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Abstract

We re-examine the charm contribution to atmospheric lepton fluxes in

the context of perturbative QCD. We include next-to-leading order correc-

tions and discuss theoretical uncertainties due to the extrapolations of the

gluon distributions at small-x. We show that the charm contribution to the

atmospheric muon flux becomes dominant over the conventional contribution

from π and K decays at the energies of about 105 GeV. We compare our

fluxes with previous calculations.

I. INTRODUCTION

Neutrino and muon fluxes from cosmic ray interactions with the Earth’s atmosphere
have been topics of considerable experimental and theoretical interest [1]. At energies near
1 GeV, the IMB [2], Kamiokande [3] and Soudan [4] experiments detect an excess of νe rel-
ative to νµ in the atmospheric neutrinos. Recent results from SuperKamiokande [5] appear
to confirm this observation. At these energies, leptonic decays of charged pions and leptonic
and semileptonic decays of kaons are responsible for the lepton fluxes, the so-called “con-
ventional” lepton flux. Currently, it is believed that the conventional flux dominates until
energies of about 103 TeV, when the effects of atmospheric charm production and decay
become important contributions to the lepton fluxes. The issue of where the charm contri-
butions dominate is of interest, in part, because this is an energy regime accessible to large
underground experiments [6]. Recent results from Fréjus [7], Baksan [8] and other experi-
ments [9] show an excess relative to the conventional muon flux in the 10 TeV energy range.
This may be an indication of a charm contribution at lower energies that expected. One of
the main goals of the neutrino experiments such as AMANDA [10], Antares [11], Nestor [12]
and at Lake Baikal [13] are searches for muon neutrinos from extragalactic neutrino sources
for which atmospheric neutrinos and muons present the main background.

Lepton fluxes from atmospheric charm have been calculated previously [14–17] for specific
models of charm particle production. Here, we calculate the leptonic flux from charm in
the context of perturbative QCD. We include next-to-leading order radiative corrections
and we study the importance of small-x behavior of the parton distribution functions. We
emphasize the uncertainties inherent in the necessary extrapolation of cross sections and
energy distributions beyond the experimentally measured regime. We use the comparison
with low-energy charm production data to constraint some of the theoretical uncertainties,
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such as the charm quark mass and the factorization and renormalization scale dependence.
We compare our results to the earlier work on the prompt muons from charm including a
recent calculation [14] calculated using PYTHIA Monte Carlo program [18].

In the next section, we describe the framework for the calculation of the lepton fluxes.
In Section III, we focus on the charmed quark contribution. In Section IV, we present our
results for the fluxes and compare with other calculations. We conclude in Section V.

II. LEPTON FLUX CALCULATION

Particle fluxes are determined by solving the coupled differential equations that account
for production, decays and interactions of the particles. The general form of the cascade
equations describing the propagation of particle j through column depth X is given by
[19,20]

dφj

dX
= −

φj

λj

−
φj

λ
(dec)
j

+
∑

k

S(k → j) (2.1)

where λj is the interaction length, λ
(dec)
j ≃ γcτjρ(X) is the decay length, accounting for time

dilation factor γ and expressed in terms of g/cm2 units. The density of the atmosphere is
ρ(X) and

S(k → j) =
∫

∞

E
dEk

φk(Ek, X)

λk(Ek)

dnk→j(E;Ek)

dE
. (2.2)

In Eq. (2.2), dn/dE refers to either the production distribution 1/σk·dσk→j /dE or decay

distribution 1/Γk·dΓk→j/dE (where λk → λ
(dec)
k in Eq. (2.2)) as a function of the energy E

of the outgoing particle j.
It is possible to solve these equations numerically, however, it has been shown [14] that

the same results can be obtained with an analytic solution which was derived by noticing
that the energy dependence of the fluxes approximately factorizes from the X dependence.
Consequently, one can rewrite

S(k → j) ≃
φk(E,X)

λk(E)

∫

∞

E
dEk

φk(Ek, 0)

φk(E, 0)

λk(E)

λk(Ek)

dnk→j(E;Ek)

dE
(2.3)

≡
φk(E,X)

λk(E)
Zkj(E) .

