etc. If the attraction
is sufficiently large, it can rearrange the vacuum and bind a quark and an antiquark to
form a light (Goldstone) meson state.

To study the formation of quark-antiquark bound states in the instanton liquid, it is
convenient to rewrite the four-fermion term in the action eq. (1), linearizing the bilocals
q̄(x)q(y) and q̄(x)γ5~τq(y) by introducing the auxiliary composite meson 1 fields M(x)[26]
(mean field approximation) by virtue of the separability of the four-quark kernel. Then,
we arrive at the following form of the effective nonlocal action corresponding to eq. (1):

S = S0 + Sint, (3)

where S0 is the free action for quark and meson fields

1 In this work we do not include explicitly the diquark part of the interaction generated by
instantons.
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S0 =
∫

d4x
{

q̄(x) iD̂q(x) +
1

2

[

σ(x)(∆−m2
σ)σ(x)

]

+
1

2

[

~π(x)(∆−m2
π)~π(x)

]

}

, (4)

and Sint is the quark-meson interaction part

Sint = −
∫

d4Xd4x1d
4x2 F (x1, x2;µ

2
0) · (5)

·q̄(X + x1) E(X + x1;X − x2)[Mq + gMq̄q(Γ · T )M(X)] q(X − x2),

with Dirac and isospin matrices for different meson states according to (Γ · T )σ = I · I,
(Γ · T )π = iγ5 · ~τ . In eq. (5), gMq̄q is the quark-meson coupling constant and Mq is the
effective quark mass fixed in a gauge - invariant manner (see below) by the compositeness
condition eq. (14) and the gap equation (15) in terms of the instanton density nc and
the instanton size ρc. In Eqs. (4, 5) we neglect the terms induced by tensor interaction in
eq. (1) since they do not contribute to the scalar channels.

To ensure the gauge invariance of the bilocal quark operators, which enters in Eqs. (3 - 5),
with respect to external electromagnetic Aµ(z) and strong Aa

µ(z) gauge fields, we include
into eq. (5), following [21], the path-ordered Schwinger phase factors

E(x; y) = Eγ(x; y) ·Eg(x; y), (6)

Eγ(x; y) = P exp







−ieQ

y
∫

x

dzµ Aµ(z)







,

Eg(x; y) = P exp







−ig
λa
c

2

y
∫

x

dzµ Aa
µ(z)







,

where the charge matrix is Q = (1/3 + τ 3f )/2, and the partial derivative ∂µ is replaced
by the covariant one Dµ = ∂µ − ieAµ − igAa

µλ
a/2. We adopt here that the integral in the

exponent is evaluated along a straight line with P being the path-ordering operator. The
incorporation of a gauge - invariant interaction with gauge fields is of principal importance
in order to treat correctly the hadron characteristics probed by external sources such as
hadron form factors, structure functions, etc.

The Fourier transformed gauge-invariant nonlocal vertex function F̃ (k1, k2;µ
2
0) describes

the amplitude of soft transition of a pion with momentum p into a quark and an antiquark
with momenta k1 = p + k/2 and k2 = p− k/2, respectively. This function represents the
full interaction vertex with all quark-gluon excitations, harder than the scale µ0 ∼ 1/ρc,
strongly (exponentially) suppressed. It is defined

F (k1, k2;µ
2
0) =

√

Q̃(k1)Q̃(k2). (7)
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through the quark propagator Q̃(p) normalized at zero to unity

Q̃(p) =
1

(2π)2
p2

ρ2c

∫

d4x exp(−ip · x)Q(x2), (p = |p|) , (8)

where

Q(x2) = 〈: q̄(0)Eg(0, x)q(x) :〉/〈: q̄(0)q(0) :〉 (9)

is the normalized instanton induced nonperturbative part of the gauge invariant quark
propagator in configuration space. Using the explicit expressions for the instanton field
and quark zero mode the gauge-invariant quark propagator is given by [24,19,20]

Q(x2) =
8ρ2c
π

∞
∫

0

drr2
∞
∫

−∞

dt
cos[ r

R
(arctan( t+|x|

R
)− arctan( t

R
))]

[R2 + t2]3/2[R2 + (t+ |x|)2]3/2 , (10)

where R2 = ρ2c + r2, r = |~z|, t = z4. In the derivation of these equations a reference frame
is used, where the instanton is at the origin and xµ is parallel to one of the coordinate
axes, say µ = 4, serving as a “time” direction (i .e., ~x = 0, x4 = |x|). The propagator has
the following expansions at small and large distances:

Q(x2) =















1− 1

4
x2

ρ2c
+ ... as x2 → 0;

2
ρ2c
x2 + ... as x2 → ∞.

