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Abstract. We calculate target fragmentation in pp → nX and γp → nX reactions in the meson cloud
picture of the nucleon. The pp → nX reaction is used to fix the pnπ+ form factor for three different
models. We take into account the possible destruction of the residual neutron by the projectile. Using
the form factor from the hadronic reaction we calculate photoproduction and small xBj electroproduction
of forward neutrons at HERA. Here the qq̄ dipoles in the photon can rescatter on the residual neutron.
In photoproduction we observe slightly less absorption than in the hadronic reaction. For deep inelastic
events (Q2 > 10 GeV2) screening is weaker but still present at large Q2. The signature for this absorptive
rescattering is a shift of the dσ/dEn distribution to higher neutron energies for photofragmentation.

PACS. 13.60.Hb Total and inclusive cross sections – 11.80.La Multiple scattering

1 Introduction

In the last two decades the study of total inclusive deep
inelastic scattering (DIS) processes has allowed to extract
important information on the structure of hadrons. Parton
distributions have been determined and scaling violations
have been tested to a high level of accuracy. The QCD
improved parton model has been shown to be very reliable
in the presence of a hard scale.

On the other hand semi-inclusive reactions with elec-
tromagnetic probes are still less explored. They can im-
prove our knowledge on the inner hadronic structure.
Through the study of new observables characterizing these
processes we may ask more detailed questions about the
proton. In this case the application of perturbative QCD
(pQCD) has been restricted to high pt events, and experi-
ments have been analyzed in terms of parton distributions
and fragmentation functions.

With the HERA collider target fragmentation can be
studied in a much cleaner way than with fixed target ex-
periments. New interest has been triggered by measure-
ments on leading neutron production performed by the
ZEUS and H1 collaborations at the electron-proton col-
lider [1,2]. These data are currently analyzed in terms of
hadronic degrees of freedom, i.e. studying the virtual pion
flux in the nucleon [3,4]. Thus one hopes to extract infor-
mation about the pion structure function at very small x,
not reachable in Drell-Yan experiments.

Send offprint requests to: H.J. Pirner, Institut für Theoretische
Physik, Universität Heidelberg, Philosophenweg 19, D-69120
Heidelberg
Correspondence to: umberto.dalesio@ca.infn.it

In the late fifties Chew and Low already suggested the
idea of using pions from the pion cloud of the proton as
targets to get information on the interaction of different
projectiles with pions [5].
Novel theoretical tools to include forward leading parti-
cle production in the framework of standard pQCD have
been developed by Trentadue, Veneziano and Graudenz [6,
7], who introduced a new set of nonperturbative distribu-
tions (fracture functions) which allow to absorb collinear
singularities at leading order in the QCD coupling con-
stant.

If we look at γ∗p reactions in the cm-system, we can
consider the incoming photon as a qq̄ state [8] that inter-
acts with a proton made up of two color neutral compo-
nents, one of which is the final state neutron. This involves
quite different aspects of the nucleon than those inves-
tigated in deep inelastic inclusive scattering. Especially
long range properties of the baryon can be analyzed in
such a process. At which length does the string connect-
ing a quark to the residual diquark break and produce
two colour neutral objects, a meson and a nucleon? This
question is especially important for nuclear physics, as one
wants to know what amount of the nucleon-nucleon inter-
action is describable in terms of meson exchange forces in
the nucleus.

From the high-energy point of view the determination
of the pion structure function is central. The common in-
terpretation of the γ∗p → nX experiment relies on the
application of the meson cloud model of the nucleon [9,10,
11] together with the factorization hypothesis that allows
to separate the reaction into two steps: the fragmentation
process and the interaction [12,13]. It assumes that the
fragmentation process is universal, i.e. independent of the
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projectile which initiates fragmentation. In the following
we will examine the validity of this factorization hypoth-
esis carefully.

Let us consider the generic reaction with an incoming
projectile a leading to neutron production i.e. ap → nX
(see fig. 1). In the one-pion-exchangemodel the differential
cross section is given by the product of the pion flux factor
times the total aπ cross section:

dσap→nX

dzdp2t
= Fnπ(z, pt)σ

aπ
tot(s

′) . (1)

The flux factor Fnπ(z, pt) gives the probability for the
splitting of a proton into a pion-neutron system. It de-
pends on the longitudinal momentum fraction z carried
by the detected neutron and its transverse momentum1

pt. The total cross section σaπ
tot(s

′) is a function of s′ the
center of mass sub-energy squared in the a π+ interaction.

a

X

�

+

p

n

Fig. 1. Picture of semi-inclusive neutron production accord-
ing to the one-pion-exchange model.

The usual procedure [3,4] is to fix the parameters en-
tering the flux factor from the data of leading neutron
production in proton-proton (a = p) collisions. Then as-
suming universality, one applies the same equation (1) to
virtual photon scattering (a = γ∗) in DIS. Measuring the
differential cross section γ∗p → nX one extracts the pion

structure function, since σγ∗π+

tot is proportional to Fπ+

2 .
Obviously the factorization hypothesis plays a crucial role
in this method.

