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The active-sterile neutrino conversion is studied for neutrino propagating in the axial

potential generated by magnetised electron plasma in the supernova medium. We consider

the effect of random magnetic field Brms on the average neutrino conversion probability. We

obtained the constraint on ∆m
2 and sin

22θ for different strength of the random magnetic

fields, by considering the positive definiteness of the average neutrino conversion probability

inside the supernova core. Our calculation shows that, Brms
<
∼

0.63×1014 Gauss is preferable

so that small values of ∆m
2 can not be excluded.

I. INTRODUCTION

The COBE measurement of the cosmic microwave background temperature anisotropies on large scale

[1], hints for the existence of a hot dark matter (HDM) component of 30% of the total mass density [2].

Also the recent results of solar neutrino, atmospheric neutrino and the LSND result, hints for the neutrino

oscillation. All these can not be explained with the three generation neutrino flavor mixing scheme. Thus

the speculation is that, there is a fourth generation low mass sterile neutrino νs which will mix with the

standard model neutrinos. This neutrino has to be sterile with respect to electroweak interactions so that,

it can not be detected directly through experimental searches. This postulate of a fourth generation light-

sterile neutrino can explain simultaneously the dark matter, solar neutrino and atmospheric problems [3–6].

The most stringent constraints for the neutrino mass matrix including a sterile neutrino species are obtained

from the nucleosynthesis bound on the maximum number of extra neutrino species that can reach thermal

equilibrium before nucleosynthesis and change the primordially produced helium abundance [7].

Neutrino propagation in the magnetised medium has interesting consequences in the astrophysical and

cosmological scenarios. Large scale magnetic fields in the early universe hot plasma and in the core of

the supernova can effect the neutrino conversion [8]. It has been shown that random magnetic fields can

strongly influence neutrino conversion rates and this could have important implications, especially in the

case of conversion involving a light sterile neutrino [9,10]. The effect of active-sterile neutrino conversions in

a supernova has also been discussed, both in the case where no magnetic field is present, as well as in the

presence of random magnetic field [10] as large as 1016 Gauss.

The dispersion relation for neutrino propagating in a magnetised medium is different from the vacuum one.

In the magnetised medium neutrino acquires an axial potential which is proportional to the scalar product

of the neutrino momentum and the magnetic field vector (k.B). The effect of axial potential on neutrino

propagation in media with regular and/or random magnetic fields are considered in the literature [10–13].

For random magnetic fields case Semikoz and Valle [13] have show that, the neutrino conversion is aperiodic

in nature. The effect of axial potential on active-sterile neutrino conversion has also been considered in

supernova and sun [10,14]. It was shown by Kusenko and Segre recently that, the polarisation effects of the

supernova medium lead to the explanation of the birth velocity of pulsars [15].
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In this paper we have considered the effect of axial potential on neutrino propagation in the supernova

medium in the presence of random magnetic fields. We calculate the average neutrino conversion probability

P , for the process νe → νs using two different approximations (method-I and II). method-I shows that, for

both Γ‖ > ωf and Γ‖ < ωf (Γ‖ is the longitudinal damping parameter) one can obtain finite conversion

probability for νe → νs. On the other hand for the positive definiteness of the conversion probability in

method-II, only Γ‖ < ωf is possible. Using this positive definiteness condition of the average conversion

probability inside a supernova core, we have showed that Brms <∼ 0.63 × 1014 Gauss is preferred, because

large values of Brms exclude small values of ∆m2, which are not supported by present experiments.

The paper is organised as follows: in Sec. II we calculate the average neutrino conversion probability using

two different methods in the presence of a randomly fluctuating magnetic field. The comparison of both

the methods are undertaken in Sec. III and necessary condition for the positive definiteness of the average

conversion probability for the process νe → νs is obtained in the second method. Using the necessary

condition for active-sterile neutrino conversion inside a supernova core, we put constraint on the parameters

∆m2 and sin22θ for different values of the random magnetic field in Sec. IV and a short conclusion is drawn

in Sec. V.

II. NEUTRINO PROPAGATION IN THE MAGNETISED MEDIUM

A. method - I

The evolution equation for a system of two neutrinos νa and νb, where νa is the active one and νb is

active/sterile one is given by

i
d

dt

(

νa

νb

)

=

(

Haa(t) Hab(t)

Hba(t) Hbb(t)

)(

νa

νb

)

, (1)

where the quantity H is in general the potential for the neutrino in the medium which we will discuss soon.