It is often convenient to write Zkj in terms of an integral over xE ≡ E/Ek, so

Zkj(E) =
∫ 1

0

dxE

xE

φk(E/xE , 0)

φk(E, 0)

λk(E)

λk(E/xE)

dnk→j(E/xE)

dxE

. (2.4)

In the limits where the flux has a single power law energy behavior, the interaction lengths
are energy independent and the differential distribution is scaling (energy independent),
the Z-moment Zkj(E) is independent of energy. In practice, the Z-moments have a weak
energy dependence because dn/dxE depends on Ek, the interaction lengths λ are not energy
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independent, and in general, φk(E) is not a constant power law in energy over the full energy
range. The cosmic ray flux can be represented by the following flux of primary nucleons at
X = 0:

φp(E,X = 0)[cm−2s−1sr−1GeV−1] = 1.7 (E/GeV)−2.7 E < E0 (2.5)

174 (E/GeV)−3 E ≥ E0 ,

where E0 = 5 · 106 GeV [21,22]. At these energies, we assume isotropy of the flux [23].
The detailed solutions to the cascade equations can be found, for example, in Refs.

[19] and [20]. Following Ref. [14], we assume that the incident cosmic ray flux can be
represented by protons. The flux results, in high energy and low energy regimes for lepton
flavor ℓ = νµ, νe or µ due to proton production of hadron j followed by j decay into ℓ are

φj,high
ℓ =

Zpj(E)Zjℓ(E)

1− Zpp(E)

ln(Λj/Λp)

1− Λp/Λj

mj c h0

E τj
f(θ)φp(E, 0), (2.6)

φj,low
ℓ =

Zpj(E)Zjℓ(E)

1− Zpp(E)
φp(E, 0) , (2.7)

where an isothermal model for the atmosphere, in which ρ(h) = ρ0 exp(−h/h0) describes
the density profile as a function of altitude h. The parameters are h0 = 6.4 km and ρ0 =
2.03× 10−3 g/cm3 [24]. The quantity mj is the decaying particle’s mass and

Λj ≡
λj

(1− Zjj)
(2.8)

is an effective interaction length, which is weakly dependent on energy. The zenith angle
dependence of the high energy flux is characterized by f(θ) ≃ 1/ cos θ for θ < 60◦. At
higher zenith angles, f(θ) is a more complicated function which accounts for the curvature
of the earth. Details appear in Ref. [20]. The low energy flux is isotropic. When the
cascade involves charmed hadrons, the low energy behavior dominates and the flux is called
“prompt”. Critical energies, below which the decay length is less than the vertical depth of
the atmosphere, range from 3.7 − 9.5 × 107 GeV [14]. Interpolation between high and low
energy fluxes is done via

φℓ =
∑

j

φj,low
ℓ φj,high

ℓ

φj,low
ℓ + φj,high

ℓ

. (2.9)

Eqs. (2.6) and (2.7) show that the bases for the calculation of the prompt lepton fluxes
are production and decay Z-moments involving charm. The decay moments are discussed in
Section III.D. The main uncertainties in the calculation of the lepton flux from atmospheric
charm are the production Z-moments: ZpD and ZpΛc

. The production moments are given
by

Zpc = 2
∫ 1

0

dxE

xE

φp(E/xE)

φp(E)

1

σpA(E)

dσpA→cc̄(E/xE)

dxE

. (2.10)
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The differential cross section is evaluated here using perturbative QCD. The factor of two
accounts for the multiplicity of charmed (or anticharmed) particles. The charm Z-moments
can be converted to hadronic moments by

Zpj(E) = fj Zpc(E) , (2.11)

where fj is the fraction of charmed particles which emerges as hadron j, where j =
D0, D+, D+

s and Λc. We implicitly sum over particles and antiparticles (hence the fac-
tor of two in Eq. (2.10)).

