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Abstract

Within the context of supersymmetric hybrid inflation, we study a multiple-stage infla-
tionary scenario that can generate a primordial spectrum of adiabatic density perturbations
with a break at kb ≃ 0.05 h Mpc−1. The presence of such a break is supported by the APM
galaxy survey data. We consider a specific model within this scenario and confront it with
observational data. We reproduce the angular power spectrum of CMB anisotropies, and
also account for the break in the power spectrum of galaxy clustering. In addition, we find a
value for σ8 in agreement with the one deduced from observations. A characteristic property
of the spectrum is a drop of the spectral index from n ≃ 1 to n ∼ 0.6 at k ∼ kb.
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1 Introduction

The origin of the measured anisotropies in the cosmic microwave background and the gener-
ation and evolution of large-scale structure in the universe, such as the observed clustering
in the galaxy distribution, represent outstanding questions in modern cosmology. Within the
framework of gravitational instability, there are two currently investigated families of models
to explain the formation of the observed structure. Initial density perturbations can either be
due to “freezing in” of quantum fluctuations of a scalar field during an inflationary period [1],
or they may be seeded by topological defects, which can form naturally during a symmetry
breaking phase transition in the early universe [2]. The cosmic microwave background (CMB)
anisotropies provide a link between theoretical predictions and observational data, which may
allow us to distinguish between inflationary models and defect scenarios by purely linear analysis
[3].

Within the inflationary paradigm, a possible mechanism for the generation of the angular
power spectrum of CMB anisotropies and the creation of the large-scale structure is based on
the quantum fluctuations that exited the horizon during inflation [4]. These fluctuations are the
source of the primordial spectrum of density inhomogeneities [5], which has left an imprint on
the CMB. The observed large-scale structure could have been generated by the growth through
gravitational instability of this primordial spectrum of perturbations in the otherwise uniform
distribution of matter.

By making some assumptions about the matter content of the early universe, one can in-
vestigate whether a given spectrum of primordial perturbations can evolve into the large-scale
structure observed today. The evolution of the spectrum depends crucially on the nature and
amount of the dark matter in the universe. The two extreme cases, of hot dark matter (HDM)
and of cold dark matter (CDM), lead to inconsistencies with observational data. The HDM
model has been abandoned, since the thermal motion of massive neutrinos wipes out any small-
scale structure [6]. On the other hand, the standard CDM model with a flat (spectral index
n = 1) initial spectrum of adiabatic perturbations predicts too much power on small scales, if
one normalizes it to the COBE data at large scales. The standard CDM model leads to a value
σ8 ≃ 1.2 for the variance of the total mass fluctuation in a sphere of radius 8 Mpc/h [7]. On the
other hand, the observational value, inferred from the abundances of rich clusters of galaxies, is
σ8 ≃ 0.6± 0.2 [8, 9].

As the standard CDM model is a generally successful model (e.g., it successfully reproduces
galaxy clustering statistics, the various epochs of structure formation, as well as peculiar velocity
flows, while it maintains CMB anisotropies at a level lower than observational upper limits),
several approaches have been proposed, which modify its underlying assumptions (for a review
see Ref. [10]). In order to render CDMmodels compatible with observational data, one possibility
is to change the initial spectrum of perturbations by introducing a tilted (spectral index n < 1)
scale-free spectrum. However, this approach has not led to successful predictions [11]. Another
approach is to consider less standard values for the cosmological parameters, while leaving the
initial spectral index unchanged (i.e., n ≃ 1). For instance, one can either investigate CDM
models with a higher fraction of baryons [12], or models which have a mixture of CDM with an
amount of HDM, or even models with a positive cosmological constant [13, 14].

Another interesting possibility is to consider power spectra with a break, which arise natu-
rally in models with more than one stages of inflation – an approach adopted by several authors
[15]–[18]. A model of double chaotic inflation which generates such a spectrum has been studied
in detail in Refs. [16, 19, 20]. The model contains two scalar fields with disconnected quadratic
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potentials.
In this paper, we discuss the possibility of a multiple-stage inflationary scenario within

the context of supersymmetric hybrid inflation [21]. The necessary superpotential can arise in
supersymmetric GUT models. Moreover, the observable part of inflation takes place for field
values below the Planck scale, so that supergravity corrections are under control. Inflationary
models such as the one we are considering here have been discussed in Ref. [22], and have been
shown to survive the supergravity corrections in Ref. [23].

A strong motivation for these models has its origin in the issue of the initial conditions
[24]–[26] that are necessary for hybrid inflation [27] 1. This is a consequence of the presence
of (one or more) scalar fields orthogonal to the inflaton, and the constraint from the COBE
data on the inflationary energy scale V 1/4 (determined by the vacuum energy density during
inflation), which must be at least two or three orders of magnitude smaller than the Planck
scale [29] 2. The difference between the energy scale mP l at the end of the Planck era, when
classical general relativity becomes applicable, and the inflationary scale V 1/4 implies that the
various fields evolve for a long time before settling down along the inflationary trajectory. The
Hubble parameter H sets the scale for the “friction” term in the field evolution equations.
When the energy density drops much below m4

P l, the smallness of this “friction” term results
in a very long evolution, during which the fields oscillate around zero many times. Some of
the trajectories eventually settle down in the valley of the potential that produces inflation.
However, the sensitivity to the initial conditions is high because of the long evolution. A slight
variation of the initial field values separates inflationary trajectories from trajectories that lead
to the minima of the potential, where inflation does not occur. As a result, the initial field
configuration must be extremely fine-tuned for inflation to set in. The fields orthogonal to the
inflaton (whose typical fluctuations at the end of the Planck era are ∼ mP l) must be zero with
an accuracy of at least ∼ 10−5mP l over regions that exceed the initial Hubble length by one or
two orders of magnitude [26].

In Ref. [22] a simple resolution of the issue of fine-tuning described above was suggested. A
scenario with two stages of inflation was proposed within the context of global supersymmetry.
The first stage has a typical scale ∼ mP l, which implies that the “friction” term in the field
evolution equations of the fields is large. As a result, the system settles down quickly along an
almost flat direction of the potential and this stage of inflation occurs naturally. By generating
an exponential expansion of the initial region of space, it also provides the homogeneity that
is necessary for the second stage. The latter has a characteristic scale much below mP l and
generates the density perturbations that result in the CMB anisotropy observed by COBE. This
scenario was generalized in the context of supergravity in Ref. [23].

