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[Abstract] In this paper, applying general gauge field theory, we will construct an
electroweak model. In this new electroweak model, Higgs mechanism is not used, so
no Higgs particle exists in the model. In order to keep the masses of intermediate
gauge bosons non-zero, we will introduce two sets of gauge fields. We need a vac-
uum potential to introduce symmetry breaking and to introduce the masses of all
fields. Except for those terms concern of Higgs particle, the fundamental dynamical
properties of this model are similar to those of the standard model. And in a proper
limit, this model will approximately return to the standard model.
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1 Introduction

After Yang and Mills founded non-Abel gauge field theory in 1954 [1 ], gauge
field theory has been extensively applied to elementary particle theory. Now, it is
clearly known that four kinds of fundamental interactions, i.e. strong interactions,
electromagnetic interactions, weak interactions and gravitation, are all gauge inter-
actions, and they can be described by gauge theory. From theoretical point of view,
the requirement of gauge invariant determines the forms of interactions. In other
words, the principle of local gauge invariant plays a fundamental role in particles’
interaction theory.

But for Yang-Mills gauge theory, if a system has strict local gauge symmetry,
the masses of gauge fields must be zero. But physicists found that the masses of
intermediate gauge bosons are very large in the forties [2 ]. After introducing the
concept of spontaneously symmetry breaking and Higgs mechanism which make the
gauge fields obtain masses, Glashow [3 ], Weinberg [4 ]and Salam [5 ]founded the
well- known unified electroweak standard model. The standard model is consonant
well with experiment and the intermediate gauge bosons predicted by the standard
model have already been found by experiment [6 ], but the Higgs particle necessi-
tated by the standard model has not been found by experiment until now. Whether
Higgs particle exists in nature? If there were no Higgs particle, how should we con-
struct the unified electroweak model?

The general gauge field theory was put forward by Wu recently [7-8 ]. The
main difference between the general gauge field theory and Yang-Mills gauge field
theory is that, there exist massive force-transmitting vector fields in the general
gauge theory under the precondition that the system has strict local gauge sym-
metry. This characteristic of the general gauge theory makes it possible for us to
directly construct electroweak model without using Higgs mechanism [9 ]. Because
Higgs mechanism is no longer needed in the new electroweak model, there exists no
Higgs particle in the new theory. Furthermore, in a proper limit, the new electroweak
model will approximately return to the standard model . So, we could anticipate
that there will exist no contradictions between the new electroweak model and ex-
periments which we will discuss in details later.

In this paper, using the general gauge field theory, we will construct a new uni-
fied electroweak model. First, we will give the lagrangian for electroweak interactions
of leptons. In order to introduce symmetry breaking of the model and the masses
of all fields, we need a scalar potential which we will name it vacuum potential.
The functions of the vacuum potential are similar to those of Higgs scalar field, but
vacuum potential has essential differences from Higgs scalar field. After symmetry
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breaking, fermions and gauge bosons obtain masses. The electroweak interactions
of quarks will also be discussed in this paper. The dynamical characteristics of this
new electroweak model are similar to those of the standard model. And in a proper
limit, except for those terms concern of Higgs particle, the new electroweak model
will approximately return to the standard model. In this new electroweak model,
we will introduce two sets of gauge fields. After some field transformations, one set
of gauge fields will obtain masses and another set will keep massless. The existence
of these massless gauge bosons is an important characteristic of the new model. If
electroweak model should be a minimum model, those massless gauge bosons and
Higgs particle can not exist in the same theory. But if we do not add the restriction
of minimum model to electroweak interactions, those massless gauge bosons and
Higgs particle can exist in the same theory. Therefore, the existence of these mass-
less gauge bosons is not enough to say that Higgs particle does not exist in nature
for certain. The existence of these massless gauge bosons only means that Higgs
particle may not exist in nature. An important prediction of this new electroweak
model is that there exists a new long-range force in nature which may have appli-
cations in the future. At the end of this paper, we will present some discussions on
some fundamental problems of the new electroweak model.

2 The lagrangian of the model (leptons)

Up to now, physicists have found that there exist three generations of leptons and
quarks in the nature. In this chapter, we will discuss the electroweak interactions
of leptons. For the sake of convenience, let’s e represent leptons e, µ or τ , and
ν represent the corresponding neutrinos νe, νµ or ντ . According to the standard
model, e and ν form left-hand doublet ψL which has SU(2)L symmetry and right-
hand singlet eR. Neutrinos have no right-hand singlets. The definitions of these
states are:

ψL =

(

ν
e

)

L

, y = −1 (2.1)

eR , y = −2, (2.2)

where y represents the quantum number of weak hypercharge Y .

The symmetry of the theory is supposed to be the group SU(2)L × U(1)Y .
The generators of SU(2)L are denoted as TL

i = τi/2 (τi are Pauli matrices), and
the generator of U(1)Y group is denoted as Y . The electric charge of a particle is
determined by Gell- Mann-Nishijima rule:

Q = TL
3 +

Y

2
. (2.3)
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Four gauge fields are needed in the new electroweak theory. They are two
non-Abel gauge fields F1µ and F2µ corresponding to the SU(2)L symmetry and two
Abel gauge fields B1µ and B2µ corresponding to the U(1)Y symmetry. Two SU(2)L
gauge fields F1µ and F2µ can be expanded as:

Fmµ = F i
mµ

τi
2

, (m = 1, 2) (2.4)

where F i
mµ (i = 1, 2, 3) are component fields. Corresponding to four gauge fields, we

will introduce four gauge covariant derivatives:

D1µ = ∂µ − igF1µ (2.5)

D2µ = ∂µ + igtgαF2µ (2.6)

D3µ = ∂µ − ig′B1µ
Y

2
(2.7)