Let us define the functions R = Re(〈ν∗aνb〉) and I = Im(〈ν∗aνb〉). Then using these in Eq.(1) we obtain

Ṙ(t) = −Hd(t)I(t), İ(t) = Hab(t) (2P (t)− 1) +HdR(t), (2)

and

Ṗ (t) = −2Hab(t)I(t) (3)

where the function P (t) is the neutrino conversion probability Pνa→νb(t) and Hd = Haa(t)−Hbb(t) and dot

on the top corresponds to derivative with respect to t. Using the Eq.(2) in Eq.(3) we can write

Ṗ (t) = −2Hab(t)

∫ t

0

İ(t1)dt1

= −2Hab(t)

∫ t

0

[Hab(t1)(2P (t1)− 1) +Hd(t1)R(t1)] dt1. (4)

Let us consider the neutrino propagation in the medium in the presence of a magnetic field. Then we have

Hd(t) = V −∆cos2θ + Vaxial and Hab(t) = µB⊥(t). (5)
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The quantity V is the difference of neutrino vector potential for νa → νb, ∆ = (m2
2−m2

1)/2E = ∆m2/2E and

E is the neutrino energy and θ is the neutrino mixing angle. The axial vector potential Vaxial = µeffk.B(t)/k

is generated by the mean axial vector current of charged leptons in an external magnetic field [11–13,16].

For fluctuation in the magnetic field we can write B(t) = B0 + B′(t), where B0 is the constant background

field and B′(t) is the random fluctuation over it. Then we have

Hd(t) = Hd(0) +H ′
d(t)

= (V −∆+ µeffB‖0) + µeffB
′
‖(t), (6)

and

Hab(t) = Hab(0) +H ′
ab(t)

= µB⊥0 + µB′
⊥(t). (7)

For the neutrino conversion length greater than the domain size i.e. lconv >> L0 (where lconv ∼ 1/PΓW

and ΓW is the weak interaction rate), a neutrino will cross many magnetic field domains before it flips its

helicity. Thus the neutrino will experience an average field before it flips its helicity. So one can average the

propagation equation (4) over the random magnetic field distribution [9,17]. The magnetic field in different

domains is randomly oriented with respect to the neutrino propagation direction. So the neutrino conversion

probability depends on the root mean square (rms) value of the random magnetic field. With the use of

the delta correlation for uncorrelated magnetic field domains of size L0, the average of the random magnetic

field is [13,17–20],

〈B‖(t)〉 = 〈B⊥(t)〉 = 〈B‖(t)B⊥(t)〉 = 0, (8)

〈Bi‖(t)Bj‖(t1)〉 = 〈B2
‖〉δijL0δ(t− t1), (9)

and

〈Bi⊥(t)Bj⊥(t1)〉 = 〈B2
⊥〉δijL0δ(t− t1). (10)

The rms value of the averaged magnetic field is given as Brms =
√

〈B2〉. Let us assume,

• Hab(t) is sufficiently close to Hab(t2) so that

∫ t

0

∫ t1

0

Hab(t)
Hd(t1)Hd(t2)

Hab(t2)
Ṗ (t)dt2dt1 ≃

∫ t

0

∫ t1

0

Hd(t1)Hd(t2)Ṗ (t)dt2dt1, (11)

and

• P (t) has no correlation with Hd(t) and Hab(t).

Thus averaging both sides of Eq.(4) and using the above magnetic field correlations we obtain

Ṗ(t) = −2H2
ab(0)〈

∫ t

0

(2P (t1)− 1)dt1〉 − Γ⊥〈2P (t)− 1)〉 −H2
d(0)〈

∫ t

0

P (t1)dt1〉 − 2Γ‖〈
∫ t

0

Ṗ (t1)dt1〉. (12)
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where 〈P 〉 = P and the quantities Γ⊥ and Γ‖ are the longitudinal and transverse damping parameters given

by

Γ⊥ =
4

3
µ2〈B2〉L0, and Γ‖ =

1

6
µ2
eff 〈B2〉L0. (13)