It is a logical next step to contemplate the possibility of a multiple-stage inflationary scenario,
with a sequence of scales that starts near mP l and continues down to the scale implied by COBE,
or even to lower energy scales. For inflation driven by one field in the context of supergravity,
such a possibility has already been proposed in Ref. [18] and has been associated with a break
at kb ≃ 0.05 h Mpc−1 in the power spectrum of galaxy clustering derived from the APM galaxy
survey. This break has been linked to a possible phase transition between two of the inflationary
stages. In this paper we would like to provide another realization of such a scenario, within a
multi-field theory, with an estimation of the predicted power spectrum. The determination of
the spectrum during the phase transition is beyond our technical capabilities at the moment.
However, the phase transition affects only a small range of scales, while the rest of the power

1An alternative mechanism for the resolution of this problem has been proposed in Ref. [28].
2Throughout the paper we use the “reduced” Planck scale mPl = MPl/

√
8π, MPl = 1.22 × 1019 GeV.
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spectrum is strongly constrained by the observational data.
Firstly, we are interested in examining whether the COBE data can be made compatible

with the data of galaxy surveys, employing the smallest number of cosmological parameters.
More specifically, we consider a CDM model, with zero cosmological constant, present Hubble
parameter h = 0.5 (H0 ≡ h 100 km/s/Mpc) and flat geometry Ωmatter = 1. We assume that
the fraction of the critical density in baryons is Ωb = 0.05 and in cold dark matter ΩCDM =
0.95. Subsequently, we repeat the calculation, allowing for a non-zero value of the cosmological
constant, a scenario supported by recent observations [14].

In Section 2 we discuss the general form of the power spectrum predicted by the APM data.
In Section 3 we present our model and in Section 4 the properties of the inflationary stages.
The primordial power spectrum in our model is calculated in Section 5 and is compared with
observations in Section 6. Our conclusions are given in Section 7.

2 The APM power spectrum

An indication for the possibility of more than one stages of inflation is provided by the power
spectrum deduced from the APM galaxy survey [30]. This spectrum has a break at a charac-
teristic scale kb ≃ 0.05 h Mpc−1 [31, 32, 18, 33]. One explanation for this break could be a
sharp change of the spectral index of the primordial spectrum between two stages of inflation
[18]. In this section we summarize the main points of the analysis in the above references, in
order to motivate the multiple-stage scenario. In the following sections we shall show how such
a scenario can be realized in the context of a specific model.

In Fig. 1 we plot the logarithmic slope of the power spectrum recovered from the APM
angular galaxy catalogue [31, 33]. (We have used the data of Table 2 in Ref. [33].) The slope
has been calculated through a least-squares fit for groups of 3 data points, assuming that the
spectrum is locally linear in a logarithmic scale. The results are in agreement with the detailed
analysis of Ref. [33], even though our estimated errors are slightly different. A sharp change in
the slope of the spectrum is visible around kb ≃ 0.05 h Mpc−1.

This break persists even after the effects of the non-linear evolution of matter fluctuations
(when the density contrast becomes of order 1) have been removed. Through N -body sim-
ulations, Baugh and Gaztañaga [33] have estimated the linear spectrum that gives rise to the
observed spectrum for a spatially flat universe with critical matter density and zero cosmological
constant. Their estimate is well fitted by the curve [33, 34]

Pl(k) =
Ckα

[1 + (k/kb)2]β
, (2.1)

with C ≃ 7.0 × 105, kb ≃ 0.05 h Mpc−1, α ≃ 1, β ≃ 1.6. This result is in agreement with
the spectrum obtained through the application of the formula of Jain et al. [35] for the relation
between the linear and non-linear spectra. The formula of Peacock and Dodds [36] does not lead
to very good agreement with the results of the N -body simulations [34]. In Fig. 1 we display
the logarithmic slope of the linear spectrum as predicted by Eq. (2.1) (solid line). The sharp
decrease in the slope is again apparent.

The implications for the primordial spectrum can be obtained if one deconvolutes the spec-
trum by using the linear transfer function, which determines the scale-dependent growth of
linear perturbations. A parametrization of this function is given by the relation [37]

T (k) =
[

1 +
{

ak + (bk)3/2 + (ck)2
}ν]−1/ν

, (2.2)
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with a = 6.4 Γ−1h−1Mpc, b = 3 Γ−1h−1Mpc, c = 1.7 Γ−1h−1Mpc, ν = 1.13 and Γ = Ωhe−2Ωb ,
where Ωb is the fraction of critical density in baryonic matter. For h = 0.5, Ωb = 0.05, the
spectral index n of the primordial spectrum P (k) ∼ Pl(k)/T

2(k) is given by the dashed line in
Fig. 1. A transition from a value n ≃ 1 at large scales to an average value n ∼ 0.5 at small scales
is observed. It must be pointed out that the above analysis cannot be considered conclusive,
as the parametrization of Eq. (2.2) may not be sufficiently accurate. In section 6 we present a
detailed comparison with the linear power spectrum of Eq. (2.1) using the code CMBFAST of
Seljak and Zaldarriaga [38].

The variation of the spectral index can be explained by the generation of density perturba-
tions during two stages of inflation, driven by fields with different potentials. The first stage
must have lasted long enough for scales between k ∼ 3× 10−4 h Mpc−1 (relevant for the COBE
data) and k ∼ kb ≃ 5 × 10−2 h Mpc−1 to have crossed outside the horizon during its dura-
tion. This requires at least 5 e-foldings to be generated by the first stage of inflation. The
large deviation of the spectral index from 1 has strong implications for the duration of the
second stage. For the models of interest to us, the inflationary potential has the general form
V ≃ V0(1 + cf(φ/mP l)), where c is a small constant. Moreover, the inflaton field is constrained
to be φ <∼ mP l. A general analysis of the spectral index predicted by such potentials, for various
choices of the function f(φ/mP l), is given in Ref. [29]. According to Table 1 of that reference,
the total number of e-foldings N is constrained by the relation |n−1|(N/50) <∼ 0.08. For n ≃ 0.6
we infer N <∼ 8. More specifically, for the case f(φ/mP l) = ln(φ/mP l) that is relevant for our
model, |n− 1|(N/50) ≃ 0.02 and N ≃ 2.

The above considerations support a picture of multiple short bursts of inflation, with signifi-
cant variations of the spectral index of the primordial spectrum. The observational data provide
information on two of these inflationary stages. The COBE-DMR measurements require a stage
with n ≃ 1 and at least 5 e-foldings, while the APM galaxy survey data support the possibility
of a second stage with n ∼ 0.6 that generates ∼ 2 e-foldings. The total number of e-foldings
during all the inflationary stages with observable consequences must be ∼ 60 for the flatness
and horizon problems of standard cosmology to be resolved. However, the stages responsible
for the last ∼ 50 e-foldings generate density perturbations at scales that are strongly affected
by the non-linear evolution. As a result, it is very difficult to extract information on their
characteristics.

The above picture contrasts with the double inflationary scenario of Refs. [16, 19, 20], where
inflation is driven by two disconnected quadratic potentials for the fields σ1, σ2. The first
stage of inflation occurs for σ1,2 ≫ mP l and terminates when σ1 ∼ mP l, while the second one
terminates when σ2 ∼ mP l. For the second stage to generate less than ∼ 60 e-foldings, so
that the break in the spectrum is observable, the value of σ2 at its beginning must not be very
far from mP l. In our model there is no need for a similar adjustment. The requirement of a
spectral index significantly below 1 for the part of the spectrum generated by the second stage
of inflation automatically constrains the number of e-foldings from this stage to be less than 60,
independently of the value of σ2.

