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Abstract

We present the QCD calculation of the diffractive structure function for charged current
DIS. In particular we analyse the perturbatively tractable excitation of heavy quarks. We
emphasize the peculiarities of the Regge factorization breaking in excitation of open charm.

E-mail: kph154@aix.zam.kfa-juelich.de

In the last years successful quantitative predictions for diffractive electromagnetic Deep

Inelastic Scattering have been obtained in perturbative QCD (pQCD) [1 - 10]; for a recent

review see [11].

In the next future, diffraction in charge current (CC) DIS, ep → νp′X , can shed more

light on the pQCD mechanism of Diffractive DIS. Rapidity gap events in CC DIS have already

1

http://arxiv.org/abs/hep-ph/9806456v1


been observed at HERA [12] and with amassing more data on CC DIS a detailed comparison

between the experiment and models for diffractive DIS will be possible [14]. Because of the

parity non-conservation, in the CC case one has a larger variety of diffractive SF’s compared to

the neutral current electromagnetic (EM) case. To the lowest order in pQCD, CC diffractive

DIS proceeds by the Cabibbo-favoured excitation of the (ud̄) and (cs̄) dijet states. The

unequal mass for the (cs̄) final state is a particularly interesting laboratory for studying the

diffractive factorization breaking. A self-tagging property of charm jets gives better access to

various diffractive structure functions, for instance, to F
D(3)
3 .

The subject of this paper is the derivation of the above stated features of CC DDIS and its

distinction from the EM one. For convenience we focus on the process e+p → ν̄p′X already

observed by ZEUS [12]. The discussion and results being easily translated to the e−p → νp′X

process. In diffractive CC e+p scattering the experimentally measured quantity is the five-fold

differential cross section dσ(5)(ep → νp′X)/dQ2dxdM2dp2⊥dφ. Here X is the diffractive state

of mass M , p′ is the secondary proton with the transverse momentum ~p⊥, t = −~p2⊥, φ is

the angle between the (e, e′) and (p, p′) planes, Q2 = −q2 is the virtuality of the W+ boson,

x, y, xIP and β = x/xIP are the standard diffractive DIS variables.

The underlying subprocess is diffraction excitation of the W+ boson, W+p → p′X . In

the parity conserving EM DIS, the exchanged photon have either longitudinal (scalar), s =

1
Q
(q+n+ − q−n−) or transverse, in the (e, e′) plane, polarization tµ (here n± are the usual

lightcone vectors, n2
+ = n2

− = 0, n+n− = 1, q = q+n+ + q−n− and q.s = q.t = 0). In the

parity-nonconserving CC DIS, the exchanged W+ bosons have also the out-of-plane linear

polarization wµ = ǫµνρσtνn
+
ρ n

−
σ . We introduce also the usual transverse metric tensor δ⊥µν =

δµν + n−
µn

+
ν + n+

µ n
−
ν = −tµtν −wµwν . Then, the polarization state of the W+ is described by

the leptonic tensor

Lµν =
2Q2

y2

[

−1

2
δ⊥µν(1− y +

1

2
y2) +

1

2
(1− y)(tµtν − wµwν) + (1− y)sµsν

+
1

2
(1− 1

2
y)
√

1− y(sµtν + sνtµ) +
i

2
y(1− 1

2
y)(wµtν − wνtµ) +

i

2
y
√

1− y(wµsν − sµwν)
]

(1)

which, upon contraction with the hadronic tensor leads to 6 different components for

dσ
(3)
i (W+p → p′X)/dM2dtdφ labeled by i = T, L, TT ′, LT, 3 and LT (3) :

2



y
dσ(5)(e+p → ν̄p′X)

dQ2dydM2dp2⊥dφ
=

GFM
2
WQ2

4
√
2π2(M2

W +Q2)2

{

(1− y +
1

2
y2) · dσD(3)

T − y(1− 1

2
y) · dσD(3)

3

+(1− y) · dσD(3)
L + (1− y) cos 2φ · dσD(3)

TT ′

+(1− 1

2
y)
√

1− y cosφ · dσD(3)
LT − y

√

1− y sin φ · dσD(3)
LT (3)

}

/dM2dp2⊥dφ , (2)

whereGF is the Fermi coupling, MW is the mass of theW -boson. Each and every dσ
(3)
i (W+p →

p′X) defines a set of dimensionless diffractive structure functions F
D(4)
i :

(Q2 +M2)
dσ

(3)
i (W+p → p′X)

dM2dp2⊥
=

πGFM
2
WQ2

√
2(Q2 +M2

W )2
· σ

pp
tot

16π
· FD(4)

i (p2⊥, xIP, β, Q
2) , (3)