The gauge-invariant quark propagators in configuration and momentum representation
are plotted in Figs. 1 and 2, respectively, along with the propagators derived in neglecting
P − exp factor in (9) and using the expressions for the quark zero mode in the singular
and regular gauges. In the regular gauge, one has

Qreg(x
2) =

2

y2

(

1− 1√
1 + y2

)∣

∣

∣

∣

∣

y =
x

2ρc

. (11)

In the momentum representation, the normalized quark propagators (without P − exp
factor) are proportional to the square of the quark zero mode in the corresponding regular
and singular gauges:

Q̃reg(p)= exp (−2ρcp) (12)
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Q̃sing(p)=















z
d

dz
[I1(z)K1(z)− I0(z)K0(z)]

∣

∣

∣

∣

∣

z =
ρcp

2















2

. (13)

From Fig. 2, one can observe that in the momentum representation the shape of the
propagator is very sensitive to the P − exp factor 2 .

One of the advantages of using the gauge - invariant formalism is that the parameters
of the model, such as the size of instantons and the effective quark mass, gain physical
meaning. As a consequence, all other physical quantities expressed through these parame-
ters become automatically gauge - invariant ones. Moreover, they could be compared with
those calculated in the lattice QCD, QCD sum rules or other QCD inspired approaches.
In contrast, when one deals with noninvariant - gauge objects there can be chosen any
convenient gauge. It is most correct to consider the instanton vacuum field in the singular
gauge and to construct the effective action in this specific gauge [9,10]. In the coordinate
space in the singular gauge the instantons fall off rapidly enough to provide small overlaps
of neighbor pseudoparticles and quasiclassical considerations are justified. But at the end
the action has to be independent on the choice of the gauge, otherwise the form of the
action and other observables look rather awkward. This explicitly gauge invariant form is
suggested in Eqs. (1 - 5). Note also that the quark propagator, eq. (9), has a direct physi-
cal interpretation in the heavy quark effective theory of heavy-light mesons as it describes
the propagation of a light quark in the color field of an infinitely heavy quark [24].

It is important to emphasize that the meson fields entering the action eq. (3) are renor-
malized and the field renormalization constants of composite mesons are set equal to
zero,

ZM = 1− g2Mqq̄

∂ΠM (p2)

∂p2

∣

∣

∣

∣

∣

p2=−m2

M

= 0, (14)

where ΠM(p2) is the meson field polarization operator. This condition [23] fixes the cou-
plings of meson fields to quarks, gMqq̄, (see section 4) and is a consequence of the com-
positeness of hadron states manifesting themselves as poles in the quark-(anti)quark scat-
tering amplitude. As we will see below, it is precisely this condition supplemented by the
gauge - invariance of the effective action, given by eq. (3), that leads to the correct parton
isospin and momentum sum rules in the model.

2 To avoid inconsistency with gauge invariance, one cannot use the treatment of the quark
propagator in the p−representation, in factorizable form, as done in ref. [19].
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3 Dynamical quark mass and expectation values of quark-gluon operators

Due to the effect of spontaneous breaking of the chiral symmetry, the momentum de-
pendent quark mass Mq(k) is dynamically developed. It obeys the well-known gap equa-
tion[9,14] 3

∫

d4k

(2π)4
M2

q (k)

k2 +M2
q (k)

=
nc

4Nc
, (15)

the solution of which has the form

Mq(k) = MqQ̃(k). (16)

Given the dynamical mass, the values of the quark condensate,

〈q̄q〉 = −4Nc

∫

d4k

(2π)4
Mq(k)

k2 +M2
q (k)

, (17)

and the average quark virtuality in the vacuum [27],

λ2
q ≡

〈: q̄D2q :〉
〈: q̄q :〉 = −4Nc

〈q̄q〉
∫

d4k

(2π)4
k2 Mq(k)

k2 +M2
q (k)

, (18)

can be found. The average quark virtuality defines the derivative of the quark conden-
sate and thus nonlocal property of it. One of the main suggestion of the QCD sum rule
method [28] was that the local quark and gluon condensates dominate in the light hadron
physics and introduction of higher dimensional corrections or even nonlocal condensates
themselves [27] have not to change the standard results too much. Thus, at least for con-
sistency of local and nonlocal QCD sum rules, the derivative (virtuality) value has to be
relatively small. Phenomenologically, there is rather fine QCD sum rule analysis of this
value [29] where it has to be defined as λ2

q ≈ 0.4 ± 0.2 GeV2. The LQCD calculation
yields λ2

q = 0.55 ± 0.05 GeV 2 [30]. Certainly, there is corrections from direct instantons
to the QCD sum rule result, but they have not to change the result drastically. It would
also be urgent if the LQCD estimation could be confirmed by new calculations. The ratio
η = M2

q (λq)/λ
2
q characterizes the diluteness of the instanton liquid vacuum. The smallness

of η means that the dynamically generated quark mass is not big enough essentially to
modify the instanton vacuum.