Differentiating once again to Eq.(12) with respect to t we obtain the following second order differential

equation

P̈(t) + 2ΓT Ṗ(t) + ω2
sP(t)− 2H2

ab(0) = 0, (14)

where the quantity

ω2
s = 4H2

ab(0) +H2
d(0), (15)

is square of the spin rotation frequency of the neutrino in the medium, ΓT = Γ⊥ + Γ‖ and it satisfies the

boundary conditions P(0) = 0 and Ṗ(0) = Γ⊥. The solution to this differential equation is given by,

P(t) =
2H2

ab(0)

ω2
s

(

1− e−ΓT t

{

sinh[
√

Γ2
T − ω2

s t]
√

Γ2
T − ω2

s

[Γ‖ −
Γ⊥(ω

2
s − 2H2

ab(0))

2H2
ab(0)

] + cosh[
√

Γ2
T − ω2

s t]

})

. (16)

The Eq.(16) is the general solution for the average conversion probability having random fluctuation in both

transverse and longitudinal mode of the magnetic field [13]. For no random fluctuation in the magnetic field

(Γ⊥ = Γ‖ = 0) we get back the standard MSW type solution for the neutrino conversion probability

P (t) =
4H2

ab(0)

ω2
s

sin2(
ωst

2
). (17)

Let us consider the propagation of a system of active (doublet) and light sterile (singlet) neutrinos (νe → νs),

with massesm1 andm2, mixing angle θ, and no transition magnetic moments, in the presence of a magnetised

plasma. Then the Hamiltonian in the evaluation equation Eq.(1) will be

(

V −∆cos 2θ + µeffk.B/k ∆sin 2θ/2

∆ sin 2θ/2 0

)

, (18)

where ∆ = (m2
2 −m2

1)/2E. For active-sterile neutrino conversion the resultant vector potential experienced

by νe is given by

V =
√
2GFne(3Ye + 4Yνe − 1), (19)

where GF is the Fermi coupling constant, ne is the electron density in the medium and Ye and Yνe are the

electron and νe abundances respectively in the medium. For neutrino propagating along the z axis the Vaxial

is

Vaxial = µeffBz
kz
k
. (20)

The quantity µeff for νe → νs is given by

µeff =
eGFPF√
2 2π2

, (21)
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and PF is the Fermi momentum of electron. As we are considering the neutrino magnetic moment/transition

magnetic moment to be zero, the perpendicular component of the damping term Γ⊥ will vanish. Thus putting

Γ⊥ = 0 in Eq.(16), the average conversion probability for νa → νs will be

P(t) =
∆2 sin2 2θ

2ω2
f



1− e−Γ‖t







Γ‖

sinh[
√

Γ2
‖ − ω2

f t]
√

Γ2
‖ − ω2

f

+ cosh[
√

Γ2
‖ − ω2

f t]









 , (22)

where

ω2
f = (H2

d (0) + ∆2sin22θ) (23)

is square of the flavor conversion frequency of the neutrino in the medium. In a supernova medium with a

strong random magnetic field satisfying the condition Γ‖ ≫ ωf the average conversion probability in Eq.(22)

will be approximately

P(t) ≃ ∆2 sin2 2θ

2ω2
f

(

1− e−ω2

f t/2Γ‖

)

, (24)

and for weak field limit i.e. Γ‖ ≪ ωf it will be

P(t) ≃ ∆2 sin2 2θ

2ω2
f

(

1− e−Γ‖t cosωf t
)

. (25)

These are shown previously by Semikoz and Valle in ref [13]. Using the strong field limit for the active-sterile

neutrino conversion in a supernova, the limit on ∆m2 and sin22θ are obtained from the supernova cooling

[10] and by thermalisation of the sterile neutrinos in the early universe hot plasma [13].