In the following section we describe a model which provides the potential for the two stages
of inflation that are relevant for the COBE and APM data.
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3 The model

The model we consider is described by the superpotential

W = S1

(

−µ2
1 + λ1Φ̄1Φ1 + gΦ̄2Φ2

)

+ S2

(

−µ2
2 + λ2Φ̄2Φ2

)

. (3.1)

The superfields Φ1, Φ̄1 and Φ2, Φ̄2 transform under internal gauge symmetry groups M1 and
M2 respectively. The S1, S2 superfields are gauge singlets. We have assumed that S2 is the
linear combination of gauge singlets that does not couple to Φ̄1Φ1 [22]. We make the simplifying
assumption that the scalar components of the various superfields are real. The imaginary com-
ponents do not alter the qualitative picture of inflation in this model, while they would make
the calculation of the spectrum of density perturbations much more complicated. Staying along
the D-flat directions, we define canonically normalized scalar fields according to 3

S1 =
σ1√
2
, Φ1 = Φ̄1 =

φ1

2
,

S2 =
σ2√
2
, Φ2 = Φ̄2 =

φ2

2
. (3.2)

The potential is then given by the expression

V (σ1, σ2, φ1, φ2) =
∑

i

∣

∣

∣

∣

∂W

∂Φi

∣

∣

∣

∣

2

=

(

µ2
1 −

λ1

4
φ2
1

)2

− g

2
µ2
1φ

2
2 +

g2

16
φ4
2 +

gλ1

8
φ2
1φ

2
2 +

λ2
1

4
σ2
1φ

2
1

+

(

µ2
2 −

λ2

4
φ2
2

)2

+
1

4
(gσ1 + λ2σ2)

2 φ2
2, (3.3)

where the mass scales µ1, µ2 are chosen µ1 > µ2. The minima of this potential are located at

σ1 = σ2 = 0, φ2
1 =

4

λ1
µ2
1 −

4g

λ1λ2
µ2
2, φ2

2 =
4

λ2
µ2
2. (3.4)

For φ1 = φ2 = 0 the potential is independent of σ1,2. Its value V = µ4
1 + µ4

2 gives the vacuum
energy density during the first stage of inflation. Along this direction, the mass terms of the
φ1,2 fields are

M2
φ1

= − λ1µ
2
1 +

λ2
1

2
σ2
1 , (3.5)

M2
φ2

= − λ2µ
2
2 − gµ2

1 +
1

2
(gσ1 + λ2σ2)

2 . (3.6)

The mass term M2
φ1

becomes negative for

σ2
1 < σ2

1ins =
2µ2

1

λ1
. (3.7)

This indicates the presence of an instability which can lead to the growth of the φ1 field.

3 We use the same notation for the superfields and their scalar components.
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Another flat direction (independent of σ2) exists for σ1 = 0, φ2
1 = 4µ2

1/λ1, φ2 = 0. The value
of the potential V = µ4

2 gives the vacuum energy density during the second stage of inflation.
The mass term of the φ2 field is given by

M2
φ2

= − λ2µ
2
2 +

λ2
2

2
σ2
2. (3.8)

An instability appears for

σ2
2 < σ2

2ins =
2µ2

2

λ2
, (3.9)

which can lead to the growth of the φ2 field.
The flatness of the potential is lifted by radiative corrections. During the first stage of

inflation and for σ1,2 far above the instability points, the one-loop contribution to the effective
potential is 4

∆V (σ1, σ2) ≃
M1

16π2
λ2
1µ

4
1

[

ln

(

λ2
1σ

2
1

2Λ2
1

)

+
3

2

]

+
M2

16π2

(

λ2µ
2
2 + gµ2

1

)2
[

ln

(

(gσ1 + λ2σ2)
2

2Λ2
2

)

+
3

2

]

, (3.10)

where M1,2 are the dimensionalities of the representations of the groups M1,2 to which the
superfields Φ1,2 belong. The exact value of the normalization scales Λ1,2 is not important for
our discussion. In the following we shall consider theories in which the two sectors (S1,Φ1)
and (S2,Φ2) are essentially decoupled. For this reason we shall assume that the coupling g is
sufficiently small for the radiative correction of Eq. (3.10) to be approximated as

∆V (σ1, σ2) ≃
M1

16π2
λ2
1µ

4
1

[

ln

(

λ2
1σ

2
1

2Λ2
1

)

+
3

2

]

+
M2

16π2

(

λ2µ
2
2 + gµ2

1

)2
[

ln

(

λ2
2σ

2
2

2Λ2
2

)

+
3

2

]

. (3.11)

The above contribution provides the slope that leads to the slow rolling of the σ1,2 fields during
the first stage of inflation.

During the second stage of inflation the slope for the σ2 field is provided by the radiative
correction

∆V (σ1, σ2) ≃
M2

16π2
λ2
2µ

4
2

[

ln

(

λ2
2σ

2
2

2Λ2
1

)

+
3

2

]

. (3.12)

Away from the flat directions the radiative corrections are small and we neglect them.
An important question concerns the supergravity corrections to the above potential. In par-

ticular, it is important that the flat directions of the potential are not lifted by these corrections
[21]. A detailed analysis of this problem is presented in Ref. [23], where it is shown that, for
the flat directions to be preserved, at least one of the two inflationary stages must be driven
by D-term energy density [39]. However, the form of the potential is the same as the one we
described above. Two flat directions exist with a small slope generated by logarithmic radiative
corrections.

4 It must be pointed out that the supersymmetric cancellations that lead to Eqs. (3.10), (3.12) require the
inclusion of radiative corrections from both the real and imaginary scalar components of the superfields Φ1, Φ2.
However, this is the only effect of the imaginary components on the inflationary stages. This is the reason why
we omitted them in Eq. (3.3). For a discussion that includes these components see Ref. [22].
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4 The inflationary stages

The model we described in the previous section allows for two stages of inflation separated by
an intermediate stage.

4.1 The first stage of inflation

The Hubble parameter during the first stage of inflation is almost constant

H2
1 ≃ µ4

1 + µ4
2

3m2
P l

. (4.1)

We assume that the part of this stage with observable consequences starts at a time t1i and
finishes at a time t1f . Because of our assumption µ1 > µ2, the vacuum energy density associated
with the fields σ1, φ1 dominates the first stage. Therefore, this stage terminates when the “slow-
roll” conditions for σ1 are not satisfied any more. For the potential of Eqs. (3.3), (3.11), this
happens for

σ2
1 (t1f ) ≡ σ2

1f ≃ M1λ
2
1

8π2
m2

P l. (4.2)

Unless the coupling λ1 is taken much smaller than 1, σ2
1f is much larger than the instability

point σ2
1ins of Eq. (3.7).