3 Here and in the following, all Feynman diagrams are calculated in the Euclidean space
(k2 = −k2E) where the instanton induced form factor is defined and rapidly decreases, so that
no ultraviolet divergences arise. At the very end we simply rotate back to the Minkowski space.
One can verify that the numerical dependence of the results on the pion mass and the current
quark mass is negligible and can be dispensed with in the following considerations.
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For the moment, it is instructive to consider equations Eqs. (15 - 18), neglecting the
term M2

q (k) compared to k2 in the denominator of the integrands. This approximation is
justified in the dilute liquid regime where 〈k2〉 = λ2

q >> M2
q (λq). The observed accuracy

of such procedure is better than 20 − 30% if η < 1. Then, from Eqs. (17) and (18), by
using the explicit forms given in Eqs. (10), (8), (16), we have

〈q̄q〉 = −NcMq

2π2ρc2
, λ2

q =
2

ρc2
. (19)

The first relation, put in the form Mq = −(2π2/Nc)ρc
2〈q̄q〉, coincides with the result

obtained in ref. [31], where the effective quark mass has been defined in a system of
small size instantons interacting with long wave vacuum fields. The coefficient in this
relation is equal to the normalization factor of the momentum representation of the quark
propagator. It turns out that this factor, which is equal to (2π)2, as seen in Eq.(8), is
the same which appears in the gauge-invariant propagator and also in the singular gauge
propagator (without Pexp).

The second relation in eq. (19) has recently been obtained in ref.[20], where nonlocal
properties of the quark condensate are studied within the instanton model. The same
result was also obtained in ref. [32] from direct calculations of the local mixed quark-
gluon condensate in the framework of the Diakonov - Petrov model:

λ2
q

2
=

〈: q̄(igσµνG
a
µν

λa

2
)q :〉

〈: q̄q :〉 . (20)

It is clear, from the expressions for the average quark virtuality, that the range of the
quark - antiquark interaction is characterized by the effective size ρc of the instanton
fluctuations in the QCD vacuum. The natural gauge - invariant definition for the average
quark virtuality, eq. (18) (and also that in eq. (17) for the quark condensate), with Mq(k)
defined in Eqs. (8) and (16), is valid only if the zero mode solution in eq. (8) is written
in the gauge-invariant way. If we substituted its expression in the singular gauge (in
neglecting Pexp factors) in eq. (18), we would obtain λ2

q = 9/(2ρ2c), with a coefficient far
from the correct one.

Inverting the relations eq. (19), we express the parameters of the instanton vacuum
model in terms of the fundamental parameters of QCD vacuum ρc

2 = 2/λ2
q, Mq =

−(4π2/Nc)(〈q̄q〉/λ2
q). If we expected “standard” values for the quark condensate, 〈 q̄q〉 ≈

−(230 MeV)3 (see, e.g., [10]), and for the average quark virtuality, λ2
q ≈ 0.5 GeV 2 [29,30],

we would obtain ρ−1
c ≈ 0.5 GeV and Mq ≈ 0.32 GeV. As we will see in the next section,

the joined analysis of the vacuum and pion properties confirms this estimation.

Within the dilute liquid approximation, the gap equation, (15), leads to
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nc =
NcM

2
q λ

2
q

4π2
In, with In =

∞
∫

0

duuQ̃2(u/ρc) ≈ 0.61, (21)

where the constant In is independent of ρc. There are other different useful combinations
relating vacuum parameters with each other. For example,

〈q̄q〉 = − 1

In

nc

Mq

= − 1

2π
√
In

√

Ncncλ2
q. (22)

These relations have the same parametric dependence as in the estimations obtained in
[24,10] but with different coefficients. The first one expresses the quark condensate in
terms of the effective single instanton contribution times the density of instantons. The
reason for the difference in the coefficients is that in [24], where it looks as 〈q̄q〉 = −nc/Mq,
the expressions were obtained from the instanton formula in the gas approximation by ad

hoc replacing the current quark mass by the effective quark mass. In contrast, in deriving
eq. (22) this replacing procedure is fixed by the gap equation eq. (15), with a definite
coefficient mainly defined by the slope of the form factor Mq(k). The second relation
represents a self-consistent value of the quark condensate in the instanton vacuum model
(cf. [10]). Further, since the instanton contribution to the value of the gluon condensate

is given by: 〈αs

π
G2〉|inst = 8nc, it can be expressed through the quark condensate and the

average quark virtuality

〈αs

π
G2〉|inst =

25π2In
Nc

〈q̄q〉2
λ2
q

<∼ 0.019 GeV 4. (23)

The “standard” value of the gluon condensate estimated in the original work, in ref. [28],
was 〈(αs/π)G

2〉 ≃ 0.012 GeV4. The latest reanalysis [33] of the QCD sum rules for heavy
and light mesons and also recent lattice results [34] provide values which are twice or even
larger than the “standard” one.