It is also useful to introduce the t-integrated SF’s 1

F
D(3)
i (xIP, β, Q

2) =
σpp
tot

16π

∫

dp2⊥F
D(4)
i (p2⊥, xIP, β, Q

2) . (4)

The diffractive SF’s F
D(3)
T , F

D(3)
L and F

D(3)
3 are counterparts of the familar FT = F2 − FL, FL

and F3 for inclusive DIS of neutrinos, F
D(3)
3 and F

D(3)
LT (3), are C- and P-odd and vanish in EM

scattering. The discussion of the azimuthal angle-dependent terms TT ′, LT and LT (3) goes

beyond the scope of this letter, in which we focus on F
D(3)
T , F

D(3)
L and F

D(3)
3 .

Up to now only relatively large x ∼ 10−2 are easily accessible in CC DIS [12, 14]. As for

selecting diffractive events, one requires xIP <(0.05-0.1), the kinematical relation β = x/xIP

implies that the experimentally observed CC diffractive DIS will proceed at rather large β,

dominated by the partonic subprocess W+p → (ud̄)p′, (cs̄)p′. The relevant pQCD diagrams

are shown in Fig. 1. In the following, we focus on the cs̄ excitation, analogous considerations

apply to ud̄. z and (1−z) are the fractions of the (light–cone) momentum of theW+ carried by

the charmed quark and strange antiquark respectively, ~k is the relative transverse momentum

in the qq̄ pair (Fig. 1). The invariant mass of the dijet final states equals

M2 =
k2 + µ2

z(1− z)
, (5)

1Our definition (4) of F
D(3)
i

differs from the ZEUS/H1 [13] by the factor xIP, so that F
D(3)
i

does not blow

up at xIP → 0
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where µ2 = (1 − z)m2
c + zm2

s . mc, (ms) being the charmed (strange) quark mass. All SF’s

are calculable in terms of the same quark helicity changing and conserving amplitudes ~Φ1

and Φ2 introduced in [1, 2]. Combining the formalism of [2] with the treatment of charm

leptoproduction in [15], we have obtained (integration over the azimuthal orientation of ~k is

understood, αcc =
GFM2

W

2π
√
2
)

dσD
L,T

dzdk2dt

∣

∣

∣

∣

t=0
=

π2αcc

3
α2
S(Q̄

2)
[

AL,T (z,ms, mc)~Φ
2
1 +BL,T (z,ms, mc)Φ

2
2

]

, (6)

where

AT (z) = [1− 2z(1− z)] , (7)

BT (z,ms, mc) =
[

m2
c − 2z(1− z)m2

c − z2∆2
]

, (8)

A3(z) = [2z − 1] , (9)

B3(z,ms, mc) =
[

z2m2
s − (1− z)2m2

c

]

, (10)

AL(z,ms, mc) =
1

Q2
(m2

s +m2
c) , (11)

BL(z,ms, mc) = 4Q2z2(1− z)2 + 4z(1− z)µ2 +
1

Q2
[µ4 +m2

cm
2
s] (12)

with ∆2 = m2
c −m2

s. The amplitudes ~Φ1 and Φ2 were derived in [1, 2] and, to a logarithmic

accuracy,

~Φ1 ≈ 2~k(1− β)2
[(k2 + µ2)β + (1− β)µ2]

(k2 + µ2)3

∫

dτ

τ
W1(ω, τ)G(xIP, τQ̄

2) (13)

Φ2 ≈ (1− β)2
[(k2 + µ2)(1− 2β)− 2βµ2]

(k2 + µ2)3

∫

dτ

τ
W2(ω, τ)G(xIP, τQ̄

2) (14)

where G(x,Q2) = xg(x,Q2) is the gluon distribution in the proton and ε2 = z(1− z)Q2 +µ2.

As in the EM case [6, 7, 9, 10] the relevant effective pQCD factorization scale is found to be

Q̄2 = ε2 + k2 =
k2 + µ2

(1− β)
(15)

and has already been used in (6) as the argument of strong coupling αS.

Here the weight functions Wi(ω = k2/ε2, τ = κ2/Q̄2) have a narrow peak at τ ≈ 1 with

the unit area under the peak, which gives the Leading LogQ2 result [2, 6, 8]
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∫

dτ

τ
Wi(ω, τ)G(xIP, τQ̄

2) ≈ G(xIP, Q̄
2) , (16)

valid for sufficiently large values of ω, which is equivalent to sufficiently large β ∼> 0.1 of the

interest in the present study.