The number of e-foldings from a time t until the end of the first stage is given by

N1(t) = ln

(

a1f
a(t)

)

=
4π2

M1λ2
1

µ4
1 + µ4

2

µ4
1

σ2
1(t)− σ2

1f

m2
P l

, (4.3)

where a(t) is the scale factor and a1f ≡ a (t1f ) . The total number of e-foldings during the
observable part of this stage is given by

N1tot = ln

(

a1f
a1i

)

=
4π2

M1λ2
1

µ4
1 + µ4

2

µ4
1

σ2
1i − σ2

1f

m2
P l

, (4.4)

with σ2
1i ≡ σ2

1 (t1i), a1i ≡ a (t1i). The relative change of the values of the two fields during the
first stage is

σ2
2 (t1i)− σ2

2 (t1f )

σ2
1 (t1i)− σ2

1 (t1f )
=

σ2
2 (t1i)− σ2

2 (t1f )

σ2
1i − σ2

1f

=
M2

M1

(

λ2µ
2
2 + gµ2

1

)2

λ2
1µ

4
1

. (4.5)

In the following, we shall use parameters that make this ratio much smaller than 1, so that the
evolution of σ2 can be neglected during the first stage of inflation.

4.2 The intermediate stage

The intermediate stage lasts between times t1f and t2i. After the end of the slow-roll regime,
the σ1 field quickly rolls beyond the instability point of Eq. (3.7). Subsequently, large domains
start appearing in which the value of the φ1 field grows exponentially with time. For statistical
systems, for which the expansion of the universe is not relevant, this process is characterized as
spinodal decomposition. The expansion of the universe complicates the above picture, but the
details are not important for our discussion. We assume that this initial stage of instability is
fast, and soon the fields take values away from the σ1 axis and in the vicinity of the minimum
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at σ1 = 0, φ2
1 = 4µ2

1/λ1, where the curvature of the potential is positive. Our assumption is

reasonable because the σ1 field rolls to the origin within a time ∼ H−1
1 ≃

√
3mP l/

√

µ4
1 + µ4

2 or
slightly larger. On the other hand, the typical time scale for the growth of the φ1 field is given
by the absolute value of the curvature at the origin and is ∼

(√
λ1µ1

)−1
. As a result, we expect

that φ1 grows to a value near the minimum within a fraction of a Hubble time.
After a short complicated evolution, the massive fields σ1, φ1 settle into a regular oscillatory

pattern around the minimum, with the universe characterized by an equation of state p = wρ.
For a system of massive oscillating fields, such as the one we are considering, w = 0. From this
point on, the energy density of the oscillating fields is dissipated through the expansion of the
universe. If the fields have decay channels into lighter species that eventually thermalize, the
equation of state of the radiation-dominated universe has w = 1/3. When the energy density
becomes comparable to µ4

2 the second stage of inflation can begin. During the intermediate
stage, the scale factor increases by a total amount

Nint = ln

(

a2i
a1f

)

=
2

3(1 + w)
ln

(

H1

H2

)

, (4.6)

where a2i ≡ a (t2i).
The effect of the oscillations of σ1, φ1 on the stability of σ2, φ2 is minimized if the former

have fast decay channels into lighter species. Under this assumption, the fields σ2, φ2 remain
constant during the intermediate stage, even when the supergravity corrections are taken into
account [23]. In the following we make this assumption and use w = 1/3 during the whole
intermediate stage.

4.3 The second stage of inflation

This stage starts at a time t2i and finishes at a time t2f . The Hubble parameter is

H2
2 ≃ µ4

2

3m2
P l

. (4.7)

Inflation stops when the “slow-roll” conditions for σ2 are not satisfied any more. For the potential
of Eqs. (3.3), (3.12), this happens for

σ2
2 (t2f ) ≡ σ2

2f ≃ M2λ
2
2

8π2
m2

P l. (4.8)

Unless the coupling λ2 is taken much smaller than 1, σ2
2f is much larger than the instability

point σ2
2ins of Eq. (3.7).

The number of e-foldings from a time t until the end of the second stage is given by

N2(t) = ln

(

a2f
a(t)

)

=
4π2

M2λ
2
2

σ2
2(t)− σ2

2f

m2
P l

, (4.9)

where a2f ≡ a (t2f ) . The total number of e-foldings during this stage is given by

N2tot = ln

(

a2f
a2i

)

=
4π2

M2λ
2
2

σ2
2i − σ2

2f

m2
P l

, (4.10)

with σ2
2i ≡ σ2

2 (t2i).
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In the next sections we shall consider parameters for which the above equation predicts
N2tot ≃ 2 e-foldings. As the accuracy of the analytical expressions presented in this section is
questionable for so small N2tot, we have verified the properties of the second inflationary stage
numerically. We have found a value for N2tot that is close to 3 for our choice of parameters.

4.4 The remaining stages of inflation

The total number of e-foldings during all the inflationary stages with observable consequences
must be ∼ 60 for the flatness and horizon problems of standard cosmology to be resolved. This
means that additional inflationary stages must take place after the first two that we discussed
above.

A simple extension of our model that would provide this possibility involves an additional
term S3

(

−µ2
3 + λ3Φ̄3Φ3

)

in the superpotential. We assume that the new system of superfields
S3, Φ̄3, Φ3 is decoupled from the ones driving the first two stages of inflation. The potential and
the properties of the third inflationary stage are completely analogous to the ones we described
above. For a sufficiently small scale µ3 the discussion of the previous subsections is not affected.
A third stage of inflation starts after a second intermediate stage, as soon as the energy density
becomes comparable to µ4

3. The total number of e-foldings during the third stage is

N3tot = ln

(

a3f
a3i

)

=
4π2

M3λ
2
3

σ2
3i − σ2

3f

m2
P l

, (4.11)

where σ2
3f/m

2
P l ≃ M3λ

2
3/8π

2 and the various quantities are defined in analogy to the first two
stages. One can envisage several stages driven by such systems of superfields. The calculation of
the supergravity corrections to the potential of such complicated systems of fields is a difficult
task. However, we assume that it is possible to guarantee the presence of the necessary number
of flat directions, even when supergravity corrrections are taken into account.

There are other possible sources of inflation as well. The increase of temperature during the
reheating after the first inflationary stages may lead to the restoration of spontaneously broken
symmetries. Additional stages of inflation may take place when the temperature falls below the
energy scale associated with these symmetries. Inflationary stages, such as the thermal inflation
of Ref. [40], may occur even as low as at the TeV scale.

5 The primordial spectrum

The primordial spectrum of density inhomogeneities has its origin in the quantum fluctuations
that crossed outside the horizon during inflation [4]. The scale k crosses the Hubble radius when
k = aH. The scale kCOBE/a0 ∼ H0 exited the horizon at the beginning of the observable part
of the first stage of inflation. This implies that a0H0 = a1iH1. (Here a0, H0 ≃ (3000 Mpc)−1 h
are the present values of the scale factor and the Hubble parameter. Following the standard
convention, we set a0 = 1 in the following.)