D4µ = ∂µ + ig′tgαB2µ
Y

2
, (2.8)

where α is a dimensionless constant. The strengths of four gauge fields are respec-
tively defined as:

F1µν = ∂µF1ν − ∂νF1µ − ig[F1µ , F1ν ], (2.9)

F2µν = ∂µF2ν − ∂νF2µ + igtgα[F2µ , F2ν ], (2.10)

Bmµν = ∂µBmν − ∂νBmµ , (m = 1, 2). (2.11)

Field strengths F1µν and F2µnu can be expressed as linear combinations of generators.
That is:

Fmµν = F i
mµν

τi
2

, (m = 1, 2) (2.12)

where F i
mµν are component field strengths whose expressions are:

F i
1µν = ∂µF

i
1ν − ∂νF

i
1µ + gǫijkF

j
1µF

k
1ν (2.13)

F i
2µν = ∂µF

i
2ν − ∂νF

i
2µ − gtgα ǫijkF

j
2µF

k
2ν (2.14)

In order to introduce symmetry breaking, we will introduce a scalar potential
v which we name it vacuum potential for the moment. It has mass dimension. It
has no kinematic energy term in the lagrangian. So, it has no dynamical degree of
freedom. The coupling between vacuum potential and matter fields can be regard as
a kind of interactions between vacuum and matter fields. Because every Fock space
or every symmetry space has its own vacuum, we could select a vacuum potential
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for every particle or every symmetry. In this case, the ordinary mass term in the
lagrangian can be rewritten as:

−1

2
v†φ(x)φ(x)v , − ψ(x)vψ(x) (2.15)

Because vacuum potential has no dynamical degree of freedom, it is hard to change
its value. In the real physical world which is in a special phase of vacuum, its value
in space- time is even. In other words, v is always a constant in our world. Vacuum
in different space has different value. For U(1) case, eq(2.15) changes into:

−m
2

2
φ(x)φ(x) , −mψ(x)ψ(x), (2.16)

where m is the value of v. In the electroweak model, when v has definite value, the
symmetry of the model will be broken, and quarks, leptons and gauge bosons will
obtain masses.

The lagrangian density of the model is :

L = Ll + Lg + Lv−l, (2.17)

where Ll,Lg and Lv−l are the lagrangian density for leptons, lagrangian density
for gauge fields and interaction lagrangian between vacuum potential and leptons
respectively. Their definitions respectively are:

Ll = −ψLγ
µ(∂µ +

i

2
g′B1µ − igF1µ)ψL − eRγ

µ(∂µ + ig′B1µ)eR (2.18)

Lg = −1
4
F iµν
1 F i

1µν − 1
4
F iµν
2 F i

2µν − 1
4
Bµν

1 B1µν − 1
4
Bµν

2 B2µν

−v† [cosθW (cosαF µ
1 + sinαF µ

2 )− sinθW (cosαBµ
1 + sinαBµ

2 )]
· [cosθW (cosαF1µ + sinαF2µ)− sinθW (cosαB1µ + sinαB2µ)] v

(2.19)

Lv−l = −f(eRv†ψL + ψLveR), (2.20)

where f is a dimensionless parameter , α is a constant, g, g′ are coupling constants
and θW are Weinberg angle. The relation of coupling constants and Weinberg angle
is given by:

tgθW = g′/g (2.21)

We have noticed that Ll and Lv−l are completely the same as the corre-
sponding parts of the standard model. And there is no kinematic energy term for
the vacuum potential v in the lagrangian. So v is not a dynamical field.

Now, let’s consider the symmetry of the model. The local SU(2)L gauge
transformations of fields are:

ψL −→ UψL (2.22)
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eR −→ eR (2.23)

F1µ −→ UF1µU
† − 1

ig
U∂µU

† (2.24)

F2µ −→ UF2µU
† +

1

igtgα
U∂µU

† (2.25)

Biµ −→ Biµ (i = 1, 2) (2.26)

v −→ Uv, (2.27)

where U is the operator of local SU(2)L gauge transformation. The local U(1)Y
gauge transformations of fields are:

ψL −→ eiβ(x)ψL (2.28)

eR −→ e2iβ(x)eR (2.29)

Fiµ −→ Fiµ (i = 1, 2) (2.30)

B1µ −→ B1µ −
2

g′
∂µβ(x) (2.31)

B2µ −→ B2µ +
2

g′tgα
∂µβ(x) (2.32)

v −→ e−iβ(x)v. (2.33)

It is easy to prove that the lagrangian defined by eq(2.17-20) is invariant under the
above local SU(2)L×U(1)Y gauge transformations, so the lagrangian has strict local
SU(2)L × U(1)Y gauge symmetry.

In the above lagrangian, there are two sets of gauge fields. The second
set of gauge fields is the compensatory fields of the first set. In other words, the
gauge transformations of the first set of gauge fields are determined by the gauge
transformation of matter fields, and the gauge transformations of the second set of
gauge fields are determined by the transformation the first set of gauge fields. So,
there is no restriction on gauge transformations and the model has the maximal
local SU(2)L × U(1)Y gauge symmetry. In the same time, we should notice that
F1µ, F2µ, B1µ and B2µ are all standard gauge fields. In the present case, we do
not let gauge fields F2µ and B2µ interact with matter fields. According to reference
[8 ], after introducing a new parameter, we could let both two sets of gauge fields
interact directly with matter fields. But we do not do so in this paper so as to keep
gauge fields minimal couple to matter fields in the original lagrangian.
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3 Symmetry breaking and masses of particles

We have already said that v represents the influence of vacuum above. Although in
the original lagrangian density, v has the degree of freedom of gauge transformation,
in our real physical world, the state of vacuum can not be varied freely and the
properties of vacuum are rather stable, it has no gauge transformation degree of
freedom. In the local inertial coordinate system, vacuum is invariant under space-
time translation. So v is well-distributed, it is a constant. Suppose that v has the
following value

v =

(

v1
v2

)

