
ar
X

iv
:h

ep
-p

h/
98

06
45

2v
2 

 2
4 

Ju
n 

19
98

PQCD ANALYSIS OF INCLUSIVE SEMILEPTONIC DECAYS OF A
POLARIZED Λb BARYON

Tsung-Wen Yeh,

Institute of Physics,
Academia Sinica,

Taipei, Taiwan, R.O.C.

March 28, 2018

Abstract

We investigate the Λb polarization problem in the inclusive semileptonic decays
of a polarized Λb baryon, using the modified perturbative QCD formalism which
includes Sudakov suppression. According to HQEFT, we show that, at the leading
order in the 1/Mb expansion, the polarized and unpolarized distribution functions
become one single universal distribution function. To explore the mechanisms which
determine the spin properties of a polarized Λb baryon, we construct four formalisms
which are the naive quark model (QM), the modified quark model (MQM) , the naive
parton model (PM), and the modified parton model (MPM), and calculate their
corresponding Λb polarizations, denoted as P’s. The modified quark and parton
models are with Sudakov suppression. The resulting P’s are -0.23 (QM), -0.94
(MQM), -0.37 (PM), and -0.68 (MPM), respectively. We note that PMQM (equal to
-0.94 ) is very close to the b quark polarization asymmetry, ARL = −0.94, calculated
at the Z vertex in Z → bb̄ process, and that PMPM (equal to -0.68 ) is also very
close to the Λb baryon polarization (equal to -0.68 ) which was estimated from the
fragmentation processes under the heavy quark limit. Based on our analysis, there
exists no any paradox in the theoretical explanations of the Λb polarization for the
experimental data.

http://arxiv.org/abs/hep-ph/9806452v2


1 Introduction

A recent measurement by ALEPH Collaboration [1] indicated that the Λb po-
larization was -0.23. This deviated largely from the Standard Model expectation
that the Λb polarization should be -0.94 [2, 3, 4]. It was, therefore, argued that the
spin-spin interactions between the b quark and the light quarks and gluons produced
from the vacuum as the b quark undergoing its fragmentation, should bring about
large spin-flip of the b quark spin. A heavy quark effective field theory (HQEFT)
calculation showed that the final Λb polarization was -0.68[5].

In this paper, we would like to re-interpret the measurement by the ALEPH Col-
laboration. The Λb polarization, denoted as P, could be related to the experimental
measured quantity, R = 1.12± 0.10, as

R =
< E∗

ν > (< E∗
l > + < P ∗

l (P) >)

< E∗
l > (< E∗

ν > + < P ∗
ν (P) >)

. (1)

Based on the naive quark model, the averaged quantities, < E∗
l >, < E∗

ν >, <
P ∗
l > and < P ∗

ν > were calculated in the Λb rest frame . The resulting P was
equal to −0.23 [1]. Since the spectra are still not available, the explanation for the
Λb polarization is therefore theoretical dependent. For the purpose to explore the
mechanisms which control the spin properties of a polarized Λb baryon, we shall
construct four formalisms to investigate, which are the naive quark model (QM),
the modified quark model (MQM), the naive parton model (PM), and the modified
parton model (MPM). The modified quark model and modified parton model are
with Sudakov suppression.

We emphasize the importance of the transverse degrees of freedom of partons
inside a Λb baryon in our analysis. First of all, the transverse momenta regularize
the divergences when the outgoing q quark is approaching the end point [7]. And
second, the transverse momenta enhance the contributions from the longitudinal
component of the Λb baryon spin vector. These effects indicate that the intrinsic
b dependence of the distribution function, e.g., f(z, b), is nonignorable. The form
of the b dependence of the distribution function could be determined by exploiting
the infrared (IR) renormalon contributions [9, 10], such that one can parameterize
f(z, b) as exp [−tM2b2]f(z). The parameter t will be determined from the charged
lepton spectra.

The arrangement of our paper is as follows. In the next section, we develop a
power expansion scheme which is appropriate for heavy quark system. By employing
the HQEFT, we generalize the naive collinear expansion scheme [6] to include heavy
massive quark partons and to apply to decay processes. Using this generalized
collinear expansion scheme, we then show that, in the heavy quark limit, there exists
an universal distribution function which respects both the unpolarized and polarized
matrix elements. By taking into account the radiative corrections, the factorization
formula is expressed as the convolution of a hard scattering amplitude with a jet
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and a universal soft function. In Section 3, we construct the four formalisms based
on the factorization formula. Section 4 is the numerical result and Section 5 the
conclusion. An Appendix is presented for those details skipped by the main text.