B. method - II

In the previous section we have derived the master equation for the average conversion probability of

neutrino in the medium with a magnetic field. But in that calculation we have neglected the correlation

of P (t) with Hd(t) and Hab(t). In the previous section we have only taken the average of the equation

for Ṗ (t) and not for Ṙ(t) and İ(t) to derive the master equation for the conversion probability. For the

neutrino conversion length greater than the domain size (lconv >> L0), a neutrino will cross many magnetic

field domains before it flips its helicity. Thus the neutrino will experience an average field before it flips

its helicity. So one can average the propagation equations (2) and (3) over the random magnetic field

distribution [9,18]. Let us define the average of the functions 〈P (t)〉 = P(t), 〈R(t)〉 = R(t) and 〈I(t)〉 = I(t).
Because of the averaging the average probability P(t) will only depend on the even powers of the magnetic

field correlation. Using the average functions in Eqs.(8) to (10) we obtain

İ(t) = 〈Hab(t)(2P (t)− 1)〉+ 〈Hd(t)R(t)〉
= Hab(0)〈(2P (t)− 1)〉+ 〈H̃ab(2P (t)− 1)〉

+Haa(0)〈R(t)〉+ 〈H̃aa(t)R(t)〉, (26)

and
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Ṙ(t) = −Haa(0)〈I(t)〉 − 〈H̃aa(t)I(t)〉 (27)

respectively. Using the delta correlations for the magnetic fields as shown in Eqs.(8) to (10) we obtain

〈H ′
d(t)R(t)〉 ≃ −2Γ‖I(t); 〈H ′

ab(t)P (t)〉 ≃ −Γ⊥I(t), (28)

and

〈H ′
ab(t)I(t)〉 ≃

Γ⊥

2
(2P(t)− 1). (29)

Putting these values in Eqs.(26) and (27) we obtain

İ(t) = Hd(0)R(t) +Hab(0)(2P(t)− 1)− 2(Γ⊥ + Γ‖)I(t). (30)

and

Ṙ(t) = −Hd(0)I(t)− 2Γ‖R(t). (31)

Using these equations in Eq.(3) we obtain

Ṗ(t) = −2Hab(0)I(t) − Γ⊥ (2P(t)− 1) . (32)

For convenience let us define

I(t) = e−2(Γ‖+Γ⊥)tI1(t), (33)

and

R(t) = e−2Γ‖tR1(t), (34)

Using Eqs.(33) and (34) in Eqs.(30) to (32) we obtain

İ1(t) = Hd(0)e
2Γ⊥tR1(t) +Hab(0)e

2(Γ⊥+Γ‖)t(2P(t)− 1), (35)

Ṙ1(t) = −Hd(0)e
−2Γ⊥tI1(t), (36)

and

Ṗ(t) = −2Hab(0)e
−2(Γ⊥+Γ‖)tI1(t)− Γ⊥ (2P(t)− 1) . (37)

Differentiating Eq.(37) twice with respect to t and putting the value of İ1(t) from Eq.(35) we obtain the

master equation for the average conversion probability as,

...

P(t) + 4
(

Γ⊥ + Γ‖

)

P̈(t) + 4

(

3Γ⊥Γ‖ + Γ2
⊥ + Γ2

‖ +
ω2
s

4

)

Ṗ(t)

+ 8

(

Γ2
⊥Γ‖ + Γ⊥Γ

2
‖ +H2

ab(0)Γ‖ +
H2

d(0)Γ⊥

4

)

P(t)

− 4

(

Γ2
⊥Γ‖ + Γ⊥Γ

2
‖ +H2

ab(0)Γ‖ +
H2

d(0)Γ⊥

4

)

= 0, (38)
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with the boundary conditions P(0) = 0, Ṗ(0) = Γ⊥ and P̈(0) = 2H2
ab(0) − 2Γ2

⊥. By switching off the

damping terms in Eq.(38), we will give get back the same solution for P(t) as shown in Eq.(17). The

solution to the above third order differential equation is given in Eq.(25) of the ref [19] and it is of the form

P(t) =
1

2
+ y(t). (39)

Henceforth for further reference we will refer the Eq.(25) of ref [19]. The solution obtained is very complicated

and it is difficult to conclude any thing from the solution. On the other hand the interesting part of the

solution is that, the positive definiteness of the average conversion probability (0 ≤ P ≤ 1) requires the

following condition to satisfy

ω2
s >

4

3
(Γ2

⊥ + Γ2
‖ − Γ⊥Γ‖), (40)

irrespective of the form of neutrino potential and the magnetic field, which essentially shows that neutrino

crosses many domains leads to this requirement. Considering the magnetic field in the early universe hot

plasma and the core of the newly born neutron stars to be purely random in nature, we studied the conversion

νeL → νeR in these medium in a previous paper [19].