, (3.1)

where v1 and v2 satisfy the following relation:

v21 + v22 = µ2/2, (3.2)

where µ is a constant with mass dimension. Please note that eq(3.1) is the most
general form of two-component vector constant v. But it is not the correct form of
the vacuum of our world. So we make a global SU(2)L gauge transformation so as
to make v change into the following form

v =

(

0

µ/
√
2

)

. (3.3)

Because the lagrangian has global SU(2)L ×U(1)Y gauge symmetry, its form keeps
unchanged under the above global transformation. It is known that the properties
of vacuum affect the dynamical properties of our physical world. In present case,
different forms of vacuum potential v will give different forms of lagrangian after
symmetry breaking. In our real physical world, the electroweak vacuum potential is
given by eq(3.3). We could understand eq(3.3) from another point of view. Although
in the original lagrangian vacuum has very high symmetry, in our real physical world,
it does not have so high symmetry. The vacuum of our real world is stable, so it is
in a special gauge which is determined by eq(3.3). We adopt eq(3.3) means that we
have select a special gauge. So, eq(3.3) is the gauge condition of our world. When we
select a special gauge, the symmetry of the model is broken at the same time. So, in
this point of view, symmetry breaking is originated from gauge fixing of the vacuum.

After symmetry breaking, gauge fields F1µ, F2µ, B1µ and B2µ are not
eigenvectors of mass matrix, so they don’t correspond to the fields of particles in
the real physical world. In order to obtain eigenvectors of mass matrix, we will make
the following two sets of transformations of fields. The first set of transformations
are:

Wµ = cosαF1µ + sinαF2µ (3.4)
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W2µ = −sinαF1µ + cosαF2µ (3.5)

C1µ = cosαB1µ + sinαB2µ (3.6)

C2µ = −sinαB1µ + cosαB2µ. (3.7)

The second set of transformations are:

Zµ = sinθWC1µ − cosθWW
3
µ (3.8)

Aµ = cosθWC1µ + sinθWW
3
µ (3.9)

Z2µ = sinθWC2µ − cosθWW
3
2µ (3.10)

A2µ = cosθWC2µ + sinθWW
3
2µ. (3.11)

The first set of transformations are the standard transformations discussed in refer-
ences [7 ]and [8 ]. The second set of transformations are the standard transformations
used in the standard model. After these two sets of field transformations, all terms
of two-body coupling of gauge fields disappear from the lagrangian.

As we have mentioned at the end of chapter two, fields F1µ, F2µ, B1µ and B2µ

are all standard gauge fields. Although, after the first set of field transformation,
the gauge transformations of Wµ and C1µ are not in the standard forms of gauge
transformation, for the sake of convenience, we call them general gauge fields, or
simply call them gauge fields. It is obvious that Wµ and C1µ are not ordinary vector
fields, because they are ”made from” gauge fields (according to eq(3.4) and eq(3.6))
and they transmit interactions between matter fields. Therefore, it is not suitable
to call them ordinary vector fields or to regard them as ordinary matter fields. We
call them general gauge fields for the present. Similarly, we call W±

µ , Zµ and Aµ

general gauge fields.

After all these transformations, the lagrangian densities of the model change
into:

Ll + Lv−l = −e(γµ∂µ + 1√
2
fµ)e− νLγ

µ∂µνL
+1

2

√
g2 + g′2sin2θW jemµ (cosαAµ − sinαAµ

2)
−
√
g2 + g′2jzµ(cosαZµ − sinαZµ

2 )

+
√
2
2
igνLγ

µeL(cosαW
+
µ − sinαW+

2µ)

+
√
2
2
igeLγ

µνL(cosαW
−
µ − sinαW−

2µ)

(3.12)

Lg = −1
2
W+µν

0 W−
0µν − 1

4
ZµνZµν − 1

4
AµνAµν

−1
2
W+µν

20 W−
20µν − 1

4
Zµν

2 Z2µν − 1
4
Aµν

2 A2µν

−µ2

2
ZµZµ − µ2cos2θWW

+µW−
µ + LgI

, (3.13)
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where LgI only contains interaction terms of gauge fields, and

W±
mµ =

1√
2
(W 1

mµ ∓ iW 2
mµ) (m = 1, 2, W1µ ≡ Wµ). (3.14)

In the above lagrangian, the field strengths of gauge fields are defined as:

W±
m0µν = ∂µW

±
mν − ∂νW

±
mµ (m = 1, 2, W±

1µ ≡W±
µ ), (3.15)

Zmµν = ∂µZmν − ∂νZmµ (m = 1, 2, Z1µ ≡ Zµ), (3.16)

Amµν = ∂µAmν − ∂νAmµ (m = 1, 2, A1µ ≡ Aµ). (3.17)

The currents in the above lagrangian are defined as:

jemµ = −ieγµe (3.18)

jZµ = j3µ − sin2θW j
em
µ = iψLγµ

τ 3

2
ψL − sin2θW j

em
µ . (3.19)

From the above lagrangian, we could see that the mass of fermion e is 1√
2
fµ,

the mass of neutrino is zero, the masses of charged intermediate gauge bosons W±

are µcosθW , the mass of neutral intermediate gauge boson Z is µ = mW

cosθW
and all

other gauge fields are massless. That is

me =
1√
2
fµ , mν = 0 (3.20)

mW = µcosθW , mZ = µ =
mW

cosθW
(3.21)

mA = mA2 = mW2 = mZ2 = 0 (3.22)

It is easy to see that, in this model, the expressions of the masses of fermions and
intermediate gauge bosons are the same as those in the standard model.