2 Factorization Formula

The quadruple differential decay rate for polarized Λb → Xqℓν̄ is expressed as

d4Γ

dEldq2dq0d cos θl
=

|Vqb|2G2
F

256π4M
LµνWµν , (2)

where M is the Λb baryon mass, Lµν is the leptonic tensor and Wµν is the hadronic
tensor.

The kinematically independent variables El, q, q0 and cos θl are expressed as
follows. We set our working frame in the Λb baryon rest frame and specify relevant
momenta as

P =
M√
2
(1, 1, 0), pl = (p+l , 0, 0), pν̄ = (p+ν̄ , p

−
ν̄ ,pν̄⊥) . (3)

El, q, and q0 are expressed as El = p+l /
√
2, q2 = 2p+l p

−
ν̄ , and q0 = (p+l +p+ν̄ +p−ν̄ )/

√
2,

respectively. We let Pb = P − l whose square is set as P 2
b ≈ M2

b , Mb the b quark
mass. l is the momentum of the light degree of freedom inside the Λb baryon, and
has a large plus component and small transverse components l⊥. The final state
quark momentum is Pq = P − l− q. θl is the angle between the third component of
pl and that of the b quark polarization vector, Sb = (S+

b , S
−
b ,Sb⊥).

It is convenient to use dimensionless variables x = 2El/M , y = q2/M2, and
y0 = 2q0/M . The integration regions for x, y and y0 are

0 ≤ x ≤ 1, 0 ≤ y ≤ x,
y

x
+ x ≤ y0 ≤ 1 + y. (4)

Note that we have chosen M as scale variable and have set mq = 0 for simplicity.
The cases for mq 6= 0 will be considered in our future publish.

By optical theorem, W µν relates to the forward matrix element T µν as

W µν = −Im(T µν)

π
. (5)

The lowest order of T µν is defined as

T µν(P, q, S) = −i
∫

d4yeiq·y〈Λb(P, S)|T [J†µ(0), Jν(y)]|Λb(P, S)〉

= −i
∫ d4Pb

(2π)4
Sµν(Pb − q)T (P, S, Pb), (6)
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where Sµν(Pb − q) describes the short distance b → Wq decay subprocess and
T (P, S, Pb) relates the corresponding long distance matrix element

T (P, S, Pb) =
∫

d4yeiPb·y〈Λb(P, S)|b̄(0)b(y)|Λb(P, S)〉. (7)

Jµ = q̄γµ(1− γ5)b is the V − A current. Because the momentum Pb in Sµν(Pb) has
non-collinear component which would give high order power contributions [6], it is
then necessary to investigate the collinear expansion for T µν . The main procedures
are demonstrated as follows.

For a Λb baryon which carries momentum P and mass M , we specify P to be

P µ = pµ +
M2

2p · nn
µ, (8)

where p2 = n2 = 0, p · n = P · n. The b quark, inside the Λb baryon, carries
momentum Pb chosen as

P µ
b = zpµ +

P 2
b + P 2

g⊥

2Pb · n
nµ + P µ

b⊥ (9)

= P̂ µ
b +

P 2
b −M2

b

2Pb · n
nµ, (10)

where P̂ 2
b = M2

b is the on-shell part of Pb and the momentum fraction z defined by
z = P+

b /P+ = 1− l+/P+. By the parameterization of Pb, the b quark propagator is
then expressed as

i

/Pb −Mb + iǫ
=

i(/̂P b +Mb)

/Pb −Mb + iǫ
+

i/n

2Pb · n
. (11)

The second part of eq. (11) is called special propagator introduced by Qiu [6]. The
special propagator describes the short distance nature of the loop propagator in a
Feynman diagram. To generalize the naive collinear expansion scheme to include
heavy massive parton, we employ the technology of the HQEFT to rescale the b
quark field, b(x), as bv(x) = exp (iMbv · x)1+/v

