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Abstract

We show how to determine the electric and weak dipole moments

of the top quark simultaneously and independently from e+e− → tt̄

at
√
s = 500 GeV NLC. To obtain the best accuracies with which

the dipole moments can be measured, we apply the optimal observ-

ables to extract the CP violating effects and consider only purely

hadronic, hadronic-leptonic final state events. Results with left- and

right- handed longitudinal polarized as well as unpolarized electron

beams are given. We find that with 50fb−1 integrated luminosity, the

dipole moments can be measured to the accuracy of 10−18 e cm.
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I. INTRODUCTION

The top quark has its unique advantages in search for new physics beyond the

Standard Model(SM) due to its large mass and decay properties. Many non-SM models

predict several orders of magnitude large electric dipole moment(EDM) and weak dipole

moment(WDM) of the top quark than the SM. These dipole moments give rise to CP

violating effects in top quark pair productions. CP violating effects in top quark

pair production at e+e− colliders have been widely studied [1]- [10]. Many of these

studies concentrate on the observables which use purely leptonic or hadronic-leptonic

(including bl+1 νl1 b̄q2q̄
′
2 and bq̄1q

′
1b̄l

−
2 ν̄l2) final state events. Therefore, these studies can

not give the best limits one can obtain from the experiments. To achieve the best goal,

one needs to make use of the purely hadronic events which consist of 10/17 of the total

events and to apply the optimal approach [3] [11]- [13]. The best limits on the top quark

dipole moments given in Ref. [3] are ∼ 10−19 e cm. Our work has some similarities

with Ref. [3]. New features of our work are:(1) the W-boson polarization is not and

indeed can not be determined completely by a single event, but statistically from its

decay products; (2) we consider how to measure the electric and weak dipole moments

simultaneously and independently ; (3) we give more realistic estimation on the limits

by taking into account decay branching ratios, luminosity and detection efficiency. In

Ref. [7], the optimal observables are also used, but without using the spin information

of the hadronically decayed top quark. We consider γtt̄ and Ztt̄ including EDM and

WDM couplings, and for simplicity, assume the top quark decays via SM interactions.

II. CALCULATIONS AND OPTIMAL OBSERVABLES

We assume the couplings of electron with γ and Z bosons take the standard model

values:

−iegVe γ
µ(1 + αV

e γ5), (1)

where V = γ, Z and

gγe = −1, αγ
e = 0, (2)

gZe =
4 sin2 θW − 1

4 sin θW cos θW
, αZ

e =
1

4 sin2 θW − 1
. (3)

The couplings between the top quark and γ, Z bosons take the form:

−ie[gVt γ
µ(1 + αV

t γ5) + (pt − pt̄)
µ(−idVt /e)γ5], (4)
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where pt, pt̄ are the momenta of the top quark and top antiquark. dVt is the dipole

moment which we assume to have imaginary parts as well as real parts. We denote

d̂Vt = dVt /e. The other couplings are:

gγt = 2/3, αγ
t = 0, (5)

gZt =
1− 8

3
sin2 θW

4 sin θW cos θW
, αZ

t = − 1

1 − 8

3
sin2 θW

. (6)

The standard model amplitude of e+e− → tt̄ is

M0 = ie2
∑

V=γ,Z

gVe g
V
t v̄(pe+)γ

µ(1 + αV
e γ5)u(pe−)ū(pt)γµ(1 + αV

t γ5)v(pt̄)/(s−m2

V ), (7)

and the correction from the dipole moments is

δM = ie2
∑

V=γ,Z

gVe v̄(pe+)γ
µ(1 + αV

e γ5)u(pe−)ū(pt)[(pt − pt̄)µ(−id̂Vt )γ5]v(pt̄)/(s−m2

V ). (8)

We shall assume the dipole moments are small enough that their quadratic contribu-

tions to the total cross section are negligible. Therefore the dipole moments contribute

only to the CP violating effects through 2Re(M0δM
†) which is linear in d̂Vt . To observe

the CP violating effects, one needs to know the spins of the top quarks which can be

determined statistically from their decay products. We assume the SM decay of the

top quark and apply the narrow width approximations of the top quark and W-boson

propagators:

1

|q2X −m2
X + imXΓX |2

→ π

mXΓX

δ(q2X −m2

X) , (9)

where X stands for top quark and W-boson, ΓX is the width of X .