The inelastic proton-air cross section σpA(E) is parameterized by [25]

σpA(E) = 280− 8.7 ln(E/GeV) + 1.14 ln2(E/GeV) mb . (2.12)

In the high energy limit of the lepton fluxes, in addition to Zpc, we need effective hadronic
interaction lengths Λj. The proton effective interaction length is therefore

Λp(E) ≃
A

N0σpA(E)

1

(1− Zpp)
(2.13)

where A = 14.5 is the average atomic number of air nuclei and N0 = 6.022×1023/g. We use
Thunman et al.’s (TIG) energy dependent Zpp, calculated using a PYTHIA Monte Carlo
[18] as a function of energy [14]. The charmed hadron j interaction lengths are all taken to
be equal to the kaon interaction length, approximated by

Λj ≃
A

N0σpA(E)

σtot
pp (E)

σtot
Kp(E)

1

(1− ZKK)
. (2.14)

We use ZKK from Ref. [14]. The total cross sections are parameterized using the particle
data book values [26] based on Regge theory [27]. The prompt lepton flux below 108 GeV is
insensitive to the detailed values of Λj because essentially all of the charmed hadrons decay
before reaching the surface of the earth. Therefore, for most of the energy range considered
here, the charmed particles are “low energy” and Eq. (2.7) describes the lepton fluxes.

We now turn to the evaluation of Zpc in perturbative QCD and the other charm inputs.

III. CHARM CROSS SECTION AND ENERGY DISTRIBUTION

The charm production cross section and energy distribution are the largest uncertainties
in the calculation of the prompt lepton fluxes. Since the charm quark mass is of the order
of 1.3 GeV, the treatment of the charm quark as a heavy quark may be questionable.
Theoretical uncertainties, due to the possible range of charm quark masses, as well as the
usual factorization and renormalization scale dependence need to be studied. Theoretical
predictions based on perturbative QCD calculation fit the available data reasonably well
in the energy range up to 800 GeV beam energy [28]. However, atmospheric lepton flux
calculations require beam energies up to and beyond 108 GeV. The parton distribution
functions are needed at very small parton momentum fraction x, outside of the measured
regime [29].

In this section we will address these theoretical issues:
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• the effect of next-to-leading order corrections on the cross section and charmed particle
energy distribution,

• charmed quark mass dependence,

• factorization and renormalization scale dependence,

• the consequences of the small-x behavior of the parton distribution functions on the
interaction Zpc moment, and

• the A dependence of the proton-air charm production cross section.

From our evaluation of these quantities, a theoretical uncertainty associated with perturba-
tive charm production will be evaluated. We also describe our inputs to the decay moments
of charmed hadrons.

A. Total Cross Section

The next-to-leading order (NLO) total charm cross section has been calculated by Nason,
Dawson and Ellis [30] and by van Neerven and collaborators [31]. The NLO cross section
is a factor of between 2 and 2.5 larger than the leading order cross section. Gluon fusion
dominates the production process. In Fig. 1, we show the importance of the charm quark
mass in the NLO cross section. We compare the NLO σ(pN → cc̄X) as a function of the
beam energy E obtained with the renormalization scale µ equal to the factorization scale M
equal to the charm quark mass mc with mc = 1.3 GeV and mc = 1.5 GeV. The cross sections
are evaluated using the CTEQ3 parton distribution functions [32]. The corresponding value

of ΛMS
4 is 239 MeV. Fixed target data from a summary by Frixione et al. [33] are also

plotted. We note that the fixed target data seem to prefer mc = 1.3 GeV. In all of the
subsequent figures, we set mc = 1.3 GeV. The CTEQ3 parton distribution functions will
be our canonical set, in part because they incorporate global fits to HERA data, and while
their validity is not claimed for parton fraction x below xmin = 10−5 and Q0 = 1.6 GeV, the
program nevertheless provides smooth parton distribution functions below these values.

In Fig. 2 we show dependence of the total cross section on the scale and parton distri-
bution. We plot the NLO cross section for different values of µ and M : using the CTEQ3
structure functions, we set µ = M = mc (dot-dashed) and µ = mc, M = 2mc (solid) with
mc = 1.3 GeV. The dashed line is the cross section obtained with the MRSD- parton dis-
tribution functions [34] and scales µ = mc, M = 2mc with mc = 1.3 GeV. Also plotted are
the data as in Fig. 1.