At variance with the equal mass EM case, where Q̄2 = (k2 + m2)/(1 − β), now the

factorization scale depends on z and then one expects different cross sections whether the

charmed quark is produced in the forward (F) or the backward (B) hemisphere, with respect

to the W momentum, in the rest frame of the diffractive state X . The two configurations

differ by the value of the light-cone variable zF,B = 1
2
(1 + δ)

[

1±
√

1− 4 k2+m2
c

M2(1+δ)2

]

, where

δ = ∆2

Q2

β

(1−β)
. The pQCD scale is perturbatively large for large β even for light flavours, and

for the charm component of the diffractive SF it is large for all β, see below.

To evaluate the light quark component of the diffractive SF at not really large β, one needs a

model for the small-Q2 behaviour of the gluon structure function G(x,Q2): in the following

we will use the same form used in Ref. [8], which at large Q2 coincide with the GRV NLO

parameterization [19]. Furthermore we take mc = 1.5 GeV, ms = 0.3 GeV and mu,d = 150

MeV. Variations of the charm mass by 10% have a small effect on the predicted SF, apart

from shifting the threshold βc = Q2/[Q2 + (mc +ms)
2] (see below).

In the evaluation of F
D(3)
i one needs to know the p2⊥ dependence of the diffractive cross

section, which is usually parameterized as dσ/dp2⊥ ∝ exp(−BDp
2
⊥). As it was shown in

[17, 11], one can use BD ∼ 6 GeV−2 for heavy flavour excitation and for the perturbative

transverse higher twist and logitudinal contributions while for light flavour contribution the

diffraction slope BD exhibits, at not so large β, a slight β-dependence, but for the purposes

of this present exploratory study we shall simply take BD(ud) ∼ 9 GeV−2.

Many authors treats diffractive DIS as DIS off pomerons in the proton, assuming implicitly

and explicitly the diffractive factorization. The latter is not supported by QCD studies [4, 6],

and the present study of charm excitation in CC diffractive DIS offers more evidence to this

effect. Still it is not confusing, we shall speak of the perturbative intrinsic partons in the

pomeron.

Separation of the pQCD subprocess of W+ → cs̄ into the excitation of charm on the
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perturbative intrinsic strangeness in the pomeron and excitation of (anti)strangeness on the

intrinsic (anti)charm is not unambiguous and must be taken with the grain of salt. In the

naive parton model, in the former process charmed quark will carry the whole momentum

of the W+ and be produced with z ≈ 1. In contrast, in the latter process, it is the strange

antiquark which carries the whole momentum of W+ and charmed quark is produced with

z ≈ 0, which suggests z > 1
2
and z < 1

2
as a compromise boundary between the two partonic

subprocesses. However, the full fledged pQCD calculation leads to broad z distributions (for

a related discussion of definition of the strangeness and charm density in νN, ν̄N inclusive

DIS see [15]). As a purely operational definition, we stick to a parton model decomposition

F
D(3)
T (cs̄) = F

D(3)
T (s) +F

D(3)
T (c̄) and F

D(3)
3 (cs̄) = F

D(3)
T (s) −F

D(3)
T (c̄) , which is a basis for the results shown

in Fig. 2. With this definition, excitation of the charmed quark off the intrinsic strangeness,

F
D(3)
T (s) , comes from terms ∝ z2 in (7, 8) and (9, 10). It is dominated by the forward production

of charm w.r.t. the momentum of W+ in the rest frame of the diffractive system X , but

receives certain contribution also from z < 1
2
. Similarly, F

D(3)
T (c̄) some from terms ∝ (1 − z)2,

is dominated by the forward production of strangeness (the backward production of charm),

but still receives certain contribution from the forward charm production.

All the considerations of Ref. [7, 8] for the longitudinal and transverse diffractive SF

in electroproduction are fully applicable to the CC case at Q2 ≫ m2
c . We consider first the

backward charm, z ≪ 1, for which Eq.s (5, 15) give z ≈ (k2+µ2)/M2 and Q̄2 ≈ (k2+m2
c)/(1−

β). Expanding the brackets of Eqs.(13, 14), in Eq.(6) and using the approximation (16) the

k2-integration in (6) gives dominant contributions to the transverse SF coming from the low-

k2 region but without entering deeply in the nonperturbative region for the heavy quark

production. For M2 ≫ m2
c one finds for the low scales dominated contribution (including the

Leading Twist and the first Higher Twist) :

F
D(4)
T (c̄) ≈ 4π

3σpp
tot

β(1− β)2

6m2
c(1 + δ)