The cross section for reaction e+e− → tt̄ → bl+1 νl1 b̄l
−
2 ν̄l2 (bq̄1q

′
1b̄q2q̄

′
2) can be written

as

dσ =
β

(8π)10s

λt|MD|2
m2

tm
2
WΓ2

tΓ
2
W

dΩtdΩ
′
W+dΩ′

W−dΩ′
l+
1

dΩ′
l−
2

, (10)

where β =
√

1− 4m2
t/s and

λt = (1− (mW +mb)
2

m2
t

)(1− (mW −mb)
2

m2
t

) ≈ (m2

t −m2

W )2/m4

t , (11)

dΩ′
W+(dΩ′

W−) is the solid angle element of W+(W−) in the rest frame of the (anti)

top quark, dΩ′
l+
1

(dΩ′
l−
2

) denotes the solid angle element of l+1 (l
−
2 ) in the rest frame
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of W+(W−), |MD|2 is the amplitude square excluding the top quark and W-boson

propagators after the decays of the top quarks:

|MD|2 = |M0|2 + 2Re(M0δM
†) . (12)

If the electron(positron) beam is not polarized, additional spin average factor and

summation are needed. In our calculations, |MD|2 is easily obtained from the amplitude

of e+e− → tt̄ by the following substitutions:

ū(pt) →
g2

8
ūbγµ(1− γ5)(/pt +mt)ūν1γ

µ(1− γ5)vl1 , (13)

v(pt̄) →
g2

8
ūl2γµ(1− γ5)vν2(/pt̄ −mt)γ

µ(1− γ5)vb̄ ,

where g is the weak SU(2) coupling constant. The above expresssions are calculated

numerically.

Denoting g1 = Re(d̂γt ), g2 = Re(d̂Zt ), g3 = Im(d̂γt ) and g4 = Im(d̂Zt ), we can write

the amplitude square |MD|2 as

|MD|2 = Σ0 + g1Σ1 + g2Σ2 + g3Σ3 + g4Σ4 , (14)

where Σ0 = |M0|2. For unpolarized beams, Σ1,2,3,4 are independent. But for left- or

right-handed polarized electron beam, there are only two independent terms:

|MD|2L = Σ0L + gL1Σ
L
1 + gL2Σ

L
2 , (15)

|MD|2R = Σ0R + gR1 Σ
R
1 + gR2 Σ

R
2 ,

where L,R stand for left- or right-handed polarized electron beam, and

gL1 = g1 + (ξ − η)g2, gL2 = g3 + (ξ − η)g4, (16)

gR1 = g1 + (ξ + η)g2, gR2 = g3 + (ξ + η)g4,

where

ξ =
1− 4 sin2 θW
4 sin θW cos θW

s

s−m2
Z

, (17)

η = − 1

4 sin θW cos θW

s

s−m2
Z

.

In our calculation, we have set the electron masses to be zero and do not consider the

radiative corrections to e+e−γ(Z) couplings. Therefore, even with polarized electron

beams, only the initial CP eigenstates couple to γ and Z.
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To measure gi, one needs to extract the CP violating effects which can be picked

out by CP-odd observables. It has been shown in the literature [3] [11]- [13] that the

optimal observables defined below have the smallest statistical errors. The optimized

CP-odd observables in the full final state phase space with unpolarized beams are

defined by

O1i =
Σi

Σ0

. (18)

It is shown in Ref. [12] that a linear transformation of the above set of observables O1i

are still optimal.