The MRSD- distribution functions have a small-x behavior that is suggested by the
BFKL approach [35]. In the small-x limit, the parameterization of the gluon (and sea
quark) distribution functions at reference scale Q0 is

xg(x,Q0) ∼ x−λ . (3.1)

The D- distributions have λ = 0.5. Typically, global fits such as the MRSA [36], MRSG [37]
and CTEQ3 distributions have λ ≃ 0.3. By using the D- distributions, we are effectively
setting an upper limit on the perturbative charm cross section, given our choices of mc, µ
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and M . We note that, generally, parton distribution functions begin evolution at Q0 larger
than 1.3 GeV. Consequently, our default factorization scale is M = 2mc so that we can use
more than the CTEQ3 parameterizations.

Fig. 2 indicates that a low energies, the total cross section has weak dependence on the
choice of the scale and the parton distribution function. At high energies, E ≥ 106 GeV,
there is a factor of 1.7-2.1 increase from M = mc to M = 2mc. The D- cross section is a
factor of 1.3 larger than the CTEQ3 cross section at E = 106 GeV, both with M = 2mc.
The D- cross section increases more rapidly because of the steeper small-x behavior of the
parton distribution function and is enhanced by a factor of 2.6 at 108 GeV. This gives an
overall uncertainty of factor of 5.5 at the highest energy of 108 GeV. The MRSA and MRSG
cross sections for M = 2mc lie between the upper and lower curves in Fig. 2.

The total charm cross section in p-Air collisions, σpA→cc̄(E), can be written as

σpA→cc̄ = AγσpN→cc̄ (3.2)

We have evaluated the A dependence for charm pair production using a Glauber-Gribov
model of nuclear shadowing [38]. We find that over an energy range of 102 − 106 GeV,
γ = 1.0 − 0.8. Since A = 14.5, the shadowing effect is small, so we set γ = 1. This is
consistent with recent measurements at E = 800 GeV [39]. Low energy measurements at
larger xE [40] indicate smaller γ values (γ ≃ 0.75), which would reduce our flux predictions
by an overall factor of 0.5.

We have used a comparison between data and theory for the total cross section to show
that mc = 1.3 GeV is a reasonable choice, and to estimate the range of cross sections, related
to the approximate uncertainty in the flux. To evaluate Zpc, we need the energy distribution
of the charmed particle. In the next section, we discuss the energy distribution of charm
quarks in NLO QCD.

B. Charm Energy Distribution

NLO single differential distributions in charm quark production have been evaluated Na-
son, Dawson and Ellis [41] and incorporated into a computer program, which also calculates
double differential distributions, by Mangano, Nason and Ridolfi [42]. The program is time
consuming, so we have incorporated NLO corrections to dσ/dxE by rescaling the leading
order distribution. The xE distributions at next-to-leading order are well fit by a K-factor
rescaling which is a function of xE , where K is defined by

K ≡
dσ(NLO)/dxE

dσ(′′LO′′)/dxE

(3.3)

where “LO” means taking the leading order matrix element squared, but using the two-loop
αs(µ

2) and the NLO parton distribution functions. K defined this way shows the effects of
the NLO matrix element corrections.

Using the NLO computer program with the CTEQ3 parton distribution functions, we
show our results for K(E, xE) for E = 103 and 2K(E, xE) for E = 106 GeV in Fig. 3. We
find that K evaluated using the D- and MRSA distributions agree well with Fig. 3. The
error bars indicate the numerical errors associated with the Monte Carlo integration in the
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NLO program. At higher energies, the errors become larger for comparable xE because the
cross section is dominated by small xE . K can be parameterized as

K(E, xE) = 1.36 + 0.42 ln(ln(E/GeV)) (3.4)

+
(

3.40 + 18.7(E/GeV)−0.43
− 0.079 ln(E/GeV)

)

· x1.5
E

for µ = mc and M = 2mc. The parameterization is shown by the curves in the figure.
Using the xE and energy dependent K-factor, we plot the charm quark xE distribution

for E = 103 GeV, 106 GeV and 109 GeV in Fig. 4. The distributions fall rapidly with xE .
The convolution of the differential distribution with the ratio of proton fluxes and interaction
lengths, integrated over xE at fixed outgoing charm quark energy, is what is required for the
Z-moment.