4 Compare with the Standard Model

We have known that the standard model is a successful model in describing
electroweak interactions when the energy of the system is not very high. If the new
electroweak model is also a successful model in describing high energy electroweak
interactions, it should be able to return to the standard model in a limit. The
lagrangian of the new electroweak model discussed above is quite different in form
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from that of the standard model. And all these differences concern of the parameter
α and Higgs field. Parameter α is a free parameter whose value is not determined
at present. If we let the value of α vary, then in a proper limit, the model discussed
above will approximately return to the standard model. Now, let’s discuss the
standard model limit of the new electroweak model. Suppose that parameter α is
much smaller than 1,

α≪ 1, (4.1)

then in the leading term approximation,

cosα ≈ 1 , sinα ≈ 0. (4.2)

In this case, the lagrangian density for fermions becomes:

Ll + Lv−l = −e(γµ∂µ + 1√
2
fµ)e− νLγ

µ∂µνL
+ejemµ Aµ −

√
g2 + g′2jzµZµ

+
√
2
2
igνLγ

µeLW
+
µ +

√
2
2
igeLγ

µνLW
−
µ

(4.3)

where

e =
gg′

√

g2 + g′2
(4.4)

is the coupling constant of electromagnetic interactions. From eq(4.3), we see
Ll+Lv−l is the same as the corresponding lagrangian density in the standard model.
Besides, in this approximation, the form of LgI is simplified and the terms in Lg

other than LgI do not change. Therefore, in this approximation, except for the
terms concern Higgs particle, the lagrangian of the model discussed in this paper is
almost the same as that of the standard model: they have the same mass relation of
the intermediate gauge bosons, the same charged currents and neutral current, the
same electromagnetic current, the same coupling constant of the electromagnetic
interactions, the same effective coupling constant of weak interactions · · · etc.. On
the other hand, we must see that there are two fundamental differences between the
new electroweak model and the standard model: 1) there is no Higgs particle in the
new electroweak model, so there are no interaction terms between Higgs particle
and leptons, quarks or gauge bosons; 2)compare with the standard model, we have
introduced two sets of gauge fields in the new electroweak model. These new gauge
bosons are all massless. In the limit α −→ 0, the coupling between massless gauge
bosons and quarks or leptons will also go to zero. Because α is very small (which
we will discussed later), the influences of these massless gauge bosons to the course
of electroweak interactions will be small too. No differences between these two elec-
troweak theories are detected by experiments. Therefore, we could anticipate that,
if parameter α is small, two electroweak theories will give similar results in describ-
ing low energy electroweak interactions of quarks and leptons, and there will exist
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no contradictions between new electroweak model and experiments on electroweak
interactions.

In the present model, we have introduced eight kinds of gauge bosons, they
are: W±, Z, A, W±

2 , Z2 and A2. Those four kinds of gauge bosons in front have al-
ready been introduced in the standard model, others are introduced by the present
model. So, in the present theory, there are two kinds of charged massive gauge
bosons, one kind of neutral massive gauge boson, three kinds of neutral massless
gauge bosons and two kinds of charged massless gauge bosons.

There are two different kinds of intermediate gauge bosons which couple
to matter fields in different manners. The coupling constants between leptons and
massive charged intermediate gauge bosons or massless charged intermediate gauge
bosons respectively are:

g cosα , g sinα (4.5)

There are also two different coupling constants between leptons and massive neutral
intermediate gauge boson or massless neutral intermediate gauge bosons, they are

√

g2 + g′2cosα ,
√

g2 + g′2sinα (4.6)

The effective coupling constant of Fermi weak interactions caused by massive inter-
mediate gauge bosons is

G√
2
=

g2

8m2
W

cos2α. (4.7)

When the parameter α is very small, the above relation will return to the well-known
relation in the standard model. That means that, in the low-energy phenomena, the
new electroweak theory will give a correct description on Fermi weak interactions.

There exist two different kinds of electromagnetic fields Aµ and A2µ, cor-
respondingly, there exist two different kinds coupling constants of electromagnetic
interactions. They respectively are:

e1 =
gg′

√

g2 + g′2
cosα = e cosα (4.8)

e1 =
gg′

√

g2 + g′2
sinα = e sinα (4.9)

The electromagnetic field exist in nature should be a mixture of the two different
kinds electromagnetic fields Aµ and A2µ. In other words, the electromagnetic inter-
actions in nature should be transmitted by both Aµ and A2µ. The effective coupling
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constant of electromagnetic interactions should be:

e2 = e21 + e22 , e =
gg′

√

g2 + g′2
(4.10)

So, the effective coupling constant of electromagnetic interactions is the same as the
coupling constant of electromagnetic interactions in the standard model. Further-
more, the value of the parameter α does not affect the value of effective coupling
constant of electromagnetic interactions. Therefore, although we have introduced
two different kinds of electromagnetic fields, the law for electromagnetic interactions
will not changed. And, no matter how much is the parameter α, two electroweak the-
ories will give the same results in describing pure electromagnetic interaction course.

There are three kinds of massless neutral gauge bosons in the new theory.
they are Z2, A and A2. They are all stable particles and interact with quarks or
leptons. In other words, they have similar interaction properties. The most impor-
tant phenomenological difference between photon and Z2 particle is that Z2 particle
interacts with neutrino but photon does not interact with neutrino. But this differ-
ence is hard to detect in the experiment. In other words, if there is Z2 particle mixed
in photon, it is hard to distinguish them. If physicists found that photon take part
in weak interactions much stronger than expected, that means that there is likely
Z2 particle mixed in photon. Some more discussions on them will be presented in
the final chapter.

It is known that there are two kinds of long-range force fields: gravitation field
and electromagnetic field. If Z2 particle exists in nature, there will be a new kind
of long-range force field transmitted by massless Z2 particle. Some more discussions
on this problem can be found at the end of this paper.