2
b(x). In this way, Pb is parameterized

as Pb = Mbv + k, with k the residual momentum. The rescaled b quark field, bv(x),
carries the residual momentum k and has a small effective mass Λ̄, with Λ̄ ≡ M−Mb.
Since k is of order O(ΛQCD) and Λ̄ much smaller thanMb, it is thus expected that the
whole program of Qiu’s collinear expansion for massless parton would be applicable
for bv(x). We now demonstrate the main procedure of this generalized collinear
expansion. First, one expands k as k = ξp+ (k− ξp), where ξp = (z− 1)p+ Λ̄/Mp.
Secondly, one performs a Taylor expansion of Sµν(k) around Sµν(ξp) as

Sµν(k) = Sµν(ξp) +
∂Sµν

∂kα
|k=ξp(k − ξp)α + · · · . (12)

The high order terms eq. (12) are to replace the higher order gluon field operators in
the higher order components of T µν by the relating covariant operators. In the same
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way, the non-collinear component of k in T (k) would yield high order contributions.
It happens when T (k) is contracted with /p ( or /pγ5). As a result, at leading order,
we could write T µν in the form

T µν(P, q, S) ≈ −i
∫

d4k

(2π)4

{

[Sµν(k = ξp, q)/Pb][T (P, S, k = ξp)
/n

4Pb · n
]

−[Sµν(k = ξp, q)/Sbγ5][T (P, S, k = ξp)
/nγ5

4Sb · n
]

}

. (13)

(The details of this proof will be described in the Appendix A.)

We now follow [7] to derive the factorization formula for the inclusive semileptonic
decay Λb → Xqℓν. After including the radiative corrections, the formula is written
as

1

Γ(0)

d3Γ

dxdydy0d cos θl
=

M2

2

∫ zmax

zmin

dz
∫

d2l⊥

×S(z, l⊥, µ)J(z, P
−
q , l⊥, µ)H(z, P−

q , µ) , (14)

with Γ(0) =
G2

F

16π3 |Vqb|2M5 and µ the renormalization and factorization scale. The
transverse momentum l⊥ has been introduced for the regularization of the end point
singularities [7]. In order to make factorization of the intrinsic transverse momentum
from the radiative transverse momentum of J , we transform eq. (14) into the impact
b space

1

Γ(0)

d3Γ

dxdydy0d cos θl
=

M2

2

∫ 1

x
dz

∫

d2b

(2π)2

×S̃(z,b, µ)J̃(z, P−
q ,b, µ)H(z, P−

q , µ) . (15)

To deal with the collinear and soft divergences resulting from the radiative cor-
rections for massless parton inside the jet, the resummation technique is necessary
and these divergences could be resummed into a Sudakov form factor [7]. The jet
function is then re-expressed in the form

J̃(z, P−
q , b, µ) = exp [−2s(P−

q , b)]J̃(z, b, µ), (16)

where exp [−2s(P−
q , b)] is the Sudakov form factor.

The scale invariance of the differential decay rate in eq. (15) and the Sudakov
form factor in eq. (16) requires the functions J̃ , S̃, and H to obey the following RG
equations:

DJ̃(b, µ) = −2γqJ̃(b, µ) ,

DS̃(b, µ) = −γSS̃(b, µ) ,

DH(P−
q , µ) = (2γq + γS)H(P−

q , µ) , (17)
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with

D = µ
∂

∂µ
+ β(g)

∂

∂g
. (18)

γq = −αs/π is the quark anomalous dimension in axial gauge, and γS = −(αs/π)CF

is the anomalous dimension of S̃. After solving eq. (17), we obtain the evolution of
all the convolution factors in eq. (15),

J̃(z, P−
q , b, µ) = exp

[

−2s(P−
q , b)− 2

∫ µ

1/b

dµ̄

µ̄
γq(αs(µ̄))

]

J̃(z, b, 1/b) ,

S̃(z, b, µ) = exp

[

−
∫ µ

1/b

dµ̄

µ̄
γS(αs(µ̄))

]

f(z, b, 1/b) ,

H(z, P−
q , µ) = exp

[

−
∫ P−

q

µ

dµ̄

µ̄
[2γq(αs(µ̄)) + γS(αs(µ̄))]

]

H(z, P−
q , P−

q ) . (19)

In the above solutions, we set the 1/b as an IR cut-off for single logarithism evolution.
However, the intrinsic b dependence of f(z, b) gives more nonperturbative higher
order contributions which could be determined by exploiting the IR renormalon
contributions. We employ a minima setting for f(z, b) as

f(z, b) = f(z)e−Σ(b) . (20)