Fig. 5 shows the differential moment, dZpc/dxE. The solid lines are for CTEQ3 dis-
tributions at outgoing charm energies E = 104 GeV, 106 GeV and 108 GeV, in increasing
magnitudes. The dashed lines represent the same quantities for the D- calculation. The D-
distributions have approximately the same shape as the CTEQ3 distributions, but there is
a more rapid growth in overall normalization with energy.

In the context of perturbative hard scattering production of charm pairs, the average xE

value in the evaluation of Zpc is 0.15-0.2. More than 80% of the cross section comes from
charm transverse momenta below a value of 2mc. In the low transverse momentum limit,
xE ≃ xF . Fixed target experiments measure dσ/dxF . The measured charmed meson xF

distributions are consistent with the perturbative NLO QCD calculations for charm quark
production, without any fragmentation corrections that would soften the xF distributions
[43]. Fragmentation calculations are applicable at large transverse momentum. For the
calculation of Zpc, we are in the low transverse momentum regime, so we do not need
fragmentation.

C. Hadron Fractions

We account for the transformation of charmed quarks into hadrons by an energy inde-
pendent hadronic fractions. The hadronic fractions convert Zpc into the interaction moments
for the charmed mesons and the Λc via Eq. (2.11). The hadron fractions can be obtained
by the observation that [33,44]

σ(Ds) ≃ 0.2 σ(D0 +D+) (3.5)

σ(Λc) ≃ 0.3 σ(D0 +D+) . (3.6)

The fractions of charmed quarks that appear as Ds and Λc are

fDs
= 0.13 , (3.7)

fΛc
= 0.20 . (3.8)

To get the D+ and D0 fractions, one needs a ratio of σ(D+)/σ(D0). Using arguments based
on isospin invariance and counting of states in the production of D and D∗, together with
branching fractions for D∗ → D, Frixione et al. [33] suggest that σ(D+)/σ(D0) ≃ 0.32.
With this assumption for the ratio of the cross sections,
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fD0 = 0.51 , (3.9)

fD+ = 0.16 . (3.10)

There is some uncertainty in the values of fj. Experimental measurements of
σ(D+)/σ(D0) in pN and pp fixed target experiments tend to lead to a somewhat higher
ratio of cross sections. For example in pp collisions with a beam energy of Eb = 400 GeV,
the LEBC-EHS Collaboration [45] measures σ(D+)/σ(D0) = 0.7 ± 0.1, while in pN colli-
sions at Eb = 250 GeV, the ratio is measured by E769 [46] to be 0.57 ± 0.22. By taking
σ(D+)/σ(D0) = 0.6, the resulting change in the predicted flux is only ∼ 15%.

Integrated Z-moment ZpD0 scaled by 103 versus charmed particle energy is shown in
Fig. 6 for the D- and CTEQ3 distributions with µ = mc and M = 2mc. Also shown is the
CTEQ3 calculation with µ = M = mc. The other Z-moments for charm production are
simple rescalings of Fig. 6. While the curves are similar up to 1 TeV, by E = 106 GeV,
there is a factor of ∼ 5 between the upper and lower curves. At E = 108 GeV, the upper
and lower curves differ by more than a factor of 10, larger than the ratio of cross sections at
the same energy. This is accounted for by the fact that the Z-moments at energy E involve
integrals of the cross section at a higher energy. In addition, since xE ∼ 0.15− 0.2 and the
cross section is dominated by parton invariant masses near mc, small parton x values are
emphasized. Since the prompt flux is proportional to Zpc, this enhancement is reflected in
the flux as well.

D. Decay Moments

The last elements of the calculation of the lepton fluxes from charm are the decay mo-
ments Zkl(E) for k = D+, D0, D+

s and Λc. The decay moments can be written in the same
form as Eq. (2.4) with λk now representing the decay length. The decay distribution can
be represented by

dnk→ℓ(E;Ek)

dE
=

1

Ek

Fk→ℓ

(

E

Ek

)

, (3.11)

so the decay moments, in terms of an integral over xE = E/Ek, are

Zkℓ(E) =
∫

dxE

φk(E/xE)

φk(E)
Fk→ℓ(xE) . (3.12)

The function F is given in Ref. [20,17], in the approximation that the leptonic decays of
charmed mesons are approximated by three-body decays. In the ultrarelativistic limit, F is
nearly equal for ℓ = νe , νµ and µ, so the decay moments for the three leptons are essentially
equal. Consequently, we take the fluxes for the three leptons to be equal.