In a word, when parameter α is small enough, the new electroweak model will
approximately return to the standard model. Because the theoretical predictions of
the standard model coincide well with experimental results, we could believe that
the parameter α will be very small. But, even if α −→ 0, the new electroweak model
can not completely return to the standard model, because there exists no Higgs par-
ticle in the new electroweak model and there exist no W±

2 and Z2 particles in the
standard model. Up to now, no differences between these two electroweak model
are detected by experiments, so, at present, it is hard to say that which model is
the correct model in describing electroweak interactions. Some more discussions on
these two models will be presented at the end of this paper.
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5 Electroweak interactions of quarks

Now, let’s discuss the electroweak interactions of quarks. It is known that, up to
now, there are three generations of quarks which have six different flavours. Quarks
take part in strong interactions, electromagnetic interactions and weak interactions.
In this section, we will use the general gauge field theory [7-8 ]to construct the elec-
troweak model for quarks.

According to the standard model, there exists mixing between three different
kinds of quarks d, s and b [10 ]. Define:







dθ
sθ
bθ





 = K







d
s
b





 , (5.1)

where K is the Kabayashi-Maskawa mixing matrix whose general form is:

K =







c1 s1c3 s1s3
−s1c2 c1c2c3 − s2s3e

iδ c1c2s3 + s2c3e
iδ

s1s2 −c1s2c3 − c2s3e
iδ −c1s2s3 + c2c3e

iδ





 (5.2)

where
ci = cosθi , si = sinθi (i = 1, 2, 3) (5.3)

and θi are generalized Cabibbo angles.

According to the standard model, quarks form left-hand doublets and right-
hand singlets. Denote:

q
(1)
L =

(

uL
dθL

)

, q
(2)
L =

(

cL
sθL

)

, q
(3)
L =

(

tL
bθL

)

(5.4)

U
(1)
R = uR U

(2)
R = cR U

(3)
R = tR

D
(1)
θR = dθR D

(2)
θR = sθR D

(3)
θR = bθR

(5.5)

It is known that left-hand doublets have weak isospin 1
2
and weak hypercharge 1

3
,

right-hand singlets have no weak isospin, U
(j)
R s have weak hypercharge 4

3
and D

(j)
θRs

have weak hypercharge −2
3
.

The lagrangian of the model consists of three parts:

L = Lq + Lg + Lv−q (5.6)

where Lq is the lagrangian density of quark fields, Lg is the lagrangian density of
gauge fields which is given by eq.(2.19) and Lv−q contains the interaction terms
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among quarks fields and vacuum potential. The lagrangian density of quark fields
is:

Lq = −∑3
j=1 q

(j)
L γµ(∂µ − igF1µ − i

6
g′B1µ)q

(j)
L −∑3

j=1 U
(j)
R γµ(∂µ − i2

3
g′B1µ)U

(j)
R

−∑3
j=1D

(j)
θRγ

µ(∂µ + i1
3
g′B1µ)D

(j)
θR

(5.7)
And the interaction lagrangian density of quark fields and vacuum potential is:

Lv−q = −
3
∑

j=1

(f (j)q
(j)
L vU

(j)
R + f (j)∗U

(j)
R v†q

(j)
L )−

3
∑

j,k=1

(f (jk)q
(j)
L vD

(k)
θR + f (jk)∗D

(k)
θRv

†q
(j)
L )

(5.8)
where

v = iσ2v
∗ =

(

v†2
−v†1

)

(5.9)

The lagrangian density given by eq(5.6-8) is invariant under the following
local SU(2)L gauge transformation:

q
(j)
L −→ Uq

(j)
L (5.10)

U
(j)
R −→ U

(j)
R (5.11)

D
(j)
θR −→ D

(j)
θR (5.12)

F1µ −→ UF1µU
† − 1

ig
U∂µU

† (5.13)

F2µ −→ UF2µU
† +

1

igtgα
U∂µU

† (5.14)

Bmµ −→ Bmµ (m = 1, 2) (5.15)

v −→ Uv (5.16)

v −→ Uv (5.17)

and the following local U(1)Y gauge transformations:

q
(j)
L −→ e−iβ/3q

(j)
L (5.18)

U
(j)
R −→ e−4iβ/3U

(j)
R (5.19)

D
(j)
θR −→ e2iβ/3D

(j)
θR (5.20)

Fmµ −→ Fmµ (m = 1, 2) (5.21)

B1µ −→ B1µ −
2

g′
∂µβ (5.22)
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B2µ −→ B2µ +
2

g′tgα
∂µβ (5.23)

v −→ e−iβv (5.24)

v −→ eiβv. (5.25)

In other words, the lagrangian density define by eq.(5.6) has strict local SU(2)L ×
U(1)Y gauge symmetry.

After symmetry breaking, vacuum potential v has the form of eq.(3.3).
Correspondingly, the form of v is:

v =

(

µ√
2

0

)

. (5.26)

Then, we make a sequence of transformations of gauge fields defined by eq.(3.3-11).
After these transformations of gauge fields, the lagrangian density of gauge fields
becomes the form given by eq.(3.13). Correspondingly, the lagrangian density of
quark fields becomes:

Lq = −u∂/ u− d∂/ d− c∂/ c− s∂/ s− t∂/ t− b∂/ b
+1

2

√
g2 + g′2sin2θW jemµ (cosαAµ − sinαAµ

2)
−
√
g2 + g′2jzµ(cosαZµ − sinαZµ

2 )

+
√
2
2
ig(uLγ

µdθL + cLγ
µsθL + tLγ

µbθL)(cosαW
+
µ − sinαW+

2µ)

+
√
2
2
ig(dθLγ

µuL + sθLγ
µcL + bθLγ

µtL)(cosαW
−
µ − sinαW−

2µ)

(5.27)