For k <∼ k2 = a2iH2 the Hubble radius is crossed only once, during the first stage of inflation,
while for k >∼ k1 = a1fH1 it is crossed once during the second stage. The scales k2 < k < k1,
however, cross the Hubble radius three times: They exit the horizon during the first stage, re-
enter duing the intermediate stage and exit again during the second stage. We define the scale
K according to

K =
√

k1k2 (5.1)
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and we obtain

ln

(

K

H0

)

= N1tot +
1

2
Nint +

1

2
ln

(

H2

H1

)

, (5.2)

with N1tot, Nint given by Eqs. (4.4), (4.6) respectively. For the ratio k2/k1 we obtain

ln

(

k2
k1

)

=

(

1− 2

3(1 + w)

)

ln

(

H2

H1

)

. (5.3)

The gravitational potential for scalar metric perturbations that are generated during the
first stage of inflation is given by the expression [16, 41, 42]

Φ = 2C
Ḣ

H2
+D

1

H

V1V̇2 − V̇1V2

2m2
P l (V1 + V2)

, (5.4)

with

C = − 1

2

[

H

(

V1

V1 + V2

δσ1
σ̇1

+
V2

V1 + V2

δσ2
σ̇2

)]

k=aH
(5.5)

D =

[

1

3H

(

δσ1
σ̇1

− δσ2
σ̇2

)]

k=aH
. (5.6)

The first term in the right-hand side of Eq. (5.4) can be interpreted as the adiabatic contribution
to the spectrum, while the second one corresponds to entropic fluctuations. Until the end of the
first stage of inflation (when t1 ≃ t1f according to Eq. (4.2)), the functions V1(σ1), V2(σ2) are
the potentials of the two disconnected fields σ1, σ2 and can be derived from Eqs. (3.3), (3.11):

V1(σ1) = µ4
1 +

M1

16π2
λ2
1µ

4
1

[

ln

(

λ2
1σ

2
1

2Λ2
1

)

+
3

2

]

,

V2(σ2) = µ4
2 +

M2

16π2

(

λ2µ
2
2 + gµ2

1

)2
[

ln

(

λ2
2σ

2
2

2Λ2
2

)

+
3

2

]

. (5.7)

However, the subsequent evolution of the entropic contribution is very complicated, due to the
growth of the φ1 field and the possible decay of σ1, φ1 into lighter species. For this reason,
we concentrate on the adiabatic contribution, which can be followed until today. We point
out, however, that for our choice of parameters of the model, the total spectrum of adiabatic
perturbations is dominated by the fluctuations of the σ2 field, with the contribution of σ1
being negligible (see below). Since the entropic contribution arises because of the simultaneous
fluctuations of at least two fields, the dominance of the σ2 fluctuations indicates that the entropic
contribution to the spectrum might be subleading.

Assuming that the field fluctuations are random gaussian variables, we obtain for the spec-
trum of adiabatic density perturbations

δ2H(k) =
1

25π2

[

H2

m4
P l

{

(

V1

V ′

1

)2

+

(

V2

V ′

2

)2
}]

k=aH

, (5.8)

where primes on V1(σ1), V2(σ2) denote derivatives with respect to σ1, σ2 respectively. We
assume that the evolution of σ2 is negligible during the first stage of inflation (so that σ2 ≃ σ2i
during this whole stage). This is guaranteed if the ratio of Eq. (4.5) is much smaller than 1.
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We also concentrate on the case V1/V
′

1 ≪ V2/V
′

2 , for which the metric perturbations are mainly
generated by the fluctuations of the σ2 field during both stages of inflation. This requires

σ1i
M1

1

λ2
1

≪ σ2i
M2

(

µ2
2

λ2µ2
2 + gµ2

1

)2

(5.9)

and leads to

δH(k) ≃ 8π

5M2

(

µ2
2

λ2µ2
2 + gµ2

1

)2
H1σ2i
m2

P l

. (5.10)

The predicted spectrum is scale invariant with a spectral index n = 1 to a very good accuracy.
It provides a good approximation to the primordial spectrum for k < k2. It should be con-
trasted with the spectrum predicted by the model of Refs. [16, 19, 20], which has a logarithmic
dependence ∝ ln1/2(K/k) for small k.

During the second stage of inflation the metric perturbations are generated by the σ2 field
and the spectrum is

δH(k) ≃ 8π

5M2λ2
2

H2 [σ2]k=aH2

m2
P l

. (5.11)

The field σ2 evolves from σ2i to σ2f during this stage and the resulting spectrum has a spectral
index different from 1. The scale dependence is given by the relation

[

σ2
mP l

]2

k=aH2

=
σ2
2i

m2
P l

+
M2λ

2
2

4π2

[

N1tot +Nint − ln

(

k

H0

)

− ln

(

H1

H2

)]

. (5.12)

The resulting spectral index is

n− 1 =
d ln δ2H
d ln k

= −M2λ
2
2

4π2

m2
P l

σ2
2(k)

, (5.13)

with σ2(k) given by Eq. (5.12). We are interested in scales that crossed outside the horizon
during the beginning of the second stage of inflation. For them the spectral index is given by
the above expression with σ2(k) ≃ σ2i.

The calculation of the form of the spectrum for scales k2 < k < k1 that re-enter the horizon
during the intermediate stage is prohibited by the extremely complicated nature of this stage.
This is due to the presence of two massive oscillating and decaying fields (σ1, φ1). However,
we do not expect any strong features (such as spikes [43]) in the spectrum associated with
the intermediate stage. The situation is very similar to the “double inflation with a break”
of Ref. [16]. In that case there is only one massive oscillating field with no decay channels,
whose energy is dissipated through expansion. The detailed calculation of the spectrum has not
revealed any strong features. In our model, no “massless” fields exist during the inflationary
stages, other than σ1, σ2 whose contribution to the spectrum we have computed. The first stage
of inflation ends for σ1 ∼ σ1f ≫ σ1ins, long before the orthogonal field φ1 becomes massless or
develops an instability; and similarly for the second stage. A smooth interpolation between the
two parts of the spectrum that we have computed is likely, such as the one indicated by the
data.

We also mention that the gravitational wave contribution to the spectrum is not expected to
be large. For our choice of the parameters of the model (see next section), it is more than two
orders of magnitude smaller than the scalar contribution during the second stage of inflation.
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Due to the similarity of the potentials of the first and second stage, we expect that the same is
true for the first stage of inflation as well.

Finally, we consider the effect of the subsequent inflationary stages on the spectrum. The
presence of a third stage, generated by an additional term S3

(

−µ2
3 + λ3Φ̄3Φ3

)

in the superpo-
tential, could affect our previous discussion. In order to be more specific, let us concentrate
on the second and third inflationary stages. In the presence of additional superfields Φ3, Φ̄3,
the superpotential associated with the second inflationary stage has the more general form
S2

(

−µ2
2 + λ2Φ̄2Φ2 + g′Φ̄3Φ3

)

. For sufficiently small coupling g′, the potential that generates a
slope along the flat direction during the second stage has a form analogous to eq. (3.11), i.e.