The IR renormalon contributions arising from a real soft gluon attaching the two
valence b quarks as one calculating the Sudakov form factors in eq. (16). As a result,
one could simply parameterize exp [−Σ(b)] in the form

e−Σ(b) = e−tM2b2 (21)

[9]. A few comments are needed. For the end point regime where the Sudakov
suppression dominates, we employ the approximation

f(z, b) = f(z) (22)

, while for other regimes which are not under the control of the Sudakov suppression,
we take into account the intrinsic b dependence of f(z, b) to give more suppressions

f(z, b) = e−tM2b2f(z) . (23)

We make further approximations such that f(z, b, 1/b) = f(z, b), J̃(z, b, 1/b) =
J̃ (0)(z, b), and H(z, P−

q , P−
q ) = H(0)(z, P−

q ).

Combining the above results, we write factorization formula for the inclusive
semileptonic Λb baryon decay as

1

Γ(0)

d4Γ

dxdydy0d cos θl
= M2

∫ 1

x
dz

∫ ∞

0

bdb

4π
J̃ (0)(z, b)H(0)(z, P−

q )e−S(P−

q ,b)

×
{

f(z) for x in end point regimes ,
exp[−tM2b2]f(z) for x in other regimes ,

(24)
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where

S(P−
q , b) = 2s(P−

q , b)−
∫ P−

q

1/b

dµ̄

µ̄
[2γq(µ̄) + γS(µ̄)] . (25)

The parameter t will be determined by interpolating from the end point regimes for
the relevant charged lepton spectrum.

Let’s now discuss how to parameterize T (k) defined in eq. (7). As discussed in
previous paragraphs that, at leading order, T (k) should not be contracted with /p
(or /pγ5). So, we recast T (k) in the form

T (k) =
1

4
Pb · nf(z)/̄n− 1

4
Sb · ng(z)/̄nγ5 (26)

where n̄µ = pµ/|pµ|. The unpolarized and polarized distribution functions, f(z) and
g(z), are defined as

f(z) =
1

Pb · n
∫

dλ

2π
e−iξλn〈P, S|b̄v(0)/nbv(

λn

P · n)|P, S〉 (27)

and

g(z) =
1

Sb · n
∫ dλ

2π
e−iξλn〈P, S|b̄v(0)/nγ5bv(

λn

P · n)|P, S〉 . (28)

It is easy to show that f(z) and g(z), in the heavy quark limit, share a common ma-
trix element which could be described by an universal distribution function, fΛb

(z).
This just reflects the heavy quark spin symmetry. We adopt the distribution function
proposed in [7] in the form

fΛb
(z) =

Nz2(1− z)2

((z − a)2 + ǫz)2
θ(1− z) . (29)

The parameters N , a and ǫ are fixed by first three moments
∫ 1

0
fΛb

(z)dz = 1 ,
∫ 1

0
dz(1 − z)fΛb

(z) = Λ̄/M +O(Λ2
QCD/M

2) ,

∫ 1

0
dz(1 − z)2fΛb

(z) =
Λ̄2

M2
+

2

3
Kb +O(Λ3

QCD/M
3) . (30)

By substituting these constants,

M = 5.641GeV , Mb = 4.776GeV , Kb = 0.012± 0.0026 , (31)

into eq. (30), we determine the parameters N , a and ǫ to be

N = 0.10615 , a = 1 , ǫ = 0.00413 . (32)

For simplicity we will omit the subscript of fΛb
(z) in the following text.
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3 Differential Decay Rates

In this section, we employ the factorization formula eq. (24) to construct four for-
malisms which are the naive quark model (QM), the modified quark model (MQM),
the naive parton model (PM), and the modified parton model (MPM). The charged
lepton spectrum for the decay Λb → Xqℓν from the naive quark model are expressed
as

1

Γ(0)

d2ΓT
QM

dxd cos θℓ
=

1

Γ(0)

d2ΓU
QM

dxd cos θℓ
+ PQM cos θℓ

1

Γ(0)

d2ΓS
QM

dxd cos θℓ
, (33)

with

1

Γ(0)

d2ΓU
QM

dxd cos θℓ
=

x2

6
(3− 2x) , (34)

and

1

Γ(0)

d2ΓS
QM

dxd cos θℓ
=

x2

6
(1− 2x) . (35)

We draw the unpolarized, polarized and total charged leptonic spectra of QM in
Fig.1 and denote them as curve 1.