In the above equation, currents are defined by the following relations:

jemµ = i(
2

3
uγµu−

1

3
dγµd+

2

3
cγµc−

1

3
sγµs+

2

3
tγµt−

1

3
bγµb) (5.28)

jZµ = j3µ − sin2θW j
em
µ . (5.29)

j3µ =
∑3

j=1 iq
(j)
L γµ

τ3

2
q
(j)
L

= i
2
(uLγµuL − dLγµdL + cLγµcL − sLγµsL + tLγµtL − bLγµbL)

(5.30)

And the lagrangian density for the interactions among quark fields and vacuum
potential becomes:

Lv−q = − µ√
2

3
∑

j=1

(f (j)u
(j)
L U

(j)
R + f (j)∗U

(j)
R u

(j)
L )− µ√

2

3
∑

j,k=1

(f (jk)d
(j)

θLD
(k)
θR + f (jk)∗D

(k)
θRd

(j)
θL)

(5.31)
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Denote
F = (f (jk)) (5.32)

is a 3 × 3 matrix. In eq(5.8), parameters f (j) and f (jk) are selected to satisfy the
following requirements:

f (j)∗ = f (j) , f (jk)∗ = f (kj). (5.33)

So, matrix F is an Hermit matrix, it could be diagonalized through similarity trans-
formation. In electroweak model, matrix F is selected to have the following form:

F =

√
2

µ
KMDK

† (5.34)

where K is the similarity transformation matrix which is defined by eq(5.2) andMD

is a diagonal matrix whose form is:

MD =







md

ms

mb





 . (5.35)

Because K is a unitary matrix, lagrangian density Lv−q becomes

Lv−q = −muuu−mddd−mccc−msss−mttt−mbbb (5.36)

where,
mu = f (1)µ/

√
2 , mc = f (2)µ/

√
2 , mt = f (3)µ/

√
2. (5.37)

After all these operations, we could obtain the following result:

Lq + Lv−q = −u(∂/ +mu)u− c(∂/ +mc)c− t(∂/ +mt)t
−d(∂/ +md)d− s(∂/ +ms)s− b(∂/ +mb)b
+1

2

√
g2 + g′2sin2θW jemµ (cosαAµ − sinαAµ

2)
−
√
g2 + g′2jzµ(cosαZµ − sinαZµ

2 )

+
√
2
2
ig(uLγ

µdθL + cLγ
µsθL + tLγ

µbθL)(cosαW
+
µ − sinαW+

2µ)

+
√
2
2
ig(dθLγ

µuL + sθLγ
µcL + bθLγ

µtL)(cosαW
−
µ − sinαW−

2µ)
(5.38)

In the limit α −→ 0, except for those terms concern of Higgs field, the elec-
troweak model for quarks discussed in this chapter will also approximately return to
the standard model. The new electroweak model and the standard model have the
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same electromagnetic current, the same neutral current, the same charged currents,
the same coupling constants for weak and electromagnetic interactions and the same
expressions for quark masses. If α is very small, the coupling between quarks and
massless intermediate gauge bosons is also very small. Therefore, the correction
cause by massless intermediate gauge bosons will be very small and the effects of
interactions between quarks and massless intermediate gauge bosons are hard to be
detected by experiments. In a words, except for Higgs particle and interactions be-
tween Higgs particle and quarks, the new electroweak model keeps almost all other
dynamical properties of the standard model.

6 Discussions

The main goal of this paper is to construct an electroweak model in which we
avoid using Higgs mechanism and avoid introducing Higgs particle. We know that,
up to now, although the energy of accelerated particles has already reached sev-
eral Tev, experimental physicists don’t find any evidence of the existence of Higgs
particle. Besides, the mass of Higgs particle predicted by theory has been rising
from several Gev to several hundred Gev. This situation gives us an impression that
Higgs particle probably doesn’t exist in nature. On the other hand, the standard
model has obtained tremendous achievement in describing electroweak interactions.
So, if Higgs particle does not exist in nature, how to construct an electroweak model,
in which Higgs mechanism is not used and the underlying dynamical properties of
the new theory are quite similar to those of the standard model, is an important
and urgent task for theoretical physicists. Although we don’t know whether Higgs
particle exists in nature or not, constructing such kind electroweak model is still
important theoretically. At least, this model gives us an important result that,
without Higgs particle, a correct electroweak theory which coincides with experi-
mental results could also be constructed. In other words, if we could construct such
kind electroweak model, it means that Higgs particle is not a necessary part of an
acceptable electroweak model. If in the future, physicists have proved that Higgs
particle doesn’t exist in nature, any attempt to construct an electroweak model
without Higgs particle will become more and more important, for the future correct
electroweak theory must come from this attempt. Therefore, from whatever point
of view, constructing an electroweak model without Higgs particle is interesting and
important theoretically.