Following Bugaev et al. in Ref. [17], the effective hadronic invariant massmX of the decay
of the D+ is taken to be 630 MeV and for the D0 decays, 670 MeV. We take mX = 840
MeV for Ds decays. The Λc will ultimately contribute little over most of the energy range
considered. For Λc decays, we use the same three-body formula with an effective hadronic
mass of 1.3 GeV. The branching ratios are:
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B(D+
→ ℓ) = 17% , (3.13)

B(D0
→ ℓ) = 6.8% ,

B(Ds → ℓ) = 5.2% ,

B(Λc → ℓ) = 4.5% .

For the energies considered here, the charmed particle fluxes in the low energy limit
dominate. Assuming that Zpp and Λp are nearly energy independent, this means that

φk ∼ Zpk(E)Eφp(E) . (3.14)

The proton flux falls like E−2.7 − E−3. The charm production Z-moments increase with
energy, as seen in Fig. 6. When we put in the low energy D+ meson flux and evaluate the
ZD+ℓ moment, we get the results shown in Fig. 7. All of the other low energy decay moments
can be obtained by branching fraction rescaling. For the high energy moments, we take
Zpk ∼ E0.42 for the D- distributions and Zpk ∼ E0.23 for CTEQ3, with φk ∼ Zpk(E)φp(E).

IV. PROMPT LEPTON FLUX

In Fig. 8 we show our results for the prompt atmospheric flux scaled by E3 for two
parton distributions and factorization scale choices. The highest flux at E = 108 GeV is
with the D- distribution and M = 2µ = 2mc (dashed). The CTEQ3 distributions with the
same choice of scale are represented by the solid line, while the dot-dashed line shows the
result when M = µ = mc. For reference, we show the vertical conventional and prompt flux
calculated and parameterized by TIG in Ref. [14]. The fluxes directly reflect the interaction
Z-moments of Fig. 6. We emphasize that the prompt flux is isotropic except at the highest
energies, while the conventional flux is not.

We have also estimated the flux due to pion-air interactions creating charm pairs. The
effect is to increase the prompt flux by ∼ 30% at 102 GeV and by ∼ 15% at 106 GeV. This
is a small effect, so we neglect pion contributions to charm production.

The prompt lepton flux evaluated using perturbative QCD can be parameterized as

log10
(

E3φℓ(E)/(GeV2/cm2 s sr)
)

= −A +B x+ C x2
−Dx3 (4.1)

where x ≡ log10(E/GeV). In Table I, we collect the constants for the D- and CTEQ3 fluxes
exhibited in Fig. 8.

The TIG flux relies on PYTHIA calculations with mc = 1.35 GeV and the MRSG [37]
parton distribution functions. For E < 1 TeV, the TIG flux is larger than ours because
of fragmentation effects. Their calculation uses the Lund hadronization model [47] which
can give the charmed hadron a larger energy than the charmed quark, an effect which is
larger for smaller center of mass energies. The TIG prompt flux calculation is lower than
our calculation for energies E > 1 TeV. At parton x < 10−4, the parton distributions in the
TIG calculation are flattened. For example, the gluon distribution is

xg(x,Q) ∼ x−0.08 (4.2)

below x = 10−4. We note that HERA data at 10−5 < x and Q0 ∼ 2 GeV show no indication
of flattening [29]. NLO effects in the TIG calculation are accounted for by an energy and
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xE independent factor of 2. Overall, the net effect is that the TIG Zpc is nearly energy
independent.