By taking into account Sudakov suppression from the resummation of large
radiative corrections, and substituting f(z, b) = δ(1 − z) exp [−tM2b2], H(0) =
(x−y)[(y0−x)+PMQM cos θℓ(y0−x−2y/x)] and the Fourier transform of J (0) = δ(P 2

q )
with P 2

q = M2(1−y0+y−p2⊥/M
2
B) into eq. (24), we derive the modified quark model

spectrum. This spectrum is, after integrating eq. (24) over z and y0, described by

1

Γ(0)

d2ΓT
MQM

dxd cos θℓ
=

1

Γ(0)

d2ΓU
MQM

dxd cos θℓ
+ PMQM cos θℓ

1

Γ(0)

d2ΓS
MQM

dxd cos θℓ
, (36)

1

Γ(0)

d2ΓU
MQM

dxd cos θℓ
= M

∫ x

0
dy

∫ 1/Λ

0
dbe[−tUM2b2]e−S(P−

q ,b)(x− y)η

×
[

(1 + y − x)J1(ηMb)− 2

Mb
ηJ2(ηMb) + η2J3(ηMb)

]

,(37)

1

Γ(0)

d2ΓS
MQM

dxd cos θℓ
= M

∫ x

0
dy

∫ 1/Λ

0
dbe[−tSM2b2]e−S(P−

q ,b)(x− y)η

×
[

(1 + y − x− 2
y

x
)J1(ηMb)− 2

Mb
ηJ2(ηMb) + η2J3(ηMb)

]

,(38)

where P−
q = (1 − y/x)M/

√
2, η =

√

(x− y)(1/x− 1) and J1,J2,J3 are the Bessel

functions of order 1, 2 and 3, respectively. The parameters tU and tS are chosen
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as tU = 0.005 and tS = 0.0423. Note that we have made an approximation by
substituting f(z) exp [−tU,SM2b2] for the end point regimes. The spectra of MQM
are drawn in Fig.1 and denoted as curve 2. One observes that the polarized and
total spectra of MQM deviate largely from those of QM. The profile of the total
spectrum of MQM is broader than that of QM and the peak position sifts to near
x = 1 end point. These differences between the MQM spectra and the QM spectra
indicate the resulting Λb polarizations to be largely different, which are equal to
-0.94 and -0.23 for PMQM and PQM respectively.

The naive parton model spectra are obtained by adopting H(0) = (x−y)[(y0−x−
(1−z)y/x)+PPM cos θℓ(y0−x−(1+z)y/x)] and P 2

q = M2[1−y0+y−(1−z)(1−y/x)].
With integration over y0, we derive

1

Γ(0)

d2ΓPM

dxd cos θℓ
=

∫ x

0
dy

∫ 1

x
dzf(z)(x− y)[(y+ z−x) +PPM cos θℓ(y+ z− x− 2z

y

x
)] .

(39)
The spectra are shown as curve 3 in Fig.1.

We finally come to the charged lepton spectra of the modified parton model that
takes into account both large perturbative and nonperturbative corrections,

1

Γ(0)

d2ΓT
MPM

dxd cos θℓ
=

1

Γ(0)

d2ΓU
MPM

dxd cos θℓ
+ PMPM cos θℓ

1

Γ(0)

d2ΓS
MPM

dxd cos θℓ
, (40)

1

Γ(0)

d2ΓU
MPM

dxd cos θℓ
= M

∫ x

0
dy

∫ 1/Λ

0
dbe−S(P−

q ,b)e−tUM2b2f(z)(x− y)η

×
[

(1 + y − x)J1(ηMb)− 2

Mb
ηJ2(ηMb) + η2J3(ηMb)

]

,(41)

1

Γ(0)

d2ΓS
MPM

dxd cos θℓ
= M

∫ x

0
dy

∫ 1/Λ

0
dbe−S(P−

q ,b)e−tSM2b2f(z)(x− y)η

×
[

(z + y − x− 2z
y

x
)J1(ηMb)− 2

Mb
ηJ2(ηMb) + η2J3(ηMb)

]

,(42)

with η =
√

(x− y)(z/x− 1). The parameters tU,S are set to be tU = 0.003 and

tS = 0.024. The spectra of MPM are shown in Fig.1 and denoted as curve 4. The
resulting PMPM with value -0.68 is different from the PPM with value -0.37.