Although there exists no Higgs particle in the new electroweak model, there
exist a vacuum potential and some new particles in the new electroweak model. All
these new particles are massless gauge bosons which do not exist in the standard
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model. In order to understand the roles of these massless gauge bosons in the new
electroweak model, we first discuss the roles of Higgs fields in the standard model.
In order to introduce the masses of intermediate gauge bosons, leptons and quarks,
we must introduce Higgs scalar fields and Higgs mechanism in the standard model.
In the standard model, Higgs fields have the following two important roles: 1) to
introduce the masses of intermediate bosons, the masses of quarks and the masses
of leptons; 2) to keep the local gauge symmetry of the original lagrangian so as to
make the theory renormalizable. If we try to construct a new electroweak model
in which Higgs mechanism is not used, we must look for some new fields which
could take place the roles of Higgs fields in the standard model. Those new massless
gauge fields and vacuum potential are these things we are looking for. (The goal
of the introduction of vacuum potential is to introduce symmetry breaking and the
masses of leptons, quarks and intermediate gauge bosons. ) In the new electroweak
model, we have introduced two sets of gauge fields. One set of gauge fields are the
original ones introduced in the standard model. Anther set of gauge fields could be
regarded as complementary fields of the original gauge fields whose function is to
introduce the masses of the intermediate gauge bosons without breaking the local
gauge symmetry of the original lagrangian. After two sets of fields transformations
and symmetry breaking, one set of gauge fields obtain masses and another set of
gauge fields keep massless. If we introduce only one set of gauge fields as we do
in Yang-Mills theory, we could not keep the mass term of gauge fields local gauge
invariant. We must clearly see that, in constructing electroweak model, it is ex-
tremely important to keep local gauge symmetry of the original lagrangian, for the
local gauge symmetry of the original lagrangian will make the propagators of the
massive gauge bosons have the correct forms and give a Ward-Takahashi identity
which will play a key role in the renormalization of the theory. In a word, if we
want to introduce the masses of intermediate gauge bosons without using Higgs
mechanism, the introduction of these massless gauge bosons can not be avoided,
otherwise, the theory is non-renormalizable. In other words, in order to make the
theory renormalizable, we must keep the local gauge symmetry of the original la-
grangian. In order to introduce the masses of intermediate gauge bosons without
violating the local gauge symmetry of the original lagrangian, we must either use
Higgs mechanism or introduce two sets of gauge fields in theory. In this paper, we
avoid using Higgs mechanism, so we introduce two sets of gauge fields.

The problem of the renormalization of the theory is mentioned several times
above, now we will give a more detailed discussion on it. Though a complete strict
proof on the renormalizability of the theory , which is very complicated and needs a
relatively long time to accomplish, is not obtained yet, we will give some preliminary
considerations on this problem. As we have mention before, the original lagrangian
of the model has strict local gage symmetry. When we quantize the theory in
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path integral formulation, we should take gauge conditions first. If we take proper
gauge conditions, we could make the propagators of massive gauge bosons have the
following form [11 ]:

i

k2 −m2

[

−gµν + (1− 1

ξ
)

kµkν
k2 −m2/ξ

]

. (6.1)

In this case, it is easy to see that, according to the law of power counting, the gen-
eral gauge field theory is a kind of renormalizable theory. So is the new electroweak
theory. Besides, the local gauge symmetry of the original lagrangian will give a
Ward-Takahashi identity which will eventually make the theory renormalizable. Ac-
cording to our knowledge on the renormalization of the standard model, we believe
that the new electroweak theory is renormalizable.

Although, in the new electroweak model, there exist massless gauge bosons
which have not been found by experiment up to now, there exists no contradictions
between high energy experiments and the new electroweak model, because if the
parameter α is small enough, the cross section caused by the interchange of massless
gauge bosons will be extremely small. As an example, let’s simple discuss e− -
neutrino scattering. The cross section of e− - neutrino scattering cause by the
interchange of massless gauge bosons is similar to that of Bhabha scattering whose
cross section is proportional to the fourth power of the coupling constant. According
to eq.(3.12), the coupling constant of leptons and massless gauge bosons Z2 is:

√

g2 + g′2sinα. (6.2)

So the cross section σ1 of e
− - neutrino scattering cause by the interchange of massless

gauge bosons is proportional to

(g2 + g′2)2sin4α. (6.3)

The cross section σ2 of e− - neutrino scattering cause by the interchange of massive
gauge bosons is proportional to

g4

m4
W

cos4α. (6.4)

If
α ∼ 10−3, (6.5)

then
σ1 ≪ σ2. (6.6)

That means that the contribution of massless gauge bosons to cross section is much
smaller than that of massive gauge bosons. Because massless gauge bosons interact
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with electrons, they have contributions to the Bhabha scattering. If α is in the order
of 10−3, then the cross section of e+e− scattering caused by massless gauge bosons
is about 1010 times smaller than the cross section of e+e− scattering caused by pho-
ton. Therefore, if parameter α is small enough, the introduction of massless gauge
bosons in the new electroweak model will cause no inconsistency between theory
and experiment.

Up to now, experimental physicists do not find massless intermediate gauge
bosons in the high energy experiments. In the new electroweak model, there are
three kinds of new particles which do not exist in the standard model. They are Z2

andW±
2 particles. Z2 is an electric neutral massless vector particle whose properties

are quite similar to those of γ photon. Especially, the interaction properties of Z2

particle are also quite similar to those of γ photon. The differences between Z2

particle and γ photon are: 1) the coupling constants between those particles and
matter fields are different; and 2) Z2 particle directly interacts with neutrinos but γ
photon does not directly interact with neutrinos. So, we could imagine that it will
be very difficult to differentiate Z2 particle from γ photon and to prove the existence
of Z2 particle directly. In other words, if Z2 particle exists in nature, there must
be electric neutral massless vector particles, i.e. Z2 particles, mixed in γ photons.
The fact that Z2 particle mixed in γ photon might give us a false impression that γ
photon interacts with neutrinos directly. W±

2 particles are electric charged massless
vector particles. Of cause, it is easy to differentiate W±

2 particles from γ photon.
But, because the mass of electron is also very small, it is difficult to distinguish
between W±

2 particles and electron in the mass spectrum in the high energy experi-
ment. Maybe we could say that the spins ofW±

2 particles and electron are different,
we could differentiate them by the information of spin. But if W±

2 particles exist
in nature and are produced in the experiment, we may regard them as electron or
positron suppose that a corresponding neutrino, which is not detected by the exper-
iment, is produced simultaneously in the experiment, for the total spin of a system
which consists of two spin 1

2
particles could be 1. So, in the high energy experiment,

it will be difficult to differentiate W±
2 particles from electron or positron. On the

other hand, if we find electric charged massless vector particles exist in nature, we
don’t know what it is, because there are no such particles in the standard model.
We may think that they are special kind of photons, such as charged photons, or
they are electrons or positrons suppose that there are corresponding neutrinos pro-
duced in the experiment and the errors of the measurement of masses exist. Besides,
the cross section of the production of these massless intermediate gauge bosons is
relatively very small, few massless intermediate gauge bosons are produced in the
high energy experiment. It is a meaningful work to directly prove the existence of
these massless intermediate gauge bosons in the experiment, for if we have proved
the existence of these massless intermediate gauge bosons in nature, it would means
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that Higgs particle maybe doesn’t exist in nature and it would tell us that which
electroweak model is the correct model in describing electroweak interactions.

