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Abstract

We investigate the chiral phase transition in SU(N) gauge theories as the
number of quark flavors, Nf , is varied. We argue that the transition takes place
at a large enough value of Nf so that it is governed by the infrared fixed point
of the β function. We study the nature of the phase transition analytically and
numerically, and discuss the spectrum of the theory as the critical value of Nf

is approached in both the symmetric and broken phases. Since the transition
is governed by a conformal fixed point, there are no light excitations on the
symmetric side. We extend previous work to include higher order effects by
developing a renormalization group estimate of the critical coupling.
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1 Introduction

In an SU(N) gauge theory with Nf massless quarks, it is expected that both con-

finement and spontaneous chiral symmetry breaking take place providing that Nf

is not too large. If, on the other hand, Nf is large enough, the theory is expected to

neither confine nor break chiral symmetry. For example, if Nf is larger than 11N/2

for quarks in the fundamental representation, asymptotic freedom (and hence con-

finement and chiral symmetry breaking) is lost. Even for a range of Nf below

11N/2, the theory should remain chirally symmetric and deconfined. The reason is

that an infrared fixed point is present [1, 2] determined by the first two terms in the

renormalization group (RG) beta function. By an appropriate choice of N and Nf ,

the coupling at the fixed point, α∗, can be made arbitrarily small [3], making a per-

turbative analysis reliable. Such a theory is massless and conformally invariant in

the infrared. It is asymptotically free, but without confinement or chiral symmetry

breaking.

As Nf is reduced, α∗ increases. At some critical value of Nf (N c
f ) there

will be a phase transition to the chirally asymmetric and confined phase. It is an

important problem in the study of gauge field theories to determine N c
f and to

characterize the nature of the phase transition.

In a recent letter [4], we suggested that the phase transition takes place at

a large enough value of N c
f so that the infrared fixed point α∗ reliably exists and

governs the phase transition. The transition was then analyzed using the ladder

expansion of a gap equation, or equivalently the CJT effective potential [5]. It was

argued that confinement effects can be neglected to estimate N c
f and to determine
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the nature of the transition. It was then shown that the chiral order parameter

vanishes continuously at Nf → N c
f from below, but that the phase transition is

not conventionally second order in that there is no effective, low energy Landau-

Ginzburg Lagrangian, i.e. the correlation length does not diverge as the critical

point is approached.

Once chiral symmetry breaking sets in, the quarks decouple at momentum

scales below the dynamical mass leaving the pure gauge theory behind. The effective

coupling then grows, leading to confinement at a scale on the order of the quark

mass. Thus for Nf just below N c
f , the fixed point is only an approximate feature

of the theory governing momentum scales above the dynamically generated mass.

This is adequate, however, since it is this momentum range that determines N c
f and

the character of the transition.

Our discussion of this phase transition paralleled an analysis of the chiral

transition in 2+1 dimensional gauge theories with Nf quarks [6]. Using a large Nf

expansion it was found [7] that the effective infrared coupling runs to a fixed point

proportional to 1/Nf . As Nf is lowered this coupling strength exceeds the critical

coupling necessary to produce spontaneous symmetry breaking. It was argued that

this critical 1/Nf coupling lies in a range where the large Nf expansion is reliable [8].

These conclusions were also supported by lattice simulations [9]. It was then noted

that as in the case of the 3+1 dimensional SU(N) theory, this phase transition is

not conventionally second order [6].

For QCD the study of the chiral phase transition as a function of Nf is of

theoretical interest, but is unlikely to shed direct light on the physics of the real

world. There remains the possibility, however, that if technicolor is the correct
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framework for electroweak symmetry breaking, the transition could be physically

relevant. In a recent letter [10], it was pointed out that in an SU(2) technicolor

theory, a single family of techniquarks (Nf = 8) leads to an infrared fixed point

near the critical coupling for the chiral phase transition. This can provide a natural

origin [11] for walking technicolor [12] and has other interesting phenomenological

features.

In this paper, we explore further the features of the chiral phase transition

as function of Nf . In Section 2, we summarize the properties of an SU(N) gauge

theory with Nf massless quarks, and describe the existence and properties of an

infrared (IR) stable fixed point. In Section 3, we review chiral phase transition

lore in SU(N) gauge theories, both at zero temperature and finite temperature.

We present our study of the chiral phase transition in Section 4. We examine

the character of the phase transition by computing the quark-antiquark scattering

amplitude for Nf > N c
f (α∗ < αc) in the RG improved ladder approximation. We

observe that for α∗ → αc from below, there are no light scalar or pseudo-scalar

degrees of freedom, showing that the phase transition is not conventionally second

order. A light spectrum, in addition to the Goldstone bosons, does exist in the

broken phase, and we describe what is currently known about it. In section 5, we

include the effects of higher order contributions to both the RG β function and

the estimate of the critical coupling, and then discuss the reliability of our results.

In Section 6, we summarize our results, compare them to those from other recent

studies of SU(N) theories, and make some comparisons of our work to the phase

structure of supersymmetric gauge theories. In an appendix, we discuss infrared

and collinear divergences, and issues of gauge invariance arising in the study of the
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quark-antiquark scattering amplitude.

2 Features of an SU(N) Gauge Theory with Nf Flavors

The Lagrangian of an SU(N) gauge theory is:

L = ψ̄(i 6∂ + g(µ) 6AaT a)ψ − 1

4
F a
µνF

aµν (1)

where ψ is a set of Nf 4-component spinors, the T a are the generators of SU(N),

and g(µ) is the gauge coupling defined by integrating out momentum components

above µ. With no quark mass, the quantum theory is invariant under the global

symmetry group SU(Nf )L × SU(Nf )R × U(1)L+R.

The RG equation for the running gauge coupling is:

µ
∂

∂µ
α(µ) = β(α) ≡ −b α2(µ)− c α3(µ)− dα4(µ)− ... , (2)

where α(µ) = g2(µ)/4π. With Nf flavors of quarks in the fundamental representa-

tion, the first two coefficients are given by

b =
1

6π
(11N − 2Nf ) (3)

c =
1

24π2

(

34N2 − 10NNf − 3
N2 − 1

N
Nf

)

. (4)

These two coefficients are independent of the renormalization scheme. The theory

is asymptotically free if b > 0 (Nf <
11
2 N). At two loops, the theory has an infrared

stable, non-trivial fixed point if b > 0 and c < 0. In this case the fixed point is at

α∗ = − b

c
. (5)

The fixed point coupling α∗ can be made arbitrarily small by taking (11N/2−

Nf )/N to be small and positive [3]. This can be achieved either by going to large N
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and Nf with the ratio fixed, or by analytically continuing in Nf . With the coupling

taken to run between zero in the ultraviolet and α∗ in the infrared, the higher order

terms in β(α) can then reliably be neglected. The theory is only