When the top quark decays hadronically, we can not distinguish quark and anti-

quark jet. For hadronic-leptonic events, the missing neutrino momenta can be fully

reconstructed using energy momentum conservation equations, so that we are left with

two fold ambiguity of the jet momenta. For purely hadronic events, we have four

fold ambiguity. Considering this ambiguity, one can define alternatively the optimal

observables:

O2i =

∑

j
Σi

∑

j
Σ0

, O4i =

∑

j′
Σi

∑

j′
Σ0

, (19)

where the sum j is over the two possible assignments of the jet momenta to the quark

and antiquark in hadronic-leptonic events. j′ is over the possible assignments of the

jet momenta to the quark and antiquark in purely hadronic events.

All the above definitions can be applied to the polarized beam cases. We now

consider separately the polarized and unpolarized beams.

We first look at the unpolarized beams. In this case, we can define four optimized

observables for each of the two kinds of final state events mentioned above. They

can be separated into two categories: On1, On2(n = 2, 4) are T̂ -odd with T̂ being the

transformation that inverse the particle spins and momenta but does not interchange

initial and final states, On3, On4 are T̂ -even.

The mean value of the observable O2i is defined as

〈O2i〉 =
∫

dσ+O+
2i +

∫

dσ−O−
2i

∫

dσ+ +
∫

dσ−
, (20)

where the superscript +,− mean that the integrations are over bl+1 νl1 b̄q2q̄
′
2 and

bq̄1q
′
1b̄l

−
2 ν̄l2 final states, respectively. The mean value of the observable O4i is simply

〈O4i〉 =
∫

dσO4i
∫

dσ
. (21)
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We can express the mean value of an observable Oni by

〈Oni〉 = cijgj, (22)

where cij = 〈OniOnj〉. The symmetric matrix c is just the covariance of the observables.

Due to the different T̂ symmetry, the matrix c will be block diagonal between i, j = 1, 2

and i, j = 3, 4. Non-zero off-diagonal elements mean the statistcal dependences of the

observables and therefore the couplings. It will be difficult to estimate the statistical

error of a particular coupling without assuming the other couplings are zero. The way

to solve the problem is to find a linear combination of the couplings and the observables

that are statistically independent [12]. To do so, one needs to diagonize the matrix c

by a matrix A. For simplicity, we choose A to be orthogonal:

c′ = A−1cA, (23)

O′
ni = AjiOnj, (24)

g′i = Ajigj. (25)

The 1σ statistical error of coupling g′i is now given by

∆g′i =
1

√

Nc′ii
, (26)

where N is the number of events. To reduce the statistcal errors, one can combine the

measurements of O′
2i and O′

4i to get a combined error ∆g′ci [14]:

1

(∆g′ci)
2
=

1

(∆g′2i)
2
+

1

(∆g′4i)
2
, (27)

where ∆g′2i and ∆g′4i are the errors of the measurements using O′
2i and O′

4i,respectively.

From Eq.(15), we see that when the electron is left- or right- handed polarized, we

can only define two independent observables On1, On2(n = 2, 4) which have different

T̂ parity. They are sensitive to gL,R1 , gL,R2 , respectively. Therefore we have a diagonal

matrix c. Only a linear combination of dγt and dZt can be measured with a particular

polarization beam. The combination depends on the energy(cf. (16)(17)).

III. RESULTS AND CONCLUSIONS

We present our results of the matrix c at
√
s = 500 GeV unpolarized e+e− collider

in Table I. It shows the relations between the mean values of the observables and the

coupling constants. The corresponding orthogonal matrix A and the diagonal matrix c′
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are given in Table II. Matrix A is useful for extracting gi from g′i and for the calculation

of O′
ni. In Table III., we give the results of the matrix elements cii at the collider with

polarized electron beams.