The prompt muon flux by Volkova et al. [16] is larger than our calculated flux. This
comes in part because of their assumption that dσ/dxE ∼ (1 − xE)

5/xE, independent of
center of mass energy and a cross section larger than the perturbative one below E ∼ 105

GeV. This xE dependence is harder than the perturbative xE dependence shown in Fig. 4.
Bugaev et al. [17] have presented calculations of the prompt muon flux using two phe-

nomenological, nonperturbative approaches. One is based on the Recombination Quark-
Parton Model (RQPM) and the other on the Quark-Gluon String Model (QGSM). The
QGSM prompt flux is relatively small compared to the RQPM flux, which already affects
the total atmospheric muon flux at energies of a few tens of TeV. Relative to the RQPM
calculation and the Volkova et al. results, our D- prompt flux is lower.

Several experiments show an excess in muon flux above ∼ 10 TeV [7–9]. Following Rhode
in Ref. [7], we plot in Fig. 9 the quantity E3.65φµ(E), where φµ represents the sum of the
prompt and vertical conventional flux. Also shown are the data from Ref. [7]. The energy
scale factor mostly accounts for the rapidly falling conventional flux [48]. When we add the
prompt fluxes of Fig. 8 to the TIG vertical conventional flux, one sees an enhancement at
muon energies above 105 GeV, at a higher energy than the experimental excess shown by
data points.

In Ref. [49], we have shown that it is possible to enhance the prompt flux sufficiently to
account for some of the observed muon excess at a few TeV. This is accomplished by extrap-
olating the charm cross section at 1 TeV with a faster growth in energy than predicted by
perturbative QCD. The xE dependence was taken as dσ/dxE ∼ (1 − xE)

4. The inputs are
consistent with fixed target data below 1 TeV beam energies. We found that the predicted
prompt flux made significant contributions in the region of the observed excess of muons,
but it does not fully describe the Fréjus data [7]. These inputs are not consistent with per-
turbative QCD. The experimental excess of muons cannot be accounted for by perturbative
QCD production of charm.

Another implication of the prompt fluxes calculated here is the ratio of the muon neutrino
to electron neutrino flux. We define

Rθ =
φνµ

φνe

. (4.3)

Using the TIG parameterization of the vertical θ = 0◦ neutrino fluxes, adding conventional
and prompt contributions, R0 as a function of energy is shown in Fig. 10. At a zenith angle
of 60◦, the conventional flux is a factor of two larger. The ratio R60 is also shown in Fig.
10. The quantity R is an interesting diagnostic for the onset of prompt neutrino dominance.
Unfortunately, at these energies, R is difficult to measure.

V. CONCLUSIONS

We find that the perturbative charm contributions to lepton fluxes are significantly larger
than the recent TIG calculation. The prompt muon flux becomes larger than the conven-
tional muon flux from pion and kaon decays at energies above ∼ 105 GeV. We set values of
the charmed quark mass, renormalization scale and factorization scale by fitting the charm
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production cross section to low-energy data, then we extrapolate to higher energies. We
find that the NLO corrections give a correction of more than a factor of two which is weakly
energy and xE dependent. Nuclear shadowing corrections are small for all energies, due to
the air nucleus being relatively light. The main uncertainty in the perturbative calculation
of the prompt flux, given fixed charm mass, factorization scale and renormalization scale,
is the small-x behavior of the parton distribution functions. Different choices of scales and
distribution functions, extrapolated to low x with the same power law dependence as for
x > 10−5, yield as much as a factor of ∼ 10 discrepancy in the prompt flux at E = 108 GeV.

If the parton distributions are flattened below some critical value x < xc according to Eq.
(4.2), our curves in Fig. 8 would overestimate the lepton fluxes. For example, if xc = 10−5,
the calculated prompt flux at E = 106 GeV, using CTEQ3 with M = 2µ = 2mc, is ∼ 80%
of the value shown by the solid curve in Fig. 8, reducing to ∼ 40% of the value at 108 GeV.
For xc = 10−6, the flux is ∼ 70% of our calculated value at 108 GeV. However, such an
abrupt turnover in the power law behavior of the small-x parton distributions is unlikely.

