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Abstract

We deduce the gluino contribution to the three-loop QCD quark mass anoma-

lous dimension function within the minimal supersymmetric Standard Model

(MSSM) from its standard QCD expression. This work is a continuation of

the program of computation of MSSM renormalization group functions.
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The renormalization group method [1] is a powerful tool for the study of many physi-
cally interesting quantities within the Standard Model and beyond. Although experimental
measurements at the highest available energy are consistent with the standard model [2],
the observed relationship of the strong coupling constant at the Z and the weak angle as
well as the value of the mb/mτ ratio vis-a-vis the top quark mass remain strong indications
of a supersymmetric (SUSY) grand unification above 1016GeV and a SUSY threshold for
squarks and sleptons in the 0.1 to 1 TeV region. To use the renormalization group method
to study the above and other quantities one needs to know the renormalization group func-
tions - β - function and quark mass anomalous dimension γm. In our previous work we
have calculated the three-loop QCD β function with gluino contribution included [3]. In the
present work we deduce the three-loop quark mass anomalous dimension function including
the gluino contribution. Here we use the known result for the standard QCD expression
of the three-loop quark mass anomalous dimension [4]. The two-loop contributions in the
ratio mb/mτ turned out to be 20% of the leading contribution [6]. For this reason a full
calculation of the three-loop contribution would be useful.

The quark mass anomalous dimension is defined as usual

− µ2∂ lnm

∂µ2
= γm(αs), (1)

The renormalization of a quark mass within the MS type framework [7,8] has the following
form

mB = Zmm = m

[

1 +
∞
∑

i

ai(αs)

εi

]

(2)

where B indicates the “bare” mass. The anomalous dimension function is determined by the
lowest order pole term in the quark mass renormalization constant within the MS framework.
That is,

γm(αs) = αs
∂a1(αs)

∂αs
= γ1

αs
4π

+ γ2(
αs
4π

)2 + γ3(
αs
4π

)3 − . . . (3)

The ai coefficients are related via a renromalization group equation that serves as a
powerful check of the calculation.

(

γm(αs)− β(αs)
∂

∂αs

)

ai(αs) = −αs
∂

∂αs
ai+1(αs), (4)

where the three-loop QCD β function including the gluino contribution and ignoring squarks
is defined as follows [3].

µ2∂αs
∂µ2

= αsβ(αs), (5)

where

β(αs) = β1
αs
4π

+ β2

(

αs
4π

)2

+ β3

(

αs
4π

)3

+ . . . . (6)
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(a) (b)

FIG. 1. Three-loop graphs giving nontrivial contribution to the quark mass anomalous dimen-

sion function with the gluino included. Wavy lines denote gluons and the solid loop corresponds

to quark or gluino.

with

β1 = −
11

3
CA +

4

3

(

NfT +
ng̃
2
CA

)

, (7)

β2 = −
34

3
C2
A +

20

3

(

NfTCA +
ng̃
2
C2
A

)

+ 4
(

NfTCF +
ng̃
2
C2
A

)

, (8)

β3 = −
2857

54
C3
A −NfT (2C

2
F −

205

9
CFCA −

1415

27
C2
A)− (NfT )

2(
44

9
CF +

158

27
CA)

+
988

27
ng̃C

3
A − ng̃NfT (

224

27
C2
A +

22

9
CACF )−

145

54
n2
g̃C

3
A. (9)

The MS renormalization of quark mass can be expressed as the following multiplicative
renormalization

Zm = Zψψ × Z−1
2 (10)

Where Z2 is the quark propagator renormalization constant and Zψψ renormalizes the

quark propagator with
∫

ψ(x)ψ(x)dx operator insertion. The gluino contributions to the
above renormalization constants are in one-to-one correspondence with quark loop graphs
and differ from them only by color and symmetry factors. Our procedure, as used to de-
termine the gluino contributions to Z decay at four-loop level [5] and to the β-function at
three-loop level, is to decompose the known QCD results into contributions from separate
graphs. Then one can determine the color factors that relate each graph with an inter-
nal quark loop to the corresponding graph with a gluino loop. For instance, a subgraph
consisting a simple quark loop has the color factor