∆V (σ2, σ3) ≃
M2

16π2
λ2
2µ

4
2

[

ln

(

λ2
2σ

2
2

2Λ2
2

)

+
3

2

]

+
M3

16π2

(

λ3µ
2
3 + g′µ2

2

)2
[

ln

(

λ2
3σ

2
3

2Λ2
3

)

+
3

2

]

. (5.14)

For simplicity we assume that the value of σ3 does not change substantially during the second
stage. This is expected to be the case for µ2 sufficiently larger than µ3. The contribution of the
fluctuations of the σ3 field to the spectrum generated during the second stage can be estimated
through the analogous of eq. (5.8). These fluctuations do not affect the spectrum if

f2/c4 ≪ 1, (5.15)

where

f =
σ3i

M3λ2
3

M2λ
2
2

σ2i
,

c =1 +
g′µ2

2

λ3 µ2
3

. (5.16)

The above constraint has implications for the total number of e-foldingsN3tot, given by Eq. (4.11),
that can be generated during the third stage. For σ2f ≪ σ2i, σ3f ≪ σ3i, we can express N3tot as

N3tot = N2totf
σ3i
σ2i

. (5.17)

Large values of N3tot require values of f that may be in conflict with the constraint (5.15). For
g′ = 0, N2tot ∼ 2 − 3, σ2i/mP l = 0.025 (the value of this parameter that we use in the next
section), and allowing for f2 ∼ 1

4–
1
3 , a value of σ3i slightly below mP l can lead to the required

remaining ∼ 50 e-foldings. A non-zero value of g′ leads to c > 1 and permits even larger values
of f and, therefore, smaller values of σ3i.

The discussion of the first stage can be carried out in an analogous way, even though the
constraints are more complicated. We expect that, similarly to above, there are regions of
parameter space for which the primordial spectrum of the first stage is not affected by the
presence of the additional fields. Moreover, it is conceivable that several similar inflationary
stages generate a total number of e-foldings ∼ 50, in which case the resulting bounds are less
stringent. As we have discussed in the introduction and section 2, we have in mind a picture of
multiple bursts of inflation, driven by different sectors of the theory, with a sequence of scales
starting near mP l and continuing down to the scale implied by COBE, or even to lower energy
scales. In this work we present only a simplified picture of two of these stages that have direct
observational consequences.

Another possibility is that the later stages of inflation are associated with fields that are
massive during the first stages or located near the minima of their potential, and, therefore,
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do not affect the spectrum. These fields are displaced from their initial position during the
reheating and trigger inflation only when the temperature becomes sufficiently low. For such
models the constraints discussed above do not apply. The scenario of thermal inflation [40] is a
typical example.

The observational consequences of the third inflationary stage are difficult to estimate. One
could try to compute the linear mass fluctuation σ(R) for R ∼ 1 h−1Mpc and compare with the
abundance of galaxies at large redshifts [44]. However, the spectrum for the relevant region of k
is strongly affected by the intermediate stage between the second and third inflationary stages,
for which a computation is impossible. The fact that the scale µ3 is largely unconstrained by
previous considerations makes it probable that an agreement with observations is feasible.

6 Comparison with observations

In this section we compare the predictions of our model with the experimental data from COBE
and the APM galaxy survey. We do not consider the gravitational wave contribution to the
spectrum, as we expect it to be small. We also concentrate on the adiabatic scalar contribution
given by Eqs. (5.10)–(5.13). We do not consider any early ionization scenarios or HDM. We are
interested in examining whether the COBE-DMR measurements can be made compatible with
the data of galaxy surveys employing the smallest number of cosmological parameters. More
specifically, we consider two cosmological scenaria: 1) A CDM model, with zero cosmological
constant, present Hubble parameter h = 0.5 (H0 ≡ h 100 km/s/Mpc) and flat geometry
Ωmatter = 1. We assume that the fraction of the critical density in baryons is Ωb = 0.05 and
in cold dark matter ΩCDM = 0.95. The helium abundance is YHe = 0.24, while we do not
consider any massive neutrinos. 2) The same model with ΩΛ = 0.5, h = 0.5, Ωb = 0.05 and
ΩCDM = 0.45.

In both the above scenaria, we use the following parameters for the model of Section 3:
λ1 = 1, λ2 = 0.1, g = 7.1 × 10−3, µ1/mP l = 3.9 × 10−3, µ2/mP l = 8.8 × 10−4, σ1i/mP l = 0.36,
σ2i/mP l = 0.025. For the purpose of this section, the parametes M1,2, which determine the
dimensionalities of the representations of the groups M1,2 to which the superfields Φ1,2 belong,
can be absorbed in a redefinition of λ1, λ2, g. For this reason we set M1 = M2 = 1. For the
above choice of parameters the observable part of the first stage of inflation generates N1tot ≃ 5
e-foldings and a spectrum with a spectral index n ≃ 1. For the second stage of inflation,
Eq. (4.10) predicts N2tot ≃ 2 e-foldings. However, a more accurate numerical integration of
the field evolution equations gives N2tot ≃ 3. The spectral index relevant for the scales that
cross outside the horizon in the beginning of the second stage of inflation is given by Eq. (5.13)
with σ2(k) ≃ σ2i and is n ≃ 0.6. The intermediate stage affects the scales k2 < k < k1
with k1/k2 ≃ 4.4 according to Eq. (5.3). The values of the power spectrum for k2 and k1 are
determined by Eqs. (5.10), (5.11) and satisfy P (k2)/P (k1) ≃ 11.8.

The initial spectrum of fluctuations arising in our model generates matter and radiation
perturbations, which, after amplification, give rise to the observed large scale structure and the
anisotropies of the cosmic microwave background. In the following, we compare the theoretical
predictions of our model with the measured anisotropies of the cosmic microwave background
and the observed clustering in the galaxy distribution. For the comparison with the CMB data,
we assume a form of the power spectrum in the range k2 < k < k1 that interpolates smoothly
between the spectrum in the ranges k > k1 and k < k2.
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6.1 Angular power spectrum of CMB anisotropies

The cosmic microwave background (CMB) radiation, last scattered at the epoch of decoupling,
follows a blackbody distribution to high accuracy [45], with a temperature almost independent
of direction, T = 2.728 ± 0.002K. As it was measured by the DMR experiment on the COBE
satellite, the CMB radiation has a tiny variation in intensity at fixed frequency, equivalently
expressed as a variation ∆T in the temperature: ∆T/T < 10−5. The 4-year COBE data is
fitted by a scale-free spectrum, with spectral index n = 1.2± .3 and a quadrupole normalization
Qrms = 15.3+3.7

−2.8µK [46].
In Fig. 2 we compare our theoretical predictions for the angular power spectrum of CMB

anisotropies against the most recent CMB flat-band power measurements (we have used the
data of Table 1 in Ref. [47]). The coefficients Cℓ correspond to the expansion of the angular
correlation function in powers of the Legendre polynomials Pℓ. For large ℓ, the angular size (in
radians) of a feature in the sky is related to the order of the multipoles that dominate it by
ℓ ∼ 1/θ. The angular power spectrum of CMB anisotropies is normalized to the four-year data
from COBE-DMR [48]. In order to calculate the predictions of our model for Cℓ we have used
the code CMBFAST of Seljak and Zaldarriaga [38].