III. COMPARISON OF BOTH THE METHODS

Let us consider the active sterile neutrino conversion in the magnetised medium, with neutrino mixing

and µ = 0 (Γ⊥ = 0) as shown in (18). Only the fluctuation in the parallel component of the magnetic field

will contribute. So for this case the condition in Eq.(40) will be modified to

ω2
f >

4Γ2
‖

3
. (41)

This implies ωf > Γ‖. The average conversion probability in Eq.(24) for strong random magnetic field limit

is derived with the approximation Γ‖ ≫ ωf . On the other hand we obtain from Eq.(41), completely the

opposite one. Also the later condition further shows that, what ever may be the strength of the random

component of the magnetic field Γ‖, it should always satisfy the condition in Eq.(41). Apart from that,

this condition comes automatically from the positive definiteness of the probability. This opposite situation

arises because of the averaging procedure. In the first case we only take the average of the Eq.(3) and use

the functions I(t) and R(t) in that. On the other hand in the second method, we average the equations for

P (t), I(t) and R(t) separately, which are shown explicitly. In the first method it is assumed that Hab(t) is

sufficiently close to Hab(t2) so that in Eq.(11), they cancel. But in general this is not true for arbitrary t

and t2. Such terms are not there in the second method to derive the average probability equation.

Comparison of both the master equations Eq.(14) and Eq.(38) shows that, in the first there is no mixing

between the longitudinal Γ‖ and transverse Γ⊥ damping terms. Also the damping terms do not mix with

the background terms. On the other hand, there is mixing between the damping and background terms, and

the probability equation becomes more complicated.
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IV. RESULTS AND DISCUSSIONS

Let us estimate the range of ∆m2 and sin22θ from the the above inequality in Eq.(41) in a supernova

environment. Inside the supernova the vector potential for the process νe → νs is

V ≃ 4× 10−6ρ14(3Ye + 4Yνe − 1)MeV ≃ 4.48 eV, (42)

where Ye ≃ 0.3, Yνe ≃ 0.06 and the quantity ρ14 ≃ 8 is the density in the supernova core in units of

1014gm/cm3. Now let us assume that the random fluctuation in the magnetic field is much large compared

to the constant background part i.e. µB‖0 ≪ Γ‖ as considered in ref [10]. The flavor precession frequency

for νe → νs is given by

ωf =

√

(V − ∆m2

2E
cos 2θ)2 +

(

∆m2

2E

)2

sin2 2θ. (43)

Inside the supernova core, neutrinos have energy in the range 30 to 100 MeV. Then considering E ≃ 100

MeV, we obtain

ωf =

√

(4.48− 0.5× 10−8
∆m2

eV 2
cos 2θ)2 + 0.25× 10−16

(

∆m2

eV 2

)2

sin2 2θ eV. (44)

Inside the supernova core for νe → νs,

µeff ≃ 4.3× 10−13µB

(

PF

MeV

)

, (45)

where µB is the Bohr magneton. The quantity µeff has the same dimension that of the magnetic moment,

but it has nothing to do with the magnetic moment as it does not change the helicity of the particle. The

Fermi momentum of the electron inside the core is

PF ≃ 320(Yeρ14)
1/3 MeV ≃ 428 MeV. (46)

Thomson and Dunkan have argued that very strong magnetic fields might be generated inside the supernova

core due to small scale dynamo mechanism. If these fields are generated after core collapse, then it could be

viewed as random superposition of many small dipoles of size L0 ∼ 1 Km. Then the longitudinal damping

parameter is simplified to

Γ‖ ≃ 9.6B2
14 eV, (47)

where Brms is expressed in units of 1014 Gauss. Putting ωf and Γ‖ in Eq.(41), we can find the ranges

of ∆m2 and sin22θ for which the condition in Eq.(41) is satisfied. These are shown in the contour plots

for different values of the magnetic fields in Figure 1. Figure 1 (a) shows that, a very narrow range of