4 Pion low energy observables

Let us now consider the low-energy observables of the pion. The pion - quark coupling
constant is determined by the compositeness condition, eq. (14), with the pion mass
operator being

Ππ(p
2) = Nc

∫ d4k

(2π)4
F̃ 2(k, k + p;µ2

0)Tr{γ5S(k + p)γ5S(k)}, (24)

where the normalized nonlocal vertex is given in (7) and the quark Green function is
S(k) = [MqQ̃(k) + k̂]−1 with Q̃(k) defined in (8).
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From the definition eq. (14) we derive the expression for the pion - quark coupling constant
gπqq̄

g2πqq̄ =
2π2

NcIgπ(−m2
π)
. (25)

In the case of a massless pion, the integral Igπ reduces to

Igπ(0) =

∞
∫

0

dk k3Q̃(k)

D2(k)



1− k

4

Q̃′(k)

Q̃(k)
+

(

k

4

Q̃′(k)

Q̃(k)

)2


 , (26)

where

Q̃′(k) =
d

dk
Q̃(k), D(k) = M2

q Q̃
2(k) + k2. (27)

The expression for gπqq̄ given in Eqs. (25) and (26) agrees with that derived in [14].

To fix the parameters in the instanton model, we consider the low energy decay constants
of the pion. As it has recently been shown in [22], in the presence of nonlocal separable
interaction the axial current conserved in the chiral limit can be constructed from the
action eq. (1) by using a Noether - like method. 4 The full current is the sum of local,

jµa5(loc)(x) =
1

2
q̄(x)γµγ5τ

aq(x), (28)

and nonlocal,

jµa5(nl)(x) =
∫ 4
∏

i=1

dxi K(x1, x2, x3, x4){A1(x1, x2, x3, x4)q̄(x1)iγ5τ
aq(x3)q̄(x2)q(x4) +

+A2(x1, x2, x3, x4)iε
abcq̄(x1)τ

cq(x3)q̄(x2)iγ5τ
bq(x4)} (29)

pieces. The coefficients A1 and A2 are derived in ref. [22] and in principle depend on
the gauge fixing procedure. Fortunately, there is no path dependence for the longitudinal
components of the current, and thus, the decay constants considered below are well-
defined.

The axial and vector currents in different isospin states have a similar structure [22]. As
a result, various Ward identities which follow from (partial) current conservation and the

4 One of us (A.E.D.) thanks M.C. Birse for discussion of the problem of current conservation
in the nonlocal models.
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low-energy theorems are satisfied. In particular, the Goldberger - Treiman relation for the
quark-pion coupling constant has the usual form

gπqq =
Mq

fπ
(30)

and the π0 → γγ decay constant

gπγγ =
1

4π2fπ
(31)

is consistent with the requirement of axial anomaly.

We fix the model parameters to give the pion weak decay constant fπ, within 1% of
accuracy. In Table 1, we present the results. For the two model parameters, Mq and ρc,
we show the predictions for the quark-pion coupling gπqq, the quark condensate 〈q̄q〉, the
average vacuum quark virtuality λ2

q and the instanton density nc.

Table 1. The values of the low energy vacuum and pion observables discussed in the
text.

Mq ρc fπ gπqq |〈q̄q〉|1/3 λ2
q nc

(GeV) (GeV−1) (MeV) (MeV) (GeV2) (fm−4)

0.18 1.0 92 3.7 294 2.2 1.56

0.22 1.5 92 5.5 233 1.0 0.86

0.23 1.7 93 6.2 215 0.83 0.70

0.26 2.0 91 7.7 197 0.63 0.57

As shown in Table 1, the values of the parameters Mq and ρc that reproduce the lowest
dimension VEV with an accuracy of an order of 30 % are in the “window”Mq = (220−260)
MeV, ρc = (1.5− 2.0) GeV−1. In the following we use the typical set of parameters:

Mq = 230MeV, ρc = 1.7 GeV −1. (32)

The diluteness condition η = M2
q (λq)/λ

2
q << 1 is well satisfied within the whole “window”.

The momentum dependence of the vertices in the numerators of the integrands (which are
defining physical quantities) is important because it provides the ultraviolet regularization.
Also, due to momentum dependence of the vertices, the measure in the integrals looks like
product of some powers of k2 and the function Q̃(k). This measure has maximum at k2 of

12



order 1/ρ2c and, at small momenta, the momentum dependent quark mass in denominators
can be substituted by an effective constant mass parameter mq ≈ Mq(k ∼ ρ−1

c ). With the
form of momentum distribution shown in Fig. 2, it approximately equals to the mass at
zero, Mq(0). This mass parameter mq has to be identified with the standard constituent
quark mass. Corresponding to this substitution, we redefine the function D(k) given in
eq. (27) as D(k) = m2

q + k2. The choice of the mass parameter,

mq = 230 MeV, (33)

well reproduces the integrals defining the VEV given by Eqs. (15 - 18). This constant -
mass approximation is often used in practice with the quark mass in the region 250− 350
MeV (see, f.i. [18,35,36]).