{

(3 + 4β + 8β2) +
m2

c

Q2

4β

1− β
(17)

×
[

5

4

∆2

m2
c

(1 + 8β2)− (1− 2β + 4β2)

]} [

αS(Q̄
2
L)G(xIP, Q̄

2
L ≃ m2

c

(1− β)
)

]2

As in the EM case the large k2 (k2 ∼ M2/4) dominated contributions come from the
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second term in (7). They are calculable in pQCD and the twist expansion starts with twist-4:

F
D(4)
T (c̄) = −16π

σpp
tot

2

3

β2(1− β)

Q2(1 + δ)

(

β2 + 2
∆2

Q2

β2(2β − 1)

(1− β)

)[

αS(Q̄
2
H)G(xIP, Q̄

2
H ≃ Q2

4β
)

]2

(18)

In (17, 18) emerge additional higher-twist corrections ∝ (∆2/Q2)n, in a first approach we

restrict ourselves to the leading twist and its first higher twist corrections.

Thus, the higher twist corrections to FD
T receive contributions both from the low-scale region

and the large scale Q̄2
H . The first term in Eq.(18) is substantially the same which has been

discussed in Ref. [8] for EM current and it remains relevant even at relatively large value of

Q2 as the 1/Q2 factor is partially compensated by the growth of G(xIP, Q̄
2
H).

For what concerns the longitudinal cross section, the most important contribution comes

from the term z2(1−z)2Q2 in the BL expansion (12), which is identical to that in the EM case.

The k2 integrated cross section is completely dominated by the short-distance contribution

from high-k2 jets, k2 ∼ 1
4
M2. Upon the k2 integration, to a logarithmic accuracy, we find the

twist expansion of the longitudinal SF for the terms dominated by the large scale:

F
D(4)
L(c̄) =

16π

σpp
tot

β3 (2β − 1)

3 Q2(1 + δ)

(

(2β − 1) +
∆2

Q2

β(5− 6β)

(1− β)

)

[

αS(Q̄
2
H)G(xIP, Q̄

2
H)
]2

(19)

As the pQCD scale Q̄2
H does not depend on flavours we predict a restoration of the flavour

symmetry and equal cs̄ and ud̄ when twist-6 is negligible. Such an equal contribution of

light and heavy flavours into the higher twist is unprecedented in the standard inclusive DIS.

Again the scaling violation factor G2(xIP, Q̄2), in (19), largely compensates the higher twist

factor 1
Q2 and the longitudinal SF remains large, and takes over FD

T , in a broad range of Q2

of practical interest, see Fig. 2.

In (19), the leading twist-4 term is the same as for NC diffractive DIS. However, in the CC

diffractive DIS, because non-conservation of weak current, extra higher twist contributions to

F
D(3)
L come from the expansion of BL (always substantially dominated by the perturbative

region).

Further terms (both twist-4 and higher), come from the term ∝ AL in (6). They receive

large contributions from the low k2 region. In particular they assume a strong relevance for the

charm–strange component where terms ∝ m2
c/Q

2 appear. We find for the AL contribution:
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F
D(4)
L(c̄) [AL] ≈

4π

9 σpp
tot

(m2
c +m2

s)

m2
c

β(1− β)2

Q2(1− δ)
(1 + 2β + 3β2)

[

αS(Q̄
2
L)G(xIP, Q̄

2
L)
]2

(20)

Whereas this comtribution is low scale dominated it is comparable to the leading twist-4

in the small Q2 region. Due to the symmetry z, (1 − z) of Eqs.(5, 7 - 12), one finds similar

results subject to the replacement mc → ms for the forward production of charm (FD
(s)) at

1− z ∼< m2
s/m

2
c . The overall dependence of F

D(3)
L (cs) on Q2 and its decomposition in the AL

and BL components are shown in Fig. 3.

It is interesting to notice that the pQCD scales Q̄2(c) and Q̄2(s) are different, both ex-

plicitly depend on β, and the xIP and β dependences of F
D(3)
T (i) are inextricably entangled. This

gives another example where the Ingelman-Schlein factorization hypothesis, F
D(3)
2 (xIP, β, Q

2) =

fIP(xIP)F2IP(β,Q
2), with process independent flux of pomerons in the proton fIP(xIP) and the

xIP independent pomeron SF F2IP(β,Q
2), is not confirmed by pQCD calculation. The diffrac-

tive factorization breaking in CC diffractive DIS is especially severe, because for the same

cs̄ final state the pQCD factorization scale Q̄2 changes substantially from the forward to

backward hemisphere: Q̄(s)2 ≪ Q̄(c)2. Although the perturbative intrinsic charm component

F
D(3)
T (c̄) is suppressed by the mass of a heavy quark, it is still substantial and it is predicted to

rise much steeper than the strange one as xIP → 0. Furthermore, F
D(3)
T (c̄) is truly of perturbative

origin at all β, while F
D(3)
T (s) has a non-negligible dependence to small scales up to β ∼> 0.7.