∆m2/eV 2 (3.16 × 108 − 1.6 × 109) is excluded for 0 <∼ sin22θ0.63 × 10−3 for the random magnetic field

strength Brms = 0.1 × 1014 Gauss. By increasing the strength of the random magnetic field to 0.5 × 1014

and 0.63× 1014 Gauss, we see in Figure 1 (b) and (c) that the width of the excluded range of ∆m2/eV 2 has

increased. The spread of ∆m2/eV 2 towards smaller values is large compared to the large values. Also the

large values of sin22θ are excluded. In Figure 1 (b) we see that 3.5×108 <∼ ∆m2/eV 2 <∼ 1.6×109 is excluded
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and for this the excluded range of sin22θ is 0 <∼ sin22θ <∼ 0.4 (for Brms = 0.5× 1014 Gauss). In Figure 1 (c)

it is shown that for Brms = 0.63× 1014 Gauss, the excluded region of ∆m2/eV 2 is 1.6× 107 − 1.6× 109 and

in this range all the values of sin22θ are excluded. It shows that, two distinct allowed regions for ∆m2/eV 2

are there in both sides of the excluded region. In these allowed regions all ranges of sin22θ are allowed. But

so far as ∆m2 value is concerned, it is interesting to consider only the region left to the excluded curve,

because it corresponds to smaller ∆m2/eV 2 values (∆m2 <∼ (keV )2). Going from Figure 1 (c) to (d) (for

Brms = 1014 Gauss) we observe that, the left arm of the curve vanishes and the right arm spreads towards

the higher values of ∆m2/eV 2 for all ranges of sin22θ. This implies that small values of ∆m2/eV 2 are

excluded. By further increasing the strength of the random magnetic field, we have shown in Figure 1 (e)

that, (for Brms = 1016 Gauss) all values of ∆m2/eV 2 <∼ 1.6 × 1013 are excluded for all ranges of sin22θ

values. This range of ∆m2/eV 2 are obviously not at all interesting, because it corresponds to very high

values of ∆m2/eV 2, and no astrophysical, cosmological and laboratory observations favour this. Also if

we consider small values of magnetic field (Brms < 1013 Gauss) then we found that, the excluded region

vanishes and all the parameter ranges are allowed. Thus if we consider only the effect of random magnetic

field in a magnetised electron plasma along the neutrino propagation direction, then magnetic field should

satisfy Brms <∼ 1014 Gauss so that small ∆m2/eV 2 ranges should not be excluded. On the other hand for

Brms < 1013 Gauss we found that, all the parameter ranges are allowed. As we have shown in Figure 1

(a), only a very narrow strip of ∆m2/eV 2 values are excluded for 0 <∼ sin22θ <∼ 0.4 and this narrow strip

vanishes for smaller values of Brms. For ∆m2 and sin22θ very small, we can see in Eq.(44) that ωf ≃ 2.12

eV and the condition Eq.(41) will give Brms < 0.4 × 1014 Gauss. Thus we found that for magnetic field

Brms <∼ .63 × 1014 Gauss, all the interesting ranges of parameters are allowed. Also this implies that the

maximum value of ∆m2 can be in the (keV )2 range.

V. CONCLUSION

For neutrino propagating in the magnetised plasma of the supernova, will experience an axial potential

which is proportional to the scalar product of the neutrino momentum and the magnetic field. We derived the

average conversion probability for active neutrino goes to active or sterile one by using a method developed by

Semikoz et. al, and another by one of us where it is assumed that the magnetic field has a random fluctuation

over the constant background. In the second method for neutrino having non-zero mixing and zero magnetic

moment we found the condition for the positive definiteness of the average conversion probability for the

process νe → νs. Using this condition as the basis, we found the excluded/included ranges of ∆m2 and

sin22θ for different values of the magnetic field. Our calculation shows that for neutrino to have maximum

mass in the keV range or less, the random magnetic field along the neutrino propagation direction should

not be very large (Brms <∼ 0.63 × 1014 Gauss). Because it is observed that for large magnetic field, small

values of ∆m2 are excluded.
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Figure 1: We have defined x = log[∆m2/eV 2] and y = log[sin22θ].(a) It is for Brms = 1013 Gauss and

the shaded region is excluded, (b) for Brms = 0.5× 1014 Gauss and the region inside the curve is excluded,

(c) Brms = 0.63× 1014 Gauss and the region inside the curve is excluded, (d) for Brms = 1014 Gauss and

left side of the curve is excluded and (e) Brms = 1016 Gauss and the left side of the curve is excluded.
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