4 Numerical Result

A recent experimental measurement of Λb polarization, P, is determined through
the variable y proposed in [8]

y =
< El >

< Eν >
, (43)
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and the experimental measured quantity

R =
y(P)

y(0)
. (44)

y could be expressed in terms of Λb rest frame measurements in the form

y =
< E∗

l > + < P ∗
l (P) >

< E∗
ν > + < P ∗

ν (P) >
. (45)

Since there are still no spectra available, the averaged quantities are then theoretical
dependent. We calculate the P’s from the four formalisms and list their values in
Table.1. We note that PMQM with value -0.94 is very close to the b quark polarization
asymmetry, ARL, which was calculated at the Z vertex in Z → bb̄ [2] and expressed
in the form

ARL = − 2vbab
v2b + a2b

= −0.936 , (46)

where vb and ab are the vector and axial vector couplings of the b quark to the Z
boson, respectively. As shown in Table.2, the ratio of < P ∗

l > / < P ∗
ν > of MQM is

about one half of that of QM. This leads to PMQM larger by 75% than PQM.

The value of PMPM , -0.68, in Table.1 is very close to the Λb polarization, -0.68
estimated in [5]. The authors of [5] used the HQEFT to estimate the polarization
retention of the Λb baryon produced from the b quark fragmentation processes. An-
other similar result of Λb polarization was calculated by employing the spectator
diquark fragmentation model [12]. Since the identification between the fragmenta-
tion function and the distribution function could be made in the infinite momentum
frame [11], which could be accessed under the heavy quark limit. There is, there-
fore, no surprise that our PMPM matches the Λb polarization determined from the
fragmentation processes.

5 Conclusion

In this paper we have constructed four formalisms based on the factorization formula
for Λb → Xqlν̄. We used the four formalisms to calculate their corresponding Λb

polarizations denoted as PQM, PMQM, PPM and PMPM, respectively. The resulting
PMQM with value -0.94 is very close to the b quark polarization asymmetry with
value -0.936. The PMPM with value -0.68 is also close to the Λb polarization with
value -0.68. Our result is consistent with those estimates from the Standard Model
calculation of the b quark polarization asymmetry and the polarization retention of
the Λb baryon produced from the b quark fragmentation processes.

We have also developed an power expansion scheme which generalizes the naive
collinear expansion scheme to include heavy massive quark partons and to apply to
decay processes.
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Finally, we emphasize the correctness of the measurement by the ALEPH Col-
laboration [1]. Of course, there should need measuring the spectra to make the
measured Λb polarization more consistent.

Acknowledgments: We would like to thank Hsiang-nan Li for many useful
discussions and instructive suggestions. This work was supported by the National
Science Council of R.O.C. under Grant No. NSC87-2811-M001-0031.

A The collinear expansion

We now derive the collinear expansion skipped by the text. For the amplitude

Ma =
∫

d4k

(2π)4
Sµν(k)T (k) , (47)

we apply the expansion k = ξp+ (k − ξp) to Sµν(k) as in eq. (12) and recast Ma in
the form

Ma ≈
∫

d4k

(2π)4
Sµν(k = ξp)T (k) . (48)

It is easy to factorize Ma as

Ma =
∫

d4k

(2π)4

{

[Sµν(k = ξp)/Pb][T (k)
/n

4Pb · n
]

+[Sµν(k = ξp)/Pb][T (k)
/p

4Pb · p
]

−[Sµν(k = ξp)/Sbγ5][T (k)
/nγ5

4Sb · n
]

−[Sµν(k = ξp)/Sbγ5][T (k)
/pγ5

4Sb · p
]

}

, (49)

where the bracket denotes the trace over Dirac indices. We now prove that those
terms involving the contraction of T (k) with /p (or /pγ5) will lead to high order
contributions. Recall that the b quark propagator could be expanded in the form

i

/Pb −Mb + iǫ
= i

/̂P b +Mb

/Pb −Mb + iǫ
+

i/n

2Pb · n
. (50)