Indeed early works [14,15,16] on absorption effects for
pion-exchange mechanism in hadronic inclusive reactions
indicate a suppression factor of the order of 50-70%. Re-
cently a first and detailed study of absorptive corrections
in the Regge formalism [17] has appeared. Many of our
conclusions agree with the ones reached in ref. [17]. These
absorptive effects depend on the projectile and are a source
of factorization breaking. They can be comparable or even
more important than other background contributions, al-

ready estimated, reducing the accuracy of Fπ+

2 measure-

1 We use pt = |pt|.

ments. We will investigate the relevance of absorptive cor-
rections in detail in order to understand the one-pion-
exchange mechanism and the extraction of the pion struc-
ture function. We apply high-energy Glauber theory to
calculate and compare the screening corrections in lead-
ing neutron production for p p and γ(∗) p reactions. We
especially search for differences between photoproduction
and deep inelastic scattering in neutron fragmentation.
To this end we follow the Q2-evolution of the fracture
functions from a kinematic region where the perturbative
evolution of [6,7] is not yet applicable to large Q2. We
find similarly to ref. [17] that absorptive corrections for
highly virtual photons do not vanish, as indicated by data
[1,18]. However this effect is smaller than what has been
found for proton-proton interactions. This dependence on
the projectile can be a source of factorization breaking.
With respect to ref. [17], we extend this analysis to real
photons (Q2 = 0) and we find that the size of rescatter-
ing corrections is comparable to that of hadronic reactions
and bigger than that of virtual photons.

The outline of the paper is as follows. In section 2 we
describe the meson cloud model, in section 3 we calcu-
late the absorptive corrections to pp → nX . Section 4 is
devoted to virtual and real photoproduction of forward
neutrons. Section 5 closes with a summary and a discus-
sion.

2 Meson Cloud Model

In this section we review briefly the main features of the
meson cloud model (MCM).
In the MCM a proton is viewed as a bare proton sur-
rounded by a virtual meson cloud,

|p ↑〉 =
√
S
{

|p0 ↑〉

+
∑

λλ′

∑

BM

∫

dzd2pt φ
λλ′

BM (z,pt)|B,M ; z,pt〉
}

=
√
S
{

|p0 ↑〉+
∑

λλ′

∫

dzd2pt φ
λλ′

Nπ(z,pt) (2)

×
[

√

1

3
|p, π0; z,pt〉+

√

2

3
|n, π+; z,pt〉

]

+ · · ·
}

,

where φλλ
′

BM (z,pt) is the probability amplitude to find, in-
side a proton with spin up, a baryon B with longitudi-
nal momentum fraction z, transverse momentum pt and
helicity λ and a meson M , with longitudinal momentum
fraction 1− z, transverse momentum −pt and helicity λ′.
We restrict ourselves to the first contributions of this ex-
pansion in terms of Fock states.

√
S is the renormalization

constant, which is fixed by 〈p|p〉 = 1 and gives the ampli-
tude for the bare proton.

In the light-cone approach the amplitudes φNπ, for a
proton with spin +1/2, read [10]

φ
1/2,0
Nπ (z,pt) =

√
3g0

4π
√
π

1
√

z2(1− z)

mN(z − 1)

M2
Nπ −m2

N
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φ
−1/2,0
Nπ (z,pt) =

√
3g0

4π
√
π

1
√

z2(1− z)

|pt|e−iϕ

M2
Nπ −m2

N

, (3)

where M2
Nπ is the invariant mass of the pion-nucleon sys-

tem, given by

M2
Nπ =

m2
N + p2t
z

+
m2

π + p2t
1− z

,

mN and mπ are the nucleon and the pion masses; g0 is
the bare pion-nucleon coupling constant and ϕ is the az-
imuthal angle in the transverse plane. Including the renor-
malization factor

√
S from eq. (2) we get the renormalized

effective coupling g =
√
Sg0 [11], which can be extracted

from low-energy data: we use g2/4π = 13.75.
Because of the extended nature of the hadrons in-

volved, the interaction amplitudes in eq. (3) have to be
modified by including a phenomenological πNN form fac-
tor. It is important to stress here that while the vertex is
derived from an effective meson-nucleon Lagrangian, the
form factor is introduced ad hoc. In order to parametrize
the form factor we need to introduce the momentum trans-
fer t which can be expressed as follows

t = (pN − p′N )2 = −1

z

[

p2t + (1 − z)2m2
N

]

= (1− z)(m2
N −M2

Nπ) +m2
π .

Different models and parametrizations are available in
the literature. In the following we compare the results ob-
tained using the light-cone approach and the covariant ap-
proach, the last one with inclusion of reggeization. Besides
these two form factors we consider a πNN form factor ex-
tracted from Skyrme-type models [19,20]. This form fac-
tor leaves low momentum transfers essentially unaffected
while suppressing the high momentum region strongly.
The three models are:

– light-cone πNN form factor

G(z, pt) = exp[R2
lc(m

2
N −M2

Nπ)]

= exp[R2
lc(t−m2

π)/(1− z)] (4)

– covariant πNN form factor

G(z, pt) = exp[R2
c(t−m2

π)] (5)

– Skyrme model πNN form factor

G(z, pt) = exp[R2
S t]g(t) (6)

where g(t) is a rational function of t given in the ap-
pendix.