The model parameters and predictions for vacuum and pion observables are obtained
within a set of approximations. We are working in the chiral limit of zero current quark
mass. Further, within the zero mode approximation small contributions coming from
vector mesons are neglected. Also only the lowest two - quark Fock intermediate state
in the pion is taken into account, which corresponds to the quenched approximation. We
regard that all these factors can change a little the numbers in Table 1, but the qualitative
results discussed are not greatly influent.

5 Moments of the quark distribution function

The standard QCD analysis based on the Operator Product Expansion (OPE) relates
moments of parton distributions at a given scale to the hadronic matrix elements of
local twist-2 operators. This formalism is employed to separate the hard and soft parts
of the forward scattering amplitude. Within the OPE, the hard part is calculable within
perturbation theory in the form of Wilson coefficients. The soft part is represented by a set
of local operators classified by the twist. Their matrix elements accumulate information
on the nonperturbative structure of the QCD vacuum.

The twist-2 gauge - invariant non-singlet local quark 5 operators with flavor j are defined
by

Oj
µ1µ2..µN

= iN q̄j{γµ1
Dµ2

..DµN
}Sqj, (34)

where Dµ = ∂µ − igAa
µτa is the covariant derivative and the symbol {...}S means the

traceless and symmetric part of the tensor. The matrix elements Aj
N of the local operators

5 As in ref. [18], we will neglect gluon operators, justified by the smallness of the diluteness
parameter η.
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Oj
N between pion states |π(p)〉 with momentum p, renormalized at the normalization scale

µ, are defined by

Aj
N(µ

2) =
iN

2
〈π(p)|q̄jn̂(nνD

ν)Nqj |π(p)〉|µ, (35)

where nν is a light-like vector, with n2 = 0 and (np) = 1, introduced to select the symmet-
ric traceless part of the operator Oj

N , eq. (34). Let us now define the quark distribution
for the j−th flavor in terms of its moments, viz.:

Aj
N (µ

2) =

1
∫

0

dx xN−1qj(x, µ
2). (36)

The x−variable is the fraction of the longitudinal pion momentum carried by a quark in
the infinite-momentum frame. The µ2 dependence of Aj

N is known exactly from the solu-
tion of the perturbative QCD evolution equations, while the nonperturbative dynamical
model provides the initial input for this evolution. These initial values of the moments are
calculated here in the instanton model, which specifies a low momentum transfer value
related to the scale µ2

0 ∝ 1/ρ2c .

The N−th moment Aval
N (µ2

0) in the instanton model, from Eqs. (34 - 36), can be expressed
as (see Fig. 3)

Aval
N (µ2

0)pµ1
pµ2

..pµN
= 2Ncg

2
πqq̄

∫

d4k

(2π)4
· (37)

·
{

F̃ 2(k, k + p;µ2
0)Tr[γ5S(k + p){γµ1

(k + p)µ2
..(k + p)µN

}SS(k + p)γ5S(k)]−

−2
[∂F̃ 2(k, k + p;µ2

0)

∂(k + p)2

]

Tr[γ5S(k + p){(k + p)µ1
(k + p)µ2

..(k + p)µN
}Sγ5S(k)]

}

.

Here, due to the nonlocal character of the interaction Eqs. (5 - 6), the additional term with
a derivative ensures gauge invariance of the approach and enables us to satisfy the isospin
and momentum conservation sum rules. Indeed, taking into account the compositeness
condition eq. (14) we get for the first two moments

Aval
1 (µ2

0) = g2πqq̄ ·
∂Ππ(p

2)

∂p2

∣

∣

∣

∣

∣

p2=0

= 1, Aval
2 (µ2

0) =
g2πqq̄
2

· ∂Ππ(p
2)

∂p2

∣

∣

∣

∣

∣

p2=0

=
1

2
. (38)

The results for the first two moments, eq. (38), manifest the (normalization) isospin and
momentum sum rules for the valence-quark distribution function as

1
∫

0

dx qval(x, µ2
0) = 1 and

1
∫

0

dx x[qval(x, µ2
0) + q̄val(x, µ2

0)] = 1, (39)
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where q̄val(x) is the antiquark distribution. The fact that, at the low momentum scale
µ0, the whole momentum in the pion is carried off by the valence quarks is due to the
quenched approximation used, when only valence quark-antiquark intermediate states are
included and all intrinsic quark-gluon sea states are neglected.