As an illustration of the diffractive factorization breaking, in Fig. 4 we show the effective

exponent of the xIP dependence

neff = 1− ∂ logF
D(3)
2

∂ log xIP

(21)

evaluated for xIP = 3 · 10−3. We show the β dependence of neff evaluated for F
D(3)
2 (ud̄+ cs̄)

and F
D(3)
2 (ud̄) for β > 0.2. At smaller β one expects a further increasing due to the triple

pomeron component, see [5].

Evidently, at fixed β, the cs̄ excitation is possible only for sufficiently large Q2 such that

βc > β. For this reason, diffractive SF’s exhibit strong threshold effects shown in Fig. 5,

which are much stronger than in the NC case studied in [6, 8]. Notice, that F
D(3)
3 vanishes

below the cs̄ threshold.
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Naively, one would expect F
D(3)
3 = 0 for a quark-antiquark symmetric target as the

Pomeron is. Indeed, because A3(z), and for equal mass case, B3(z) too, are antisymmet-

ric about z = 1
2
, the contribution from ud̄ excitation to F

D(3)
3 vanishes upon the integration

over the u-jet production angles. On the other hand, in the cs̄ excitation there is a strong

forward-backward asymmetry and F
D(3)
3 (cs̄) 6= 0. Our predictions for F

D(3)
3 are shown in

Fig. 2.

Finally, some comments on the so-called triple-pomeron region, of β ≪ 1, are in order.

Here diffraction proceeds via excitation of the soft gluon-containing qq̄g and higher Fock

states of the photon. As it has been discussed to great detail in [3, 4], at β ≪ 1 and only at

β ≪ 1, and with certain reservations, one can apply the standard parton model treatment to

diffractive DIS. For instance, the conventional fusion of virtual photons with the gluon from

the two-gluon valence state of the pomeron becomes the driving term of diffractive DIS.

In this case the results for the diffractive SF of light quarks coincide (once the opportune

couplings of weak interaction are substituted to the EM ones) with those presented in Ref.

[4]. For the charm–strange component it must be considered that now the charm quark

is always produced together with a strange one, this leads to a threshold (Q2
cs = 4GeV 2),

which is intermediate between the strange (Q2
ss = 1GeV 2 ) and the charm (Q2

cc = 10GeV 2)

electromagnetic DIS thresholds in analogy to our discussion concerning the inclusive DIS

[15, 20]; using the the notation of [4] we find Acs = 0.08.

Summary and Conclusions.

We have presented the calculation of diffractive structure functions in the QCD color-

dipole scheme for charged current DIS and carried on a comparison of diffraction in charged

current and electromagnetic DIS. Both charged current and electromagnetic diffraction share

the property of diffractive factorization breaking. For instance, we find different xIP depen-

dences of the intrinsic u, d, strangeness and charm composition of the pomeron. Futhermore,

we predict a different xIP dependence even for the production of charm quark in the forward

and backward direction.

Compared to the EM case, other new features of CC diffraction are the emergence of sub-

stantial F
D(3)
3 , and the large higher twist contributions to the longitudinal structure function
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because of the non-conservation of weak currents. These predictions will be tested with the

accumulation of more data on CC diffraction at HERA and will permit further test of the

color dipole picture of DDIS.
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Figure 1: The pQCD Feynman diagrams for diffraction exitation of cs̄ (ud̄) states of the W .
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Figure 2: The β dependence for xIP = 10−3 of a) FT (ud+sc) [solid], FT (ud) [dotted], FT (s)

[dashed], FT (c) [dot–dashed] at Q2 = 10 GeV2 b) the same as above for Q2 = 100 GeV2

c) All flavours FT [solid], F3 [dot–dashed], FL [dashed] and FL(cs) [dotted] at Q
2 = 10 GeV2

d) the same as above for Q2 = 100 GeV2
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Figure 3: F
D(3)
L (cs) [solid] and AL Eq.(20), [dotted] and BL Eq.(19), [dot–dashed] components

of FL at Q2=10,100 GeV2.
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component, dashed line: (ud+cs).
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Figure 5: Charm-strange threshold effect in the Q2 dependence of the diffractive SF F
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