We conclude that the prompt muon flux calculated in the context of perturbative QCD
cannot explain the observed excess of muons in the TeV region [7–9], independent of the
theoretical uncertainties associated with small parton x. However, prompt fluxes calculated
using non-perturbative models of charm production such as discussed in Refs. [17,49] could
provide a muon excess in that energy range. Measurements of the atmospheric flux in
the 100 TeV range would help pin down the charm cross section at energies above those
currently accessible using accelerators and would provide valuable information about the
small-x behavior of the gluon distribution function.

Even though the prompt contributions to the lepton fluxes change the energy behavior of
the differential fluxes by a factor of E, the atmospheric neutrino fluxes do not compete with
neutrino fluxes from extragalactic sources above 10 TeV [50]. Possible oscillations of muon
neutrinos as indicated by the Super-Kamiokande experiment [5] do not affect our results
due to the extremely small oscillation probability for the energies of interest.
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TABLES

TABLE I. Parameters for the prompt muon plus antimuon flux appearing in Fig. 8:

log10(E
3φµ/(GeV2/cm2 s sr)) = −A+B x+ C x2 −Dx3, where x ≡ log10(E/GeV).

PDF Scales A B C D

CTEQ3 M = µ = mc 5.37 0.0191 0.156 0.0153

CTEQ3 M = 2µ = 2mc 5.79 0.345 0.105 0.0127

D- M = 2µ = 2mc 5.91 0.290 0.143 0.0147
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FIGURES

FIG. 1. The NLO cc̄ production cross section in pN collisions versus beam energy for mc = 1.3

and 1.5 GeV. The CTEQ3 parton distribution functions are used with M = µ = mc. The data are

taken from the summary in Ref. [28].

FIG. 2. A plot of NLO σcc̄
pN versus beam energy for mc = 1.3 GeV using the CTEQ3 (solid) and

D- (dashed) parton distribution functions with M = 2mc and µ = mc. Also show is the CTEQ3

NLO prediction with M = µ = mc (dot-dashed). The data are the same that appear in Fig. 1.
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FIG. 3. The function K(E, xE) defined in Eq. (3.3) versus xE for E = 103 GeV and 106

GeV. The points come from the evaluation of K using the results of Ref. [41,42] with error bars

indicating numerical errors in the integration, and the curves are our fit to the ratio parameterized

in Eq. (3.4).

FIG. 4. For E = 103 (solid), 106 (dashed) and 109 GeV (dot-dashed), dσ/dxE , including the

factor of K(E, xE). The scales used are µ = mc and M = 2mc, for mc=1.3 GeV.
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FIG. 5. For energies E = 104 GeV, 106 GeV and 108 GeV, dZpc(E)/dxE versus xE for CTEQ3

(solid) and D- (dashed) parton distribution functions, where µ = mc and M = 2mc.

FIG. 6. ZpD0 ×103 versus E for CTEQ3 (solid) and D- (dashed) parton distribution functions

with µ = mc and M = 2mc. Also shown is ZpD0 ×103 for CTEQ3 with µ = M = mc (dot-dashed).
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FIG. 7. The decay moment for low energy D+ → ℓ versus energy for D- (dashed) and CTEQ3

(solid) with M = 2µ = 2mc and for CTEQ3 with M = µ = mc (dot-dashed). The dotted line

indicates the decay moment if Zpc is taken independent of energy.

FIG. 8. The prompt atmospheric muon flux scaled by E3 versus muon energy for CTEQ3

(solid) and D- (dashed) with M = 2µ = 2mc. Also shown is the scaled muon flux using CTEQ3

with M = µ = mc (dot-dashed) and the TIG parameterization of the prompt muon flux and the

vertical conventional muon flux (dotted).
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FIG. 9. The prompt plus vertical conventional atmospheric muon flux scaled by E3.65 versus

muon energy for CTEQ3 (solid) and D- (dashed) with M = 2µ = 2mc. Also shown is the scaled

muon flux using CTEQ3 with M = µ = mc (dot-dashed) and the TIG parameterization of vertical

conventional muon flux (dotted). The data shown are from Ref. [7].

FIG. 10. R = φνµ/φνe for zenith angles 0◦ and 60◦ versus neutrino energy for CTEQ3 (solid)

and D- (dashed) with M = 2µ = 2mc, and using CTEQ3 with M = µ = mc (dot-dashed).
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