The amplitudes φλλ
′

must be changed according to φλλ
′ →

φλλ
′

G(z, pt) . The flux in eq. (1), for proton fragmentation
into a neutron can then be calculated as

Fnπ(z, pt) =
2

3
π
∑

λλ′

|φλλ′

Nπ(z,pt)|2|G(z, pt)|2 , (7)

where 2/3 is the isospin factor and the azimuthal an-
gle in the transverse plane has been integrated out. The

reggeization of the pion (relevant for z → 1) is included
in the covariant and Skyrme approaches by the further
change

φλλ
′ → φλλ

′

(1 − z)−απ(t) ,

where απ(t) = απ(0) + α′
πt is the pion Regge-trajectory,

with απ(0) = 0 and α′
π ≃ 1GeV−2. The light-cone form

factor contains the decrease of the cross section for z → 1
already in the exponential. Its form, however, is a crude
approximation and therefore we do not expect the light-
cone form factor to be adequate for extremely large z.

In the following section we consider pp collisions in
order to fix the parameters Rlc and Rc appearing in the
previous equations2.

3 Estimate of absorptive corrections in

pp → nX

We consider target fragmentation reactions as stripping
reactions in the cm-system where the projectile proton
strips a π+ from the target proton leaving behind a neu-
tron. The projectile proton smashes the pion into pieces,
while the neutron remains intact as a spectator. Any addi-
tional interactions like ∆−production or ρ-exchange may
spoil this simple picture and reduce the accuracy of the
determination of the πpn vertex. This has been studied
and the amount of such a background is estimated to be
around 20% [3,4]. We will neglect these processes in our
calculation, but we model them rescaling the one-pion-
exchange cross section by 1.2.

We are fully aware that this rescaling procedure is a
poor simplification of the background contributions. A re-
cent work [21] shows that an improved treatment of the
background is important to get the right neutron distribu-
tion at very high z values. Nevertheless we will concentrate
mainly on the region of pt = 0 and 0.7 < z < 0.9, where
our simple rescaling gives reasonable results.

The invariant differential cross section for the one-
pion-exchange mechanism is (in light-cone approach3)

En
d3σ

d3pn
=
z

π

dσ

dzdp2t
(8)

=
2g2

16π2

1

z(1− z)

m2
N (1 − z)2 + p2t
(M2

Nπ −m2
N)2

|G(z, pt)|2σpπ
tot .

This picture is reliable when the pion and the neutron in
the target proton are well separated, i.e. at large z and
large impact parameter. For small impact parameters and
intermediate z values it must be extended to allow the
scattering of the projectile on the neutron and the conse-
quent screening effect (see fig. 2).

To be more precise we distinguish in our notation be-
tween the target (p(T )) and projectile (p(P )) proton:

p(P ) p(T ) → nX .
2 For the Skyrme form factor we use the value fitted in [19]:

R2
s = 0.031/m2

π .
3 Reggeized covariant expression can be obtained multiply-

ing eq. (8) by (1− z)−2απ(t) and taking G(z, pt) from eq. (5).
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p

n

π+

X

n p

b p

n

π+ X

n p

b

X

Fig. 2. Picture of the collision for two different impact parameters. On the left we show a peripheral collision (large b) where
the pion is stripped and the neutron acts as a spectator. On the right we show a more central collision where the projectile
proton can destroy the neutron through rescattering.

We employ the high-energy Glauber approximation to mul-
tiple scattering which has been used for target fragmen-
tation in heavy ion collisions in ref. [22].

A more formal derivation of absorptive corrections can
be found in [17], where Regge calculus and generalized
AGK cutting rules [23] are applied. Our approach can be
traced back to that of [17] and viewed as a simplification
of it in the eikonal approximation.

We treat the target proton as a pion-neutron system
(φ0) undergoing a transition to an excited state (φα). The
cross section for this process can be expressed as

σ(φ0 → φα) =

∫

d2bσ0→α(b)

=

∫

d2b |〈φα[1− SpπSpn]|φ0〉|2 , (9)

where b is the impact parameter and Sab are the inter-
action operators (see below). We assume that the proton
state φ0 can be factorized into a system of a pion and a
neutron

|φ0〉 ≡ |ψsp
0 π0n0〉 = |ψsp

0 〉|π0〉|n0〉 ,

with ψsp
0 the spatial component, specified to keep spatial

and intrinsic degrees of freedom separated. Similarly the
excited state with an undisturbated neutron has the form:

|φα〉 ≡ |ψsp
j πα′n0〉 = |ψsp

j 〉|πα′ 〉|n0〉 ,

where we have introduced an extra index (j) to take into
account all possible spatial configurations for this excited
state; |πα′〉 is an arbitrary state with the same quantum
numbers as the pion. To get the total cross section we
sum now over all spatial configurations and over all |πα′〉
states. We apply the closure relation and exclude the elas-
tic contribution (|π0〉)

σ(b) =
∑

α

σ0→α(b) =
∑

α′ 6=0

∑

j

∣

∣

∣

∫

d3ynd
3yπ

ψ∗
j (yn, yπ)ψ0(yn, yπ)S

pπ
α′0(b− sπ)S

pn
00 (b− sn)

∣

∣

∣

2

=
∑

α′ 6=0

∫

d3ynd
3yπ|ψ0(yn, yπ)|2

× Spπ
α′0(b− sπ)S

†pπ
0α′ (b− sπ)|Spn

00 (b− sn)|2

=

∫

d3ynd
3yπ|ψ0(yn, yπ)|2

×
[

1− |Spπ
00 (b− sπ)|2

]

|Spn
00 (b− sn)|2 , (10)

where yn ≡ (sn, zn), yπ ≡ (sπ, zπ), sπ and sn are the
coordinates of the pion and the neutron in the impact pa-
rameter plane; zn and zπ are their longitudinal momentum
fractions. Also