In our model, the first stage of inflation leads to a scale-invariant Harrison-Zel’dovich [49]
(spectral index n = 1) spectrum of perturbations. The intermediate stage and the second stage
of inflation affect only the highest multipoles in Fig. 2. For this reason, our prediction for the
first acoustic peak in the case ΩΛ = 0 (short-dashed line) is similar to that of the standard CDM
(SCDM) model (solid line) with a Harrison-Zel’dovich spectrum at all scales. Only for multipoles
l ∼ 500–1000 a drop of the values of Cl is observed relative to the standard CDM model. This
should be contrasted with the double-inflationary model of Refs. [16, 19, 20], which predicts a
first acoustic peak that is too low with respect to the Sachs-Wolfe plateau. This problem can be
traced to the logarithmic dependence ∝ ln1/2(K/k) of the spectrum for small k in this model.
Better agreement with the data is obtained for our model with ΩΛ = 0.5 (long-dashed line).

6.2 Angular catalogues of galaxy positions

Angular catalogues of galaxy positions provide strong constraints on theories of structure forma-
tion in the universe. In this subsection we compare the predictions of our model with the power
spectrum of galaxy clustering derived from the angular APM galaxy survey [30]–[33]. Redshift
surveys are more noisy than the APM survey at large scales and subject to more uncertainties
due to the distortion of the pattern of galaxy clustering by the peculiar motions of galaxies.

As we have discussed in Section 2, the effects of the non-linear evolution of matter fluctuations
(when the density contrast becomes of order 1) must be removed before a comparison is possible
with the linear spectrum. This is usually done through N -body simulations of clustering. Baugh
and Gaztañaga [33] have estimated the linear spectrum that gives rise to the APM spectrum for a
spatially flat universe with critical density and zero cosmological constant. Their estimate is well
fitted by the curve of Eq. (2.1) This result is in agreement with the spectrum obtained through
the application of the formula of Jain et al. [35] for the relation between the linear and non-linear
spectra. The formula of Peacock and Dodds [36] does not lead to very good agreement with the
results of the N -body simulations [34]. The effects of the non-linear evolution are significant for
k >∼ 0.2hMpc−1.

For the comparison of our predictions with the data, we calculate the transfer function T (k)
to better accuracy than the one provided by Eq. (2.2), by employing the code CMBFAST of
Seljak and Zaldarriaga [38]. The linear power spectrum is related to the density perturbation

14



at horizon crossing through [10]

∆2(k) =
k3P (k)

2π2
= δ2H(k)

(

k

H0

)4

T 2(k) , (6.1)

where the dimensionless quantity ∆2(k) stands for the mass variance per unit interval in ln k
(i.e., ∆2(k) ≡ dσ2

mass/d ln k).
In Fig. 3 we display the power spectrum P (k) in units of (Mpc/h)3 as a function of k in

units of h/Mpc for our model with ΩΛ = 0 and k2 = 0.06 hMpc−1. For scales k < k2 the
spectral index has been taken n = 1, while for scales k > k1 the spectrum is tilted with spectral
index n = 0.6. For scales k2 < k < k1 the complicated nature of the intermediate stage makes
the calculation of the power spectrum very difficult. The prediction of our model for the linear
spectrum is given by the short-dashed line. The points with error bars correspond to the data
from the APM angular galaxy catalogue [31, 33]. The fit of Eq. (2.1) for the linear spectrum
derived from these data is given by the solid line.

We observe good agreement of our predictions with the linear spectrum expected from the
APM data. This agreement should persist for the scales k2 < k < k1, as no strong new feature
in the spectrum is expected in this interval (see discussion at the end of Section 5). We point out
that we have not assumed any biasing in the galaxy distribution with respect to the underlying
mass fluctuations (bias parameter bg = 1). Allowing for other values of bg provides an additional
degree of freedom that can improve the agreement of our predictions with observations.

The power spectrum for our model with ΩΛ = 0.5 is given by the long-dashed line in Fig. 4.
We compare again with the estimate of Eq. (2.1) for the linear spectrum (solid line). The
reason is that for a flat geometry of the universe we do not expect a significant modification
of this estimate. The formula of Peacock and Dodds [36] for the relation between the linear
and non-linear spectra predicts only a small difference between the spectra for Ωmatter = 1,
ΩΛ = 0 and for Ωmatter = 0.5, ΩΛ = 0.5. We observe a good agreement between our prediction
and the linear spectrum in the range k ≥ 0.26 hMpc−1. On the other hand, our prediction is
significantly above the linear spectrum for k ≤ 0.06 hMpc−1. However, the observational data
in this last range are dominated by large errors. This makes the estimate for the linear spectrum
less accurate.

For values of ΩΛ above 0.5, the discrepancy between our prediction and the APM spectrum
at large scales is enhanced. Reconciling the prediction with the data can be achieved either
through the consideration of a bias parameter different from 1 for the galaxy distribution or a
spectral index smaller than 1 for the first stage of inflation.

As a final test of our model, we turn to the calculation of the parameter σ8, which is a
common measure of large-scale clustering. It is defined as the variance of the density field
smoothed over a radius R = 8 h−1Mpc

σ2
8 =

1

H4
0

∫

∞

0
W 2(kR)δ2H(k)T 2(k)k3dk. (6.2)

The “top-hat” smoothing function W (kR) is given by

W (kR) = 3

[

sin(kR)

(kR)3
− cos(kR)

(kR)2

]

. (6.3)

For n ∼ 0.6 the largest contribution to the integration of Eq. (6.2) comes from k ∼ 1/R =
0.125 hMpc−1. This corresponds to the tilted part of the spectrum near k1, for which we have
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used n = 0.6 in the calculation of the results presented in Figs. 3 and 4. However, as Fig. 1
indicates, the effective spectral index may be even smaller for k slightly below k1. For this
reason we have estimated σ8 allowing for a local variation of n in the interval [0.2, 0.8]. We find
that σ8 is not very sensitive to the value of n. Instead, it is determined by the normalization
of the spectrum at k ≃ k1, which is fixed by P (k2)/P (k1) ≃ 11.8 for our choice of parameters
of the model. The predicted values of σ8 are near 0.75, both for ΩΛ = 0 and ΩΛ = 0.5. They
are in good agreement with the values deduced from the abundances of rich clusters of galaxies:
σ8 ≃ 0.6± 0.2 for Ωmatter = 1, ΩΛ = 0 [8], and σ8 ≃ 0.85± 0.3 for Ωmatter = 0.5, ΩΛ = 0.5 [9].