Thus, in the quenched approximation the dynamical information contained in the first
two moments is strongly restricted by the symmetries and kinematics, and as a result, it
is model independent. The nontrivial dynamics is contained in the moments with N > 2.
The general structure of the moments of the structure function (SF), from eq. (37), can
be written in the form

ASF
N (µ2

0) =
1

2N−1

[N−1

2
]

∑

i=0

1

2i+ 1

(

N − 1

2i

)

JSF
i (µ2

0), N = 1, 2, ... (40)

with the coefficients JSF
i given by

JSF
i (µ2

0) =
1

Igπ(0)







∞
∫

0

dk k4i+3Q̃(k)

(k2 +m2
q)

2i+3

[

2k2 + (2i+ 3)m2
q

]

+ ...







, (41)

where the vertex terms with derivatives, like that appearing in eq. (26) for Igπ(0), are
denoted by dots. In eq. (40), the square brackets [...] mean the integer part of the number,

and

(

a

b

)

are the binomial coefficients.

It is instructive to consider two extreme cases, depending on the physics under consid-
eration. If the QCD vacuum were a very dense medium, η >> 1, then JSF

i = 0 for all
i except i = 0. As a result, it leads to the set of moments AN = 1/2(N−1) for all n and
to a quark distribution which has the form of a delta function: q(x) = δ(x − 1/2). This
extreme case corresponds to the heavy quark limit, and the coefficients JSF

i represent
consequent corrections in inverse powers of the heavy quark mass: ∼ (〈k2〉/m2

q)
i. In the

opposite extreme case of a very dilute vacuum η << 1 one gets JSF
i = 1 for all i and

AN = 1/N for the moments. This extreme case corresponds to the momentum indepen-
dent quark mass and provides flat quark distribution q(x) = 1. Moreover, the first term in
eq. (41) dominates over the terms indicated by dots, since the latter are small of an order
of O(ρcmq). A realistic situation seems to be somewhere in-between these two extremes.
Note that the role of pion mass is negligible, but the interplay of the effective quark mass
and the slope of the nonlocality in Q̃(k) has an important effect.

6 Quark distribution function and its QCD evolution

Let us now turn our attention to the quark distribution itself. This distribution for the
pion with 4-momentum p is given by (see a graphical representation in Fig. 3)
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q(x;µ2
0)p

µ = 2Ncg
2
πqq̄

∫

d4k

(2π)4
δ[x− 1− (k · n)] · (42)

·Tr
{

γ5S(k + p)

[

F̃ 2(k, k + p;µ2
0)γµS(k + p)− 2

(

∂F̃ 2(k, k + p;µ2
0)

∂(k + p)2

)

(k + p)µ

]

γ5S(k)

}

,

where q(x) = ū(x)val = d(x)val for π
−. Here, we arrive at the quark distribution defined

in a similar manner as that used in [37,38]. The δ[x − 1 − (k · n)]− function appearing
in eq. (42) represents the effective vertex related to the composite operator Oj

N given by
eq. (34). It accumulates information about all moments of the distribution function (37)
and is related to them by a Mellin transformation if the light-cone vector n is normalized
by (pn) = 1. The light-cone vector n serves to project out in Eqs. (37) and (42) symmetric
traceless tensors. It can be easily shown that the first moments of q(x) will reproduce the
parton sum rules eq. (38).

To calculate the k−integral in eq. (42), we use α−representation for the propagators 6 ,

1

k2 +m2
=

∞
∫

0

dα exp
[

−α(k2 +m2)
]

, (43)

and for the vertex δ−function,

δ[x− (k · n)] = 1

2π

∞
∫

−∞

dα exp [iα(x− k · n)]. (44)

Then, a direct calculation from eq. (42) provides the result for the quark distribution,
which in the massless case (m2

π = −p2 = 0) is reduced to

q(x, µ2
0) =

Ncg
2
πqq̄

2π2

∞
∫

0

∞
∫

0

dν1dν2 F (ν1)F (ν2) exp
(m2

q

ν1
+

m2
q

ν2

)

· (45)

·
{[

E1

(

m2
q

xν1

)

+ x̄ exp

(

−m2
q

xν1

)]

Θ(x̄ν2 ≥ xν1) + (x ↔ x̄)

}

.

In the above equation, x̄ = 1 − x, E1(z) is the integral exponential, and F (ν) is the
correlation function related to the vertex function Q̃(k) by the Laplace transformation.
The vertex Q̃(p), in the essential region of p (0 ≤ p ≤ 4/ρc) is approximated by

Q̃(p) = 4.5 exp (−1.9ρcp)− 3.5 exp (−3.6ρcp), (46)

6 For details, see ref. [38].
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which leads to the Laplace transform,

F (ν) =
ρc√
π
√
ν

[

8.55 exp(−0.9ρ2cν)− 12.6 exp(−3.24ρ2cν)
]

. (47)

Let us stress that the expressions eq. (40) for the moments and eq. (45) for the valence-
quark distribution in the pion are universal ones and valid for any shape of the functions
Q̃(k) and F (ν), which in turn are determined by the concrete model of the quark-pion
dynamics.