1− |Spπ
00 |2 = 1− |1− Γ pπ|2 ≃ 2ReΓ pπ

|Spn
00 |2 = |1− Γ pn|2 ≃ 1− 2ReΓ pn , (11)

where the profile functions Γ describe the respective two-
body scatterings and are related to the scattering ampli-
tudes in momentum space by Fourier transformation

f ij(q) =
ipcm
2π

∫

d2b eiq·b Γ ij(b) . (12)

Let us now consider the density distribution |ψ0(yn, yπ)|2.
We parametrize this density starting from the probability
density to find a pion and a neutron at a certain trans-
verse separation brel = sn − sπ, imposing the center-of-
mass constraint in b-space and the longitudinal momen-
tum conservation: bcm = znsn + zπsπ = 0, zn + zπ = 1,

|ψ0(yn, yπ)|2 ≡ ρnπ(zn,brel)δ
2(znsn+zπsπ)δ(zn+zπ−1) .

(13)
Inserting eqs. (11) and (13) into eq. (10) and carrying out
the 3-dimensional integration over yπ, we get for the semi-
inclusive cross section

dσpp→nX

dz
=

∫

d2b
dσ(b)

dz
, with (14)
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dσ(b)

dz
=

∫

d2sn
1

(1 − z)2
ρnπ(z,brel)

× 2ReΓ pπ(b− sπ) [1− 2ReΓ pn(b− sn)]

=

∫

d2brelρnπ(z,brel) 2ReΓ
pπ(b+ zbrel)

× [1− 2ReΓ pn(b− (1− z)brel)] , (15)

where we have restored the previous notation, zn ≡ z and
replaced the pion and neutron coordinates by

brel = −sπ

z
=

sn

1− z
.

3.1 Pion-neutron density and profile functions in
b-space

In order to extract quantitative information from eq. (15)
we evaluate the probability density to find a pion and neu-
tron at a certain distance inside the parent proton. The
main idea is to start with the amplitudes in momentum
space for the splitting of a proton into a pion-neutron sys-
tem (see eqs. (3)) and then calculate the Fourier transform
in two dimensions with respect to the transverse momen-
tum.
We obtain the amplitudes in b-space (we keep z fixed)

ψi
nπ(z,brel) =

1

2π

∫

d2pte
ibrel·ptφinπ(z,pt) ,

where by φinπ we mean
√

2/3φλλ
′

Nπ . From this we obtain
the probability density to find a neutron and a pion re-
spectively with longitudinal momentum z and 1 − z and
relative transverse separation brel:

ρnπ(z,brel) =
∑

i

|ψi
nπ(z,brel)|2 .

In fig. 3 we show the behaviour of these densities at dif-
ferent values of z for the light-cone and the covariant ap-
proach.

Concerning the profile functions we start from scatter-
ing amplitudes with gaussian shapes,

fab(q) =
ipcm
4π

σab
tot exp

[

− q2

2Λ2
ab

]

(16)

and by Fourier transformation we get

Γ ab(b) =
1

4π
σab
totΛ

2
ab exp

[

−b2Λ2
ab

2

]

, (17)

where we have considered purely imaginary amplitudes as
we are interested in the high-energy regime.

3.2 Cross section for pp→ nX

The gaussian dependence of the profile functions allows us
to perform the b-integration in eq. (14) analytically, we

have then

dσpp→nX

dz
=

∫

d2brelρnπ(z,brel)σ
pπ+

tot (18)

×
{

1− Λ2
eff

σpn
tot

2π
exp

[

− Λ2
effb

2
rel

2

]}

,

with

Λ2
eff =

Λ2
pπΛ

2
pn

Λ2
pπ + Λ2

pn

[Λ2
pπ ≈ Λ2

pn ≈ 0.08GeV2] . (19)

Before giving explicit results from eq. (18), let us try to
interprete the physical picture emerging from it.
The first term alone is nothing else than the standard ex-
pression according to the factorization hypothesis, eq. (1),
i.e. the stripping of the pion cloud inside the target proton.
The second term represents the screening correction which
is the most interesting result of our calculation. The Born
fragmentation cross section is multiplied by the proba-
bility that the projectile proton does not destroy the neu-
tron component of the target proton. The screening factor
changes the simple factorization picture.

Assuming that the final state interaction does not mod-
ify the transverse momentum distribution of the fragments,
we can calculate the invariant differential cross section
En

d3σ
d3pn

by multiplying the differential cross sections for

the longitudinal distributions with the transverse prob-
ability distribution for the fragmentation process. This
method seems to work quite well in nuclear target frag-
mentation [22]. We get

En
d3σpp→nX

d3pn
=
z

π

1

N(z)

dN(z, pt)

dp2t

dσpp→nX

dz
, (20)

where dσ/dz is given by eq. (18). The normalized fraction
of fragmentation processes in the interval pt, pt + dpt is
obtained from the normalized pion flux factor:

1

N(z)

dN(z, pt)

dp2t
=

Fnπ(z, pt)
∫

dp2tFnπ(z, pt)
. (21)

Definitely the experimental cross sections for pt = 0
[24,25] have the most pronounced shape. Here one can
really see a fragmentation peak which seems to be su-
perimposed on some background. We estimate additional
contributions4 to have a similar shape as the calculated
cross section and lead to a 20% correction. Thus we scale
our result for the one-pion-exchange contribution by a fac-
tor 1.2. A model calculation of background processes can
be found in ref. [21]. For larger pt values the fragmen-
tation cross sections become rapidly flatter and smaller
and the background increases. Therefore we fit the ra-
dius parameters to the pt = 0 data. In fig. 4 we show the
semi-inclusive cross section for pp → nX as a function of
the longitudinal momentum fraction z of the neutron to-
gether with the experimental data from ref. [24]. For the

4 These may come from resonance excitations like p → π+∆0

and p → π+N∗0, which decay into neutrons.