NfTr(T
aT b) = NfTδ

ab

while the color factor for a simple gluino loop has the color (and symmetry) factor
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ng̃
2
Tr(F aF b) =

ng̃
2
CAδ

ab

The relative factor 1/2 is due to the Majorana nature of the gluino. Here T a and F a are
the gauge group generators in the fundamental and adjoint representations respectively. For
the gauge group SU(N) they satisfy

Tr(T aT b) = Tδab

Tr(F aF b) = Nδab

Thus for graphs with a simple fermion loop subgraph one obtains the gluino contribution
by making the substitution

NfT → NfT +
ng̃
2
CA

Here ng̃ = 0 is the Standard Model limit and ng̃ = 1 corresponds to the minimal SUSY
extension with one octet of gluinos.

The full set of three-loop graphs contributing in the standard QCD Z2 and Zψψ were
given in ref. [4]. We reanalyse all of the graphs up to and including three-loop level and
added graphs with gluino propagators. The calculation of SU(N) group factors revealed
that all but two graphs with the gluino contribution can easily be obtained from the known
results by simply replacing Nf to Nf + ng̃CA. However, for the graph of Fig.1a we found
that in order to take the particular topology into account one needs to make the following
replacement in the standard QCD result for this graph

Nf → Nf +
C2
A

2TCF
= Nf +

27

4
(11)

The replacement for the graph in Fig.1b looks like

Nf → Nf +
C2
A

4T (CF − CA/2)
= Nf − 27. (12)

If the gluino lies above the squark, the current calculation provides the contribution
from gluinos alone up to three-loop order. This is a gauge invariant subset of the full SUSY
three-loop graphs and leaves a vastly reduced number of graphs (those with one or more
internal squark lines) still to be calculated at this order. If the gluino lies lower in mass than
the squarks, the current calculation produces the full SUSY anomalous dimension of quark
mass up to and including the three loop order in the region up to the squark mass scale.

We obtain the following result for three-loop quark mass anomalous dimension function
with gluino included.

γ1 = 3CF (13)

γ2 = CF

[

3

2
CF +

97

6
CA −

10

3

(

TNf +
ng̃
2
CA

)]

(14)
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γ3 = CF

[

129

2
C2
F −

129

4
CFCA − CFTNf

(

46 + 48ζ(3)(CA − CF )
)

+
11413

108
C2
A −

556

27
CATNf

−
140

27

(

TNf +
ng̃
2
CA

)2]

− ng̃CF

[

1

2
CFCA +

1771

54
C2
A

]

(15)

The eigenvalues of the Casimir operators for the adjoint (NA = 8) and the fundamental
(NF = 3) representations of SUc(3) are

CA = 3, CF = 4/3, and T = 1/2. (16)

We obtain the following values for the above perturbative coefficients of the γ-function.

γ1 = 4 (17)

γ2 =
202

3
−

20

9
Nf −

20

3
ng̃ (18)

γ3 = 1249−
(

2216

27
+

160

3
ζ(3)

)

Nf −
140

81
N2
f − ng̃

(

3566

9
+

280

27
Nf

)

−
140

9
n2
g̃ (19)

We see that the gluino gives a substantial contribution to two- and especially three-
loop levels. Indeed, the gluino contribution reduces the two-loop coefficient by about 10%
and reduces the three-loop contribution by about 50%. Such a large contribution might
ultimately be important in phenomenological applications.