7 Summary and conclusions

In this paper we considered the possibility of a multiple-stage inflationary scenario within the
context of supersymmetric hybrid inflation. This framework has the nice feature that the ob-
servable part of inflation takes place for field values below the Planck scale. This permits the
discussion of corrections to the tree-level picture (such as supergravity corrections) in terms of
controlled expansions in powers of fields in units of mP l. Inflationary models such as the one we
considered have been discussed in Ref. [22], and have been shown to survive the supergravity
corrections in Ref. [23].

One motivation for the consideration of a scenario with more than one stages of inflation
arises from the discrepancy between the inflationary energy scale implied by the COBE data
and the Planck scale at which classical general relativity becomes applicable. This discrepancy
results in the necessity of an extremely fine-tuned field configuration at the end of the Planck
era for the onset of hybrid inflation [26]. The problem can be avoided if inflation takes place in
two stages [22]. The first stage has a typical scale ∼ mP l and occurs naturally. The second has
a characteristic scale much below mP l and generates the density perturbations that result in
the cosmic microwave background anisotropy measured by the DMR experiment on the COBE
satellite. It is the logical next step to contemplate the possibility of a multiple-stage inflationary
scenario, with a sequence of scales between mP l and close or below the one implied by COBE.

Another motivation for the consideration of a multiple-stage scenario stems from the need
to reconcile the power spectrum of density perturbations at large scales (obtained through the
COBE-DMR measurements for the anisotropies of the cosmic microwave background) with the
observed power spectrum at small scales (deduced from galaxy surveys). The standard CDM
model with a flat (spectral index n = 1) initial spectrum of adiabatic perturbations predicts too
much power at small scales, if one normalizes it to the COBE data at large scales. An interesting
possibility in order to resolve this discrepancy is to consider power spectra with a break. A strong
indication for the location of the break is provided by the form of the power spectrum of galaxy
clustering derived from the APM galaxy survey [31, 32, 18, 33]. At kb ≃ 0.05 h Mpc−1 the data
support a sharp drop of the spectral index of the primordial spectrum, from a value n ≃ 1 to an
average value n ∼ 0.6. This break has been linked to a possible phase transition between two of
the inflationary stages in a multiple inflationary scenario [18].

In this paper we presented a model of supersymmetric hybrid inflation that generates a
spectrum with a break. As we argued in Section 2, the large deviation of the spectral index
from 1 for k <∼ kb ≃ 0.05 h Mpc−1 results in a small number of e-foldings generated by the stage
of inflation relevant for this range of scales. A picture of multiple short bursts of inflation, with
significant variations of the spectral index of the primordial spectrum, seems probable.

We computed the spectrum of adiabatic density perturbations for the range of scales that are
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relevant for the COBE data and the APM galaxy survey. This requires the explicit discussion of
the first two observable stages of inflation, which generate ∼ 8 e-foldings. The total number of e-
foldings must be∼ 60 for the flatness and horizon problems of standard cosmology to be resolved.
However, the stages responsible for the last ∼ 50 e-foldings generate density perturbations at
scales that are strongly affected by the non-linear evolution. As a result, it is very difficult to
extract information on their characteristics.

In our model, the adiabatic density fluctuations during both stages of inflation originate in
the quantum fluctuations of the same field. The first stage of inflation generates ≃ 5 e-foldings
and a spectrum with index n = 1 for scales k <∼ 0.06 h Mpc−1. The second stage generates ≃ 3
e-foldings and a spectrum with index n ≃ 0.6 for scales k >∼ 0.26 h Mpc−1. The calculation
of the spectrum for 0.06 h Mpc−1 <∼ k <∼ 0.26 h Mpc−1 is prohibited by a very complicated
intermediate stage of normal expansion. However, it probable that no significant new feature
arises in this range of scales, as we discussed at the end of Section 5.

We considered two scenaria:
a) A CDM model, with zero cosmological constant, present Hubble parameter h = 0.5(H0 ≡
h 100 km/s/Mpc) and flat geometry – Ωmatter = 1. We assumed that the fraction of the critical
density in baryons is Ωb = 0.05 and in cold dark matter ΩCDM = 0.95.
b) A scenario with ΩΛ = 0.5, Ωb = 0.05 and ΩCDM = 0.45.
The comparison of our predictions with observations is given in Figs. 2–4. For the first scenario,
the angular power spectrum of CMB anisotropies (Fig. 2) is very similar to the one with a
Harrison-Zel’dovich spectrum at all scales. Only for multipoles l ∼ 500–1000 a drop of the
values of Cl is observed relative to the standard CDM model. This should be contrasted with the
predictions of a model of double chaotic inflation, for which the first Doppler peak is significantly
suppressed [20]. The second scenario leads to a better agreement of the generated spectrum
with the data. The power spectrum predicted by the first scenario compares well with the linear
power spectrum deduced from the APM data (Fig. 3). The agreement is less satisfactory for
the second scenario (Fig. 4), even though the discrepancy appears in the region of large data
errors. For both scenaria, our predictions for σ8 are in agreement with the values deduced from
the abundances of rich clusters of galaxies.

As a closing remark, we point out that the questions of the presence and the nature of a
feature in the power spectrum of the galaxy distribution are not settled. Several interpretations
and explanations of the data exist (e.g., see Refs. [17, 50]). Our work provides a possible
explanation of the observed feature within a multiple-stage inflationary scenario in the context
of supersymmetric hybrid inflation.
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[50] F. Atrio-Barandela, J. Einasto, S. Gottlöber, V. Müller and A. Starobinsky, JETP Lett.
66, 397 (1997).

20



Figure 1: The logarithmic slope of: (a) The power spectrum recovered from the APM angular

galaxy catalogue (points with error bars). (b) The estimated linear spectrum that gives rise to

the observed spectrum (solid line). (c) The estimated primordial spectrum (dashed line). (After

Refs. [18, 33, 34]).
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Figure 2: Theoretical predictions for the angular power spectrum of CMB anisotropies in our

multiple-stage inflation model, against the most recent CMB flat-band power measurements.

We plot
√

ℓ(ℓ+ 1)Cℓ/(2π) in units of µK versus the multipole moment ℓ. The solid line corre-

sponds to the standard CDM model (ΩΛ = 0, n = 1). The short-dashed and long-dashed lines

correspond to the spectra in our model for ΩΛ = 0 and ΩΛ = 0.5 respectively.
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Figure 3: Power spectrum generated in our model (short-dashed line) for ΩΛ = 0, plotted

together with the APM power spectrum (data points) and the linear spectrum of Eq. (2.1) (solid

line). The spectrum is flat for k ≤ 0.06 hMpc−1 and tilted with n = 0.6 for k ≥ 0.26 hMpc−1.
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Figure 4: Same as in Fig. 3 for ΩΛ = 0.5.
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