6 U. D’Alesio, H.J. Pirner: Target Fragmentation in pp, ep and γp Collisions at High Energies

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5

ρ n
π(

z,
b r

el
) 

 (
fm

-2
)

brel (fm)

z = 0.5

z = 0.7

z = 0.9

R2
lc = 0.2 GeV-2

light-cone

0

0.1

0.2

0.3

0.4

0 0.5 1 1.5

ρ n
π(

z,
b r

el
) 

 (
fm

-2
)

brel (fm)

z = 0.7

z = 0.5

z = 0.9

R2
c = 0.05 GeV-2
cov-Regge

Fig. 3. Pion-neutron densities in the transverse plane for various z values in light-cone (left) and covariant approach (right).

total cross sections σpπ+

tot and σpn
tot we adopt the fits5 per-

formed in ref. [27]. We adjust the radius parameters Rlc

in the light-cone and Rc in the covariant form factor to
the data and find a reasonable agreement with the fol-
lowing values: R2

lc = 0.2GeV−2 and R2
c = 0.05GeV−2.

An important feature of the screening correction is that
its inclusion reduces the radius parameters so extracted.
The shape of the Skyrme form factor does not deviate ap-
preciably from the covariant form factor, because even at
smaller values of z the momentum transfers |t| in fig. 4 are
not large. One should also keep in mind that the reggeized
pion has a variable spin different from zero, when t is dif-
ferent from the pole value. The coupling of virtual pions to
the nucleon does not have to be identical to that imployed
in one-pion-exchange potentials.
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Fig. 4. Invariant differential cross sections for neutron pro-
duction at pt = 0 calculated according to eq. (20) for three
different form factors. Data points are from ref. [24].

5 In fig. 5 for σpπ
+

tot we take directly the scattering data at
small energies from the particle data group [26].
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Fig. 5. Invariant differential cross sections for neutron pro-
duction at pt = 0.2 GeV calculated according to eq. (20)
for two different form factors. Skyrme-type approach, not dis-
played, gives almost the same result as the covariant one.
Points are low-energy

√
s = 6.84 GeV bubble chamber data,

ref. [25].

The differences of the light-cone and covariant ap-
proaches are more pronounced for very large z and at
pt 6= 0 . Here the light-cone form factor vanishes faster
with z compared to the fall off in the reggeized covari-
ant form factor. In fig. 5 we compare the light-cone and
the covariant-Regge models with the invariant differential
cross sections measured at pt = 0.2 GeV [25]. The theory
does not agree very well with these data. In fact these
data are taken at

√
s = 6.84 GeV, where Feynman scal-

ing is not expected to hold. One sees for the low-energy
data that near z = 0.9 the π+p resonances affect the cross
section. There are also data at larger energies [28], but
these do not cover simultaneously the large z and small pt
range.

The same calculation performed for the pp → nX re-
action can be applied to pn → pX , where the same pnπ

vertex factor enters. The only changes to be done are σpπ−
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Fig. 6. Inclusive cross section for the pn → pX process at
plab = 195 GeV for |t| < 1.4 GeV2, see text. Data points are
from [29].

for σpπ+

and σpp for σpn in eq.(18). In fig.6 we show the p2t -
integrated cross section for the pn→ pX in light-cone and
covariant-Regge pictures with the data from [29]. Again a
reasonable agreement is found with the values of the radius
parameters fitted on the leading neutron data at pt = 0
(fig.4).

The effect of screening is shown clearly in fig. 7, where
we plot the K-factor, i.e. the ratio of the differential cross
section with and without absorptive corrections for the
fitted values of the radii. The individual models differ
slightly in the z < 0.8 region where there is a sizeable,
≥ 30%, screening. The light-cone form factor leads to a
slightly smaller K-factor. For very large z values large
transverse separations between the neutron and the pion
dominate [17] (see fig. 3), thus the projectile proton misses
the neutron for almost any finite impact parameter and
the K-factor approaches unity.
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ab
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z

pp → n X
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lc = 0.2 GeV-2
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c = 0.05 GeV-2

Skyrme-type

Fig. 7. Absorptive K-factors for neutron production in
proton-proton collisions for three different form factors.

A comparison of the data with a calculation neglecting
the screening mechanism would give larger radii. Such a
fit can represent the data down to lower z values like z =
0.65. In general the amount of absorption can be reduced
if one uses a larger cut-off radius in the pion form factor
and additional exchanges [21]. An understanding of the
trade-off between these two effects necessitates that they
are considered together.