The quark distribution q(x, µ2
0) and the momentum distribution (structure function)

xq(x, µ2
0) are shown graphically in Fig. 4. We have to note that the shape of the dis-

tribution is quite stable with respect to changes of the instanton model parameters, if
they are fixed to reproduce the pion low energy properties. We remind that we are com-
puting only the leading-twist distributions at a low normalization point µ0 ∼ ρ−1

c rather
than the full structure functions which contain also higher-twist corrections. The latter
may be large at low q2. We have also to note that these results differ strongly from those
obtained in calculations with the NJL model [7] which yield distributions that are rather
consistent with the strict chiral limit q(x, µ2

0) ≈ 1.

The computed distributions are then used as initial conditions for the perturbative evolu-
tion to higher values of Q2, where the power corrections are expected to be suppressed, so
that one can compare them with the available experimental data. Actually, we compare
our theoretical predictions with the phenomenological analysis by Sutton et al [3] of the
data taken from Drell - Yan and prompt photon experiments performed by the groups
NA10 (CERN) and E615 (Fermilab) [5].

The form of the evolved distribution q(x,Q2
0) at the momentum scale Q2

0 = 4 GeV2 is
reconstructed from its moments evolved to this scale in the leading order (LO) and next-to
-leading order (NLO) perturbative QCD in the MS scheme by using the first six Jacobi
polynomials. To this goal we use the well-known expressions [39] for the perturbatively

calculable coefficient function of the process CN
i = CN

0i +
αs(Q

2)

4π
CN

1i and the anomalous

dimensions γ(n) calculated up to LO and NLO. Thus, the final result for the moments
obtained from the factorization procedure is

AN(Q
2) =

∑

i

CN
i (Q2, µ2)ON

i (µ
2) =

1
∫

0

dx xNq(x,Q2). (48)

In performing the evolution analysis we choose a low momentum scale µ2
0 = 0.19 ±

0.05 GeV 2, and a set for the QCD scale parameter Λ
(3)
QCD = 0.19 GeV in order to be

consistent with [3]. The resulting distribution q(x,Q2
0) is shown in Fig. 5 together with

the phenomenological curve derived from the data in [3]. The initial distribution function
at the low-momentum scale µ2

0 is also shown for comparison.
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The values of the first moments of the pion quark distribution at Q2
0 = 4 GeV 2 calculated

in LO and NLO are shown in Table 2. The error bars quoted in Table 2 for our calculations
are due to accepted uncertainty in the choice of the initial scale of evolution µ0. These
values should be compared with those obtained from the phenomenological analysis [3] and
from LQCD simulations [1]. In Table 2 we also include the moments of quark distribution
in the pion obtained from the parametrization [4].

Table 2. The values of the first moments at Q2
0 = 4 GeV2.

LO NLO LQCD[1] Exp. fit[3] Exp. fit[4]

(this calculations)

A2(Q
2
0) 0.321± 0.02 0.293± 0.03 0.279± 0.083 0.230± 0.01 0.193± 0.01

A3(Q
2
0) 0.150± 0.02 0.112± 0.025 0.107± 0.035 0.101± 0.005 0.083± 0.005

A4(Q
2
0) 0.083± 0.015 0.057± 0.025 0.048± 0.020 0.057± 0.005 0.046± 0.005

Let us finally discuss the uncertainties of the QCD evolution from the low momentum
scale µ0. As we see from Table 2, the difference of the LO and NLO results is in the range
of 30%. It turns out that the use of a larger initial evolution scale, say µ2

0 ≥ 0.3 GeV2,
gives a rather good convergence with deviations less than 10%, whereas in the opposite
case, i.e., for scales smaller than about 0.1 GeV2 the deviations increase and perturbative
evolution loses any sense. This behavior has also been observed in analyzes within the
NJL model [7].

The comparison shows that our calculations, in particular in NLO, are consistent with the
phenomenological analysis of [3] and fairly close to the LQCD results. Both theoretical
approaches (LQCD and the instanton model) predict moment values systematically larger
than the phenomenological one. One of the reasons for this disagreement may be traced to
the quenched approximation which does not take into account any sea-quark contributions
at the initial scale, attributing in this way the whole pion momentum to the valence quarks.
Indeed, the origin of the A2 moment at the initial scale (in the quenched approximation)
and its subsequent evolution is purely kinematic and does not depend on the details of
the model. In principle, one could match the valence momentum fraction derived in our
calculation with that determined in [3] by shifting the initial value µ2

0 down to 0.01 GeV2

(see, for instance, [7]a). However, to start a perturbative evolution from this very low
scale is formally incorrect and technically amounts to a rather unstable procedure. In our
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opinion, it is more realistic to expect that including in our analysis contributions from the
sea, which may have momentum fractions of an order of 10%, the agreement between the
theoretical predictions and the phenomenological analysis can be considerably improved.
In addition, the effect of nonperturbative evolution [40] from an initial scale µ2

0 up to
Q2 ∼ 1 GeV2 could be important.