The anomalous dimension of quark mass along with the QCD β-function determines the
running of the quark mass. Indeed, at the three-loop level, for the running quark mass one
has (see, e.g., [9])

mf (µ1)

mf (µ2)
=
φ(αs(µ1))

φ(αs(µ2))
, (20)

where,

φ(αs(µ)) =
(

−2β1
αs(µ)

4π

)

−
γ1
β1

{

1−
(

γ2
β1

−
β2γ1
β2
1

)

αs(µ)

4π

+
1

2

[(

γ2
β1

−
β2γ1
β2
1

)2

−
γ3
β1

+
β2γ2
β2
1

+
β3γ1
β2
1

−
β2
2γ1
β3
1

](

αs(µ)

4π

)2}

(21)

The above equation indicates that there will be a substantial shift in the running of a quark
mass due to the gluino.

To verify this, we will need the following equations. The running coupling is parametrized
as follows:

αs(µ)

4π
= −

1

β1L
−
β2 logL

β3
1L

2
−

1

β5
1L

3
(β2

2 log
2 L− β2

2 logL+ β3β1 − β2
2) +O(L−4), (22)

where L = log(µ2/Λ2
MS

).
The general evolution equation for the running coupling to O(α3

s) [9] has the form
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FIG. 2. The gluino effect on the running of the b quark mass

α(n)
s (µ)

4π
=
α(N)
s (M)

4π
−

(

α(N)
s (M)

4π

)2(

β
(N)
1 log

M2

µ2
−

2

3

∑

l

log
m2
l

µ2

)

−

(

α(N)
s (M)

4π

)3[

β
(N)
2 log

M2

µ2
−

38

3

∑

l

log
m2
l

µ2

+
(

β
(N)
1 log

M2

µ2
−

2

3

∑

l

log
m2
l

µ2

)2

+
50

9
(N − n)

]

(23)

where the superscript n (N) indicates that the corresponding quantity is evaluated for
n (N) numbers of participating quark flavors. Conventionally, n (N) is specified to be the
number of quark flavors with mass ≤ µ (≤ M). However, the eq.(23) is relevant for any
n ≤ N and arbitrary µ and M , regardless of the conventional specification of the number of
quark flavors. The logml/µ terms are due to the “quark threshold” crossing effects and the

constant coefficients 2/3 = β
(k−1)
1 − β

(k)
1 , 38/3 = β

(k−1)
2 − β

(k)
2 represent the contributions of

the quark loop in the β-function. The sum runs over N−n quark flavors (e.g., l = b if n = 4
and N = 5). Note that ml is the pole mass of the quark with flavor l. Quark masses can be
estimated from QCD sum rules. For instance, the b quark pole mass is mb = 4.72GeV [10].

In fig.2 we show the evolution of mb(µ) from µ=4.72GeV to MZ . We see that the gluino
effect is a few percent at MZ which could ultimately be important for grand unification
studies. If the gluino is not light but is nevertheless below the squark mass, our current
result will still have a region of relevance. Ultimately, of course, it will be desirable to have
the full SUSY three-loop effect including squark contributions.

Analyzing numerical results, we see that the third-loop effect is only a few MeV. Based
on this, we conclude that the three-loop anomalous dimension with the gluino included is
a good approximation for phenomenological applications and the error in the perturbative
evaluation of this quantity can be estimated at few MeV.

An observable quantity R is invariant under the renormalization group transformations
and obeys the homogeneous renormalization group equation:

(

µ2 ∂

∂µ2
+ β(αs)αs

∂

∂αs
− γm(αs)

∑

f

mf

∂

∂mf

)

R(µ, αs, mf) = 0 (24)

The quantity R may denote various cross sections and decay rates that are usually calcu-
lated using the perturbation theory method. In our previous works we have calculated the
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gluino contribution to the QCD β-function at the three- loop level [3] and to the hadronic
decay rate of the Z boson to the four-loop level [5]. Thus, the present work completes the
evaluation of gluino contributions necessary for O(α3

s) renormalization group analysis for the
above quantity. These results can be used in the renormalization group analysis for other
quantities, for instance, hadronic decay rates of the τ -lepton and various Higgs bosons.
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