4 Cross sections for γ∗p → nX and γp → nX

In this section we consider the interaction of an initial vir-
tual or real photon with a proton leading to neutron tar-
get fragments. Before entering the detailed calculation of
the semi-inclusive reaction it is worthwhile to make some
remarks on inclusive photon-nucleon interaction in con-
text with our πNN form factor. Recently [20] an esti-
mate of the antiquark distributions in the nucleon has
been performed with the help of the Sullivan formula,
cf. eq. (1). The calculation shows that for the Skyrme form
factor used above the MCM prediction exhausts or only
slightly exceeds the light sea quark distributions ū and d̄
in the proton at Q2 = 1.2GeV2. This is a large improve-
ment with respect to harder form factors often used be-
fore, which strongly overestimate this contribution. Thus
the problems discussed e.g. in ref. [11] seem to be well
taken care of. Two comments are in place: perhaps the
F2 calculations are not valid because of the interference
between photon-nucleon and photon-pion inelastic inter-
actions, where the target-like slow fragments of the struck
sub-hadron and the residual hadron interact [17]. Since
both are slow and strongly interacting there is no rea-
son that this final state interaction is negligible. A sec-
ond remark about the pion pole calculation is the possible
contribution of diffractive excitation of the proton feeding
the neutron channel. This problem has been investigated
in [30]. Preliminary experiments [18] rather point to the
fact that for z < 0.8 there is a sizable contribution of
π0-exchange to forward proton production [31].

A new approach [21] has been recently applied to de-
scribe in a consistent and unified framework proton frag-
mentation and the flavour asymmetry in the proton sea.
This work [21] revises old form factor parametrizations
and background contributions to one-pion-exchange in com-
parison with previous formulations in order to reproduce
the new E866 data on the ū− d̄ asymmetry.
We are aware that the models for the form factors we use
here follow strongly the old approaches and therefore can
not reproduce the new E866 data as well. As we limit
our calculations to z-values bigger than 0.7, the issue of a
quantitative description of the ū− d̄ asymmetry is not so
relevant [32].

In the semi-inclusive reaction we limit ourselves mainly
to forward neutrons in photon induced reactions at small
xBj, as they are studied at HERA. In this kinematic region
one cannot apply the usual factorization into a photon-
quark cross section times a distribution function multi-
plied by a quark fragmentation function. That is why it
is interesting by itself to study target fragmentation as
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a nonperturbative process combining fragmentation and
structure information. With good reason the new concept
of fracture functions has been invented for this process.
For small xBj we can consider the photon as a quark-
antiquark state which materializes long before it reaches
the proton [8] and interacts with the pion and neutron
in the proton wave function. Schematically we write the
inelastic cross section in a form similar to the proton in-
duced one:

σ(φ0 → φα) =

∫

d2bdwd2r |Ψqq̄(w, r)|2

×
∣

∣〈φα[1− Sqq̄πSqq̄n]|φ0〉
∣

∣

2
. (22)

Here the qq̄ pair wave function is represented by Ψqq̄(w, r)
with w being the momentum fraction of the quark and r

the transverse separation of the quarks. This wave func-
tion contains the summation over the electric charges of
the different quarks and is electromagnetic in origin. The
weak electromagnetic coupling determines the cross sec-
tion of the photon with the pion.
Following the same procedure for the sum over all spatial
configurations and over all excited (inelastic) states we get

dσγ∗p→nX

dz
=

∫

d2brelρnπ(z,brel)

∫

d2bdwd2r|Ψqq̄(w, r)|2

× 2ReΓ qq̄π(b− sπ, r)[1− 2ReΓ qq̄n(b− sn, r)] ,

(23)

where we take into account the dependence on the qq̄-size
by an r-dependent cross section:

Γ qq̄a(b, r) =
1

4π
σqq̄a
tot (r)Λ

2
qq̄a exp

[

−
b2Λ2

qq̄a

2

]

. (24)

By performing the b-integration analytically we get

dσγ∗p→nX

dz
=

∫

d2brelρnπ(z,brel)

∫

dwd2r|Ψqq̄(w, r)|2

× σqq̄π
tot (r)

{

1− Λ2
eff

σqq̄n
tot (r)

2π
exp

[

− Λ2
effb

2
rel

2

]}

,

(25)

with Λ2
eff =

Λ2
qq̄πΛ

2
qq̄n

Λ2
qq̄π + Λ2

qq̄n

. (26)

In this form we see the role played by the photon wave
function: It governs the integral but does not enter in
the magnitude of the screening correction with the same
weight as in the direct term. Screening is a strong inter-
action effect which is a function of the transverse size of
the qq̄ pair.

In the expression (25) we have a linear and a quadratic

term in the dipole-hadron cross section σqq̄h
tot (r) averaged

on the photon wave function squared. The first is easily
calculated giving the total photon-pion cross section,

〈σqq̄π
tot 〉 ≡

∫

dwd2r |Ψqq̄(w, r)|2σqq̄π
tot (r) = σγ∗π

tot , (27)

where we have introduced the notation of average to get
simpler expressions in the following. The second term con-
tains the correlated average of qq̄π and qq̄n cross sections.
Equation (25) reads

dσγ∗p→nX

dz
=

∫

d2brelρnπ(z,brel)σ
γ∗π+

tot (28)

×
{

1− Λ2
eff

σeff
2π

exp
[

− Λ2
effb

2
rel

2

]}

,

where we have defined

σeff =
〈σqq̄π

tot σ
qq̄n
tot 〉

〈σqq̄π
tot 〉

. (29)