7 Results and discussions

In summary, we have presented theoretical predictions for the valence-quark distribution
function, eq. (45), and its moments, eq. (40), for the pion. The calculations are based
on the instanton model of the QCD vacuum as a candidate treatment of nonperturbative
dynamics, expressing the observable hadron properties in terms of fundamental character-
istics of the vacuum state. We found that the instanton model describes well the vacuum
expectation values of the lowest-dimension quark-gluon operators and the pion low-energy
observables. To obtain these results, we have used gauge invariant forms for the dynami-
cally generated quark masses and quark pion vertex. Thus, we are led to express the form
of the pion quark distribution function in terms of the effective instanton size ρc, and the
quark-mass parameter mq. The pion quark distribution function extracted corresponds to
a low normalization scale, where the effective instanton approach is justified. It is shown
that the validity of parton sum rules for the isospin and total momentum distribution
is a consequence of the compositeness condition and the strict implementation of gauge
invariance. We have used techniques to derive these results which constitute a complemen-
tary approach to lattice simulations and to phenomenological fits to experimental data.
Using this distribution function as an input, we obtained the quark distribution function
in the pion via standard perturbative evolution to higher momentum values, accessible
by experiment. A reasonable agreement with the data was found. In fact, the calculations
are performed in the quenched approximation, where the effect of intrinsic quark-gluon
sea is neglected. We expect that the effects of the intrinsic quark component of the pion
wave function and the nonperturbative evolution at intermediate energy scale provide a
better agreement between theoretical predictions and phenomenological analysis.

Acknowledgments

The authors are grateful to I.V. Anikin, M. Birse, D.I. Diakonov, S.B. Gerasimov, P. Kroll,
A.E. Maximov, S.V. Mikhailov, M. Polyakov, R. Ruskov, N.G. Stefanis, M.K. Volkov for
fruitful discussions of the results. One of us (A.E.D.) thanks the members of the particle
physics groups of the Wuppertal University and Instituto de F́ısica Teórica, UNESP, (São
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[10] T. Schäfer and E.V. Shuryak, Rev. of Mod. Phys. 70(2) (1998) 323, and references therein.

[11] G. ’t Hooft, Phys. Rev. D 14 (1976) 3432.

[12] R.D. Carlitz and D.B. Creamer, Ann. Phys. (NY) 118 (1979) 429.

[13] D.I. Dyakonov and V. Yu. Petrov, Nucl. Phys. B245 (1984) 259.

[14] D.I. Dyakonov and V. Yu. Petrov, Zh. Eksp. Teor. Fiz. 89 (1985) 751 [Sov. Phys. JETP 62

(1985) 431]; Nucl. Phys. B272 (1986) 457.
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Fig. 1. Configuration space representation of the normalized instanton induced nonperturba-
tive part of the gauge-invariant quark propagator, eq.(10) (solid line); and the corresponding
propagators derived without P − exp factor in the singular (short-dashed) and regular, eq.(11),
(long-dashed) gauges.
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Fig. 2. Normalized momentum space representation for the same propagators given in Fig.1,
corresponding to eqs. (8) (solid line), (12) (long-dashed) and eq.(13) (short-dashed).
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Fig. 3. Graphical representation of the operator product expansion. The left hand side of
this diagram is the imaginary part (Discontinuity) of the forward scattering amplitude. Within
OPE it is represented by the convolution of the Wilson coefficient function CNS(Q

2) of a “hard”
parton subprocess (upper block of the right diagram) and the “soft” parton distribution function
q(x,Q2) (lower block of the right diagram). The constituent quark and pion are depicted by
solid and double lines, respectively. The wavy line denotes the virtual photons. ONS is the local
operator and cross on the quark line correspond to δ(x− (kn)).
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Fig. 4. The valence-quark distribution function (DF) q(x;µ2
0) (dashed line) and the quark

momentum distribution function (MDF) xq(x;µ2
0) (solid line) for the pion as a function of the

longitudinal momentum fraction x at the low momentum scale µ2
0 = 0.19 GeV2 and density

parameter ρcmq = 0.39.
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Fig. 5. The quark momentum distribution function xq(x;Q2
0) (long dashed line) for the pion as

a function of the variable x evolved to the momentum scale Q2
0 = 4 GeV2 (LO approximation),

using ρcmq = 0.39 for the density parameter. The solid line denotes the phenomenological curve
[3] on the same scale Q2

0, extracted from the data. The short - dashed line shows the same
distribution on the low momentum scale µ2

0 = 0.19 GeV2.
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