The contraction of T (k) with /p is equivalent to the contraction of the b quark
propagator with /p. This leads to two effects: (1) The contraction of the first term
in eq. (50) with /p leads to the form

i
/̂P b +Mb

/Pb −Mb + iǫ
/p =

i

/Pb −Mb + iǫ
[i(/k − ξ/p)− iMb]

i/n

2Pb · n
/p . (51)
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(2) For the contraction of the special propagator with /p, we have the substitution

i/n

2Pb · n
/p −→ i

/Pb −Mb + iǫ
(iγα)

i/n

2Pb · n
/p . (52)

By Fourier transforming k − ξp into ωα
α′i∂α

′

, the effect (1) leads to the expression

Sµν
α (k, k)T α

1 (k) (53)

with

T α
1 (k) = ωα

α′

∫

d4xeikx〈Λb|b̄v(0)i∂α
′

bv(x)|Λb〉 , (54)

and the effect (2) induces the form

Sµν
α (k, k1)T

α
2 (k, k1) (55)

with

T α
2 (k, k1) = ωα

α′

∫

d4x
∫

d4yei(k−k1)xeik1y〈Λb|b̄v(−gAα
′

a T a)(x)bv(y)|Λb〉 , (56)

where ωα
α′ = gα

α′ − n̄αnα′ and n ·A = 0 gauge has been used. Summing the possible
contributions, we express Sµν

α (k, k1) and Sµν
α (k, k) as

Sµν
α (k, k) = Sµν

α (k, k1) = Disc[(iγα)
i/n

2Pb · n
Γµ i/Pq

P 2
q + iǫ

Γν ]

+Disc[Γµ i/Pq

P 2
q + iǫ

Γν −i/n

2Pb · n
(−iγα)] . (57)

The mass −iMb involved term in eq. (51) does not contribute because of the V −A
structure of the Standard Model. The cases for the contraction of T (k) with /pγ5
may be considered in the similar way. As a result we arrive at

Ma =
∫

d4k

(2π)4

{

[Sµν(k)/Pb][T (k)
/n

4Pb · n
]

−[Sµν(k)/Sbγ5][T (k)
/nγ5

4Sb · n
]

}

+
∫ d4k

(2π)4

∫ d4k1
(2π)4

{

[Sµν
α (k, k1)/Pb][T

α(k, k1)
/p

4Pb · p
]

−[Sµν
α (k, k1)/Sbγ5][T

α(k, k1)
/pγ5

4Sb · p
]

}

, (58)

where

T α(k, k1) ≡ T α
1 (k, k) + T α

2 (k, k1) (59)

= ωα
α′

∫

d4x
∫

d4yei(k−k1)xeik1y〈Λb|b̄v(0)iDα
′

(x)(x)bv(y)|Λb〉 (60)

with iDα = i∂α − gAα
aT

a.
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Table.1 The values of the Λb polarization are determined from the quark model,
the modified quark model, the parton model and the modified parton model.

PQM PMQM PPM PMPM

−0.23 −0.94 −0.37 −0.68

Table.2 The values of the < E∗
l >, < E∗

ν >, < P ∗
l > /P and < P ∗

ν > /P are
calculated from the quark model, the modified quark model, the parton model and
the modified parton model. The units are in 1 GeV .

Model < E∗
l > < E∗

ν > < P ∗
l > /P < P ∗

ν > /P
QM 0.3290 0.2820 −0.0470 0.0940
MQM 0.2731 0.2379 −0.0153 0.0153
PM 0.1696 0.1570 −0.0242 0.0238
MPM 0.1502 0.1296 −0.0105 0.0124
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Figure Captions

Fig.1(a):
Unpolarized charged lepton spectra of the Λb → Xqℓν decay are shown as curve
(1) for the quark model, curve (2) for the modified quark model, curve (3) for the
parton model, and curve (4) for the modified parton model.

Fig.1(b):
Polarized charged lepton spectra of the Λb → Xqℓν decay are shown as curve (1) for
the quark model, curve (2) for the modified quark model, curve (3) for the parton
model, and curve (4) for the modified parton model.

Fig.1(c):
Total charged lepton spectra of the Λb → Xqℓν decay are shown as curve (1) for
the quark model, curve (2) for the modified quark model, curve (3) for the parton
model, and curve (4) for the modified parton model. The P cos θl = 1 condition has
been used.
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