It is worthwhile to remind here that the total cross sec-
tions appearing in eqs. (28) and (29) depend on Q2, the
photon virtuality, and on the scaling variables xπ and xn
(respectively for a pion and a neutron target):

xπ =
xBj

1− z
xn =

xBj

z
with xBj =

Q2

2q · p . (30)

Aware of this we rewrite eq. (29) in the following way

σeff =
〈σqq̄π

tot (xπ)σ
qq̄n
tot (xn)〉

〈σqq̄π
tot (xπ)〉

=
〈σqq̄n

tot (xπ)σ
qq̄n
tot (xn)〉

〈σqq̄n
tot (xπ)〉

,

(31)
where we use σqq̄π

tot ∝ σqq̄n
tot , keeping the right x- and Q2-

dependences. The quantity in eq. (31) can be then be
parametrized following Kopeliovich and Povh [33] as

〈σqq̄n
tot (xπ)σ

qq̄n
tot (xn)〉

〈σqq̄n
tot (xπ)〉

= N0
1

F p
2 (xπ)

(

1

xπ

)∆eff
(

1

xn

)∆eff

.

(32)
This parametrization is valid in the region of large Q2

and small x values6. We choose the values N0 = 2 GeV−2

and ∆eff = 0.15 slightly different from those quoted in
[33] as we are interested in a region of smaller x values.
The low value for ∆eff comes from the fact that diffraction
and therefore also shadowing are dominated by processes
softer [8] than those dominating F p

2 for which we use the
parametrization in the double leading log approximation
[34] which covers a wide xBj and Q

2 range.
In the case of real photons at very high energies (HERA

kinematics) we neglet the small effect in the difference be-
tween the photon-pion and photon-neutron cm-energies
and get

σeff |Q2=0 =
〈(σqq̄n

tot )
2〉

〈σqq̄n
tot 〉

=
16π

σγp→X
tot

dσγp→pX

dt

∣

∣

∣

∣

t=0

= 16π
bDσD

σγp→X
tot

≈ 20mb , (33)

where we use dσγp→pX/dt = bDσD exp(bDt) with the ex-
perimental values for bD and σD according to [35,36].

6 Working at small xBj we can exchange all neutron labels
against proton labels.
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Fig. 8. Comparison of the energy distributions of neutrons
for deep inelastic events and photoproduction imposing the
kinematical cuts of ref. [1]. The distributions are normalized
to the total number of DIS events.

Finally following the same idea of shadowing as a soft
process which motivated the choice of ∆eff we employ
slope parameters Λ2

qq̄n and Λ2
qq̄π which are calculated from

total cross sections7 σqq̄n
tot = σρn

tot ≈ 30 mb and σqq̄π
tot ≈

20 mb:

Λ2
qq̄π ≈ 4π

σqq̄π
tot

Λ2
qq̄n ≈ 4π

σqq̄n
tot

.

For the double differential γ∗p cross section, we obtain
with the help of eqs. (20) and (21),

d2σγ∗p→nX

dzdp2t
=

1

N(z)

dN(z, pt)

dp2t

dσγ∗p→nX

dz
, (34)

which is then rescaled to yield the differential cross sec-
tion for neutron production in electron-proton scattering
(besides a small longitudinal contribution)

d4σep→e′nX

dxBjdQ2dzdp2t
=

αem

2πxBjQ2
(2− 2y + 2y2)

d2σγ∗p→nX

dzdp2t
,

(35)

with y = Q2

xBjs
; s is the cm ep total energy squared.

The phenomenological γ∗π+ cross section entering eq.(28)
is expressed in terms of the pion structure function

σγ∗π+

tot (xπ, Q
2) =

4π2αem

Q2
Fπ+

2 (xπ , Q
2) . (36)

In the following we use for demonstration purpose

Fπ+

2 (xBj, Q
2) = 2

3F
p
2 (xBj, Q

2) valid at xBj ≪ 0.1. For
real photons we refer to the fit performed in [27].

Averaging the colour dipole-neutron cross section to-
gether with the dipole-pion one, the decrease of the ef-
fective cross section σeff is less steep with increasing the

7 From the neutron target to the pion target we scale total
cross sections with the ratio of pion to proton size, i.e. with a
factor 2/3.

virtuality of the photon than e.g. the free dipole-neutron
cross section. Still screening is reduced for high Q2. To
show this we plot in fig. 8 the integrated neutron energy
distributions in photoproduction with Q2 < 0.02 GeV2,
5 GeV < Ee < 22 GeV, and in deep inelastic scattering
with 10 GeV2 < Q2 < 100 GeV2, 0.04 < y < 0.95, the
ZEUS cuts (θscat < 0.6 mrad, pt < 0.5 GeV and an inte-
grated luminosity of 6.7 pb−1). A shift of the DIS cross
section maximum by 50 GeV to lower energies is clearly
visible. This is due to screening, which reduces the cross
section mainly at smaller En (neutron energy), such that
the peak appears at higher energies in photoproduction.
Our results indicate a clear signal for more transparency
of the neutron when interacting with highly virtual pho-
tons. Small size color dipoles rescatter less on the target
fragment neutron, even if for very large Q2 screening still
persists. The semi-inclusive reaction with Regge-exchange
also allows to study the same phenomena as in the diffrac-
tive σγ∗p→p+X cross section.
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Fig. 9. Absorptive K-factor for neutron production in real
and virtual photon-proton collisions.