We assume: (1) the overall detection efficiency is ǫ = 0.1; (2) the integrated lumi-

nosity is L = 50fb−1; (3) the branching ratio of hadronic-leptonic final state events is

Blj = 0.29(l = e, µ),the branching ratio of the purely hadronic events is Bjj = 0.46.

The number of events is given by

N = ǫLσB, (28)

where σ is the total tt̄ production cross section, B = Blj or Bjj. With αem = 1/128.8

and mt = 176 GeV, we get the following total cross sections for different electron

beams:

σ(e+e−) = 563 fb, (29)

σ(e+e−L) = 785 fb, (30)

σ(e+e−R) = 341 fb. (31)

By using the results of c′ii in Table II. and cii in Table III., we obtain the 1σ level

statistcal errors of g′i and gL,Ri given in Table IV. From this table we see that the

accuracies are about 10−18 e cm for dγ,Zt . In the unpolarized case, the best limit is on

Im(dγt ) which is the main component of g′3. Better limits can be obtained by using

polarized electron beams with the same integrated luminosity. In this case, one can

only measure the combination of dγt and dZt . One can combine the two modes of electron

polarization to obtain dγt and dZt separately. But that needs two periods of running.

Although with the right-handed electron beam, one gets a relative larger cii(cf. Table

III.), the statistical errors are the same as that with the left-handed electron beam.

In conclusion, we have used the optimal observables to extract the CP-violating

dipole couplings of the top quark at the NLC. The accuracies with which these couplings

can be measured at
√
s = 500 GeV e+e− collider with an integrated luminosity of

50fb−1 are about 10−18 e cm.
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TABLES

TABLE I.

Matrix elements cij of O2i and O4i at
√
s = 500 GeV unpolarized e+e− collider.Unit:

104 GeV2.

O21 O22 O23 O24

1.85 1.40 0 0 O21

4.11 0 0 O22

O41 0.817 7.59 1.40 O23

O42 0.81 2.39 1.05 O24

O43 0 0 4.27

O44 0 0 0.80 0.46

O41 O42 O43 O44

TABLE II.

Matrix elements Aij and c′ii of O2i and O4i at
√
s = 500 GeV unpolarized e+e− collider.

Aij c′ii(10
4GeV2)

O2i 0.90 0.43 0 0 1.18

−0.43 0.90 0 0 4.78

0 0 0.98 −0.20 7.88

0 0 0.20 0.98 0.763

O4i 0.92 0.39 0 0 0.475

−0.39 0.92 0 0 2.73

0 0 0.98 −0.20 4.43

0 0 0.20 0.98 0.299

TABLE III.

Matrix elements cii of O2i and O4i at
√
s = 500 GeV e+e− collider with left- and right-

polarized electron beams. Unit: 104 GeV2.

O21 O22 O41 O42

e+e−L 9.74 7.31 4.82 3.48

e+e−R 22.2 17.4 10.9 8.23

TABLE IV.

1σ statistical errors of the coupling constants g′i and g
L,R
i at

√
s = 500 GeV collider with an

integrated luminosity 50fb−1.Unit:10−18 cm.

g′1 g′2 g′3 g′4 gL1 gL2 gR1 gR2
O2i 6.35 3.15 2.46 7.90 1.87 2.16 1.88 2.12

O4i 7.94 3.31 2.60 10.0 2.11 2.48 2.13 2.45

combined 4.96 2.28 1.79 6.20 1.40 1.63 1.41 1.60
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[12] M.Diehl, O. Nachtmann, Z.Phys. C 62 (1994) 397; hep-ph/9702208.

[13] J.F.Gunion, B.Grzadkowski and X.-G.He, Phys. Rev. Lett. 77 (1996) 5172.

[14] Review of Particle Properties, Phys. Rev. D 54 (1996) 1.

9

http://arxiv.org/abs/hep-ph/9609418
http://arxiv.org/abs/hep-ph/9805318
http://arxiv.org/abs/hep-ph/9702208