Although we do not use Higgs mechanism in the new electroweak model, any
one who is familiar with the standard model may have found that the vacuum po-
tential v is very like Higgs field. Indeed, except for the kinematical energy terms of
Higgs particle, those terms concern of vacuum potential in the lagrangian are com-
pletely the same as those of Higgs scalar fields. But they have essential differences.
The most important difference is that, in the lagrangian, Higgs fields have kinemat-
ical energy terms but vacuum potential do not have kinematical energy terms. So
there should exist a kind of particle corresponding to the Higgs field but there exist
no particle corresponding to the vacuum potential. This difference may give us a
wrong impression that vacuum potential is a very heavy Higgs particle field. For, in
the standard model, if we suppose that the mass of scalar fields is infinity, then the
dynamical degree of freedom of Higgs field can never be excited. So we could let:

∂µΦ ≃ 0. (6.7)

This opinion is not correct, because, in the standard model, the coefficient of the
mass term of the scalar field Φ in the origianl lagrangian is negative, we could not
think that the mass of the scalar field is infinity and could not let all ∂µΦ vanish.
Therefore, vacuum potential can not be regarded as a very heavy Higgs field. Be-
sides, in the standard model, if we let ∂µΦ vanish, then the local gauge symmetry is
broken and the theory will be non- renormalizable. Similarly, if we add kinematical
energy terms of vacuum potential to the lagrangian of the new electroweak model,
then the lagrangian will lose local gauge symmetry and the theory will be non-
renormalizable too. Therefore, though vacuum potential and Higgs particle have
similar characteristics, they have essential differences.

What is vacuum? In quantum field theory, vacuum is regarded as the ground
state which has the lowest energy of the system. In a point of view, vacuum is
regarded as a spin-0 scalar field whose 4-momentum is always zero in any condition.
It is a special kind of media. In the new electroweak theory, vacuum is regarded as
a scalar field which has no dynamical degree of freedom. Because vacuum potential
has no dynamical degree of freedom, it carries no energy-momentum. But it could
carry some quantum numbers. It serves as a background in which all matters in
universe move and evolve, but vacuum itself can not be excited or move. All fields
will interact with vacuum when they exist and evolve in vacuum, which had already
been expressed in the lagrangian of the new electroweak model. For a quantum
system, not only the properties of vacuum affect the dynamical behavior of the sys-
tem, but also the symmetry of vacuum determines the symmetry of the system. So,
when the symmetry of vacuum breaks, the symmetry of our physical world is broken
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simultaneously. In this paper, we use v to represent the influence of the vacuum,
and the symmetry breaking of the system is caused by the symmetry breaking of
vacuum potential v. After symmetry breaking, v has definite value, which means
that, in our universe, the vacuum is uniform and the properties of vacuum is stable.
In the standard model, the masses of all fields, include quark fields, lepton fields and
gauge fields, are generated from their interactions with Higgs field. Now, we could
think that the masses of all fields are generated from their interactions with vac-
uum. This view of point coincides with the interaction picture of the perturbation
theory. For example, in the perturbation theory, the self-energy diagram of electron
will change the mass of electron and the self-energy diagram is generated from the
interactions between vacuum and electron, for if there were no vacuum, there would
be no self-energy diagram. So it is natural to think that the masses of all fields are
generated from their interactions with vacuum.

Because there exists electric-neutral massless intermediate gauge boson Z2

which could transmit a long-range force field, there will exist a new long-range force
in the new electroweak model. Because the coupling constant of massless interme-
diate boson field and matter fields is very small, the corresponding long-range force
field will be very weak and its macroscopic effects are hard to be detected. Because
neutrinos carry weak charge and macroscopic objects could absorb neutrinos, any
macroscopic object will tend to be in a state of weak charge neutral. This will make
the macroscopic effects of weak long-range force weaker and make the effects of weak
long-range force field harder to be detected. If α is about 10−3, then the weak long-
range force is about one million times weaker than electromagnetic force. Generally
speaking, except for neutrinos, an object which carries weak charge will also carries
electric charge, and electromagnetic interactions are much stronger than weak long-
range interactions, so , we could imagine that it would be extremely difficult to find
macroscopic effects of weak long-range force. Because electron and proton carry not
only electric charge but also weak charge, there are weak long-range interactions
mixed in the traditional electromagnetic interactions and the weak long-range in-
teractions will contribute a extremely small part to the spectrum of atoms. Weak
long-range force may have some influences on cosmology, for neutrinos carry weak
charge and a huge amount of neutrinos exist in universe.

We know that, using Higgs mechanism, we could construct a lot of standard
model. But we could construct only one electroweak model by using vacuum po-
tential. The reason is that there is only one vacuum potential corresponding to a
symmetry, but we could introduce many Higgs fields corresponding to a symmetry.
So, in the new theory, more parts of the lagrangian of the model are fixed by the
symmetry. This characteristic is important in theory.
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Although we could construct an electroweak model without using Higgs
mechanism, this does not mean that Higgs particle does not exist in nature. In this
paper, we only want to point out one important thing that, without Higgs parti-
cle, we could also construct a correct electroweak model in theory. Whether Higgs
particle exists in nature or not should be determined by experiment. But if we find
that massless gauge bosons exist in nature, we will say that Higgs particle maybe
does not exist in nature.
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