The absorptiveK-factors for γp→ nX and ep→ e′nX
are shown in fig. 9: it is visible that for DIS neutron pro-
duction (high Q2) screening becomes very weak , while
for real photons we get, at large z, a somewhat reduced
effect compared to proton-proton collisions (see fig. 7).
For z > 0.75 and Q2 > 10 GeV2 the factorization of the
cross section into a pion flux factor and a pion structure
functions looks very acceptable.

In fig. 10 we show the pt-integrated neutron cross sec-
tion with the H1 cuts as function of z. The screening in
pp → nX manifests itself as a bigger ep → e′nX cross
section, since a higher pion flux is needed to explain the
measured hadronic cross section. Notwithstanding the va-
lidity of the impuls approximation in high-Q2 processes,
factorization is broken in soft hadronic fragmentation re-
actions. The comparison of our result with the preliminary
H1 data is very encouraging.

The fracture functions [6,7] introduced to describe tar-
get fragmentation allow a model independent evolution in
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the framework of perturbative QCD, albeit the starting
functions have to be known. In this approach the non-
perturbative distributions are related to the pt-integrated
differential cross section for leading neutron production in
ep scattering in the following way

d3σep→e′nX

dxBjdQ2dz
=

2πα2
em

xBjQ4
(2−2y+2y2)M2(xBj, Q

2, z) , (37)

where at leading order in αs there is no contribution from
the fragmentation of the struck quark in the target region.
In the one-pion-exchange model without screening correc-
tions one can interprete8 M2(xBj, Q

2, z) as the product
of the flux of neutrons integrated over pt, times the pion
structure function Fπ

2 (xπ , Q
2).

The fracture function M2 is defined in analogy with the
structure function F2,

M2(x,Q
2, z) = x

∑

i

e2iMi,n/p(x,Q
2, z) , (38)

where Mi,n/p(x,Q
2, z) represents the probability of find-

ing a parton of flavour i with momentum fraction x and
a neutron with momentum fraction z inside a proton.

In fig. 11 we give the fracture functions M2(xBj, Q
2, z)

as functions of z, at fixed xBj, for various Q
2 values.

The Q2-evolution of the fracture functions we use is
given at small virtualities by the higher twist effect of
screening and at higher Q2 by the evolution of the pion
structure function. In fact for neutron fragmentation the
Altarelli-Parisi evolution of the fracture function dom-
inates the total Q2-dependence as has been argued in
ref. [37].

8 Here one should consider this fracture function as an input
distribution at a certain scale Q2

0 and then apply the pQCD-
evolution.

5 Discussion of fragmentation results and

validity of the factorization hypothesis

Finally we compare the screening corrections for the three
different cases of proton, real and DIS photon induced
semi-inclusive fragmentation reactions (cf. figs. 7, 9). One
sees that both proton induced and real photon induced
cross sections haveK-factors differing by about thirty per-
cent from unity for z < 0.8− 0.9. In this region factoriza-
tion for these reactions does not hold. On the other hand
for deep inelastic scattering at Q2 > 10 GeV2 the rescat-
tering of the qq̄ dipole in the photon by the neutron is
weaker. The different sizes of the absorptive corrections
in pp compared to γ∗p interactions prevent a model in-
dependent extraction of Fπ

2 from the simple factorization
hypothesis, in agreement with the conclusions reached in
ref. [17]. We also show that the effect of rescattering for
real photon-proton reactions is important and that one
can disentangle the difference with highly virtual photons:
the shift in the neutron energy distributions can be under-
stood in terms of different absorption effects.

In addition an extraction of the pion structure func-
tion is affected by the uncertainty in the determination of
the pion flux factor. Our fits to the proton induced frag-
mentation reaction give for the radius parameters R2

lc =

0.2GeV−2 and Rc = 0.05GeV−2. More accurate pt neu-
tron spectra in the case of deep inelastic scattering could
reduce this uncertainty significantly. At the moment the pt
spectra in proton induced reactions have been measured
for too low energies [25] or too high pt in the relevant z
range [28].

It may be added that other mechanisms in all three re-
actions start contributing for z < 0.75; ρ-exchange [3,4,21]
has been added to the strong proton induced cross section
presenting a non negligible contribution for 0.5 < z < 0.7.
In Monte Carlo simulations (LEPTO) the fragmentation
cross section increases for z < 0.5. Further work is needed
to understand this part of the cross section theoretically.

The semi-inclusive reactions in the large z-region show
a case of transparency reminiscent of diffractive events.
We think this finding of our paper merits a more accurate
experimental examination. Exclusive (e.g. ρ-production )
reactions are in seemingly good agreement with theoretical
calculations based on the dipole picture, which is under-
lying color transparency. What is important to realize is
that the final state interactions of virtual partons appear
correlated with their initial state interaction.
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Appendix

Here we give the expression for the function entering the
Skyrme-type form factor, eq. (6), [38]:

g(x) = 1+

∑3
k=0 akTk(x̄)

1 +mx
, x =

|t|
m2

π

, x̄ =
2x− a− b

b− a
(39)

where Tk is the k-th Tchebycheff polynomial of 1st kind,
with a = 0.003113 b = 280.198488 m = 10−8

a0 = 6.242336 a1 = 4.940353 a2 = 2.740654
a3 = 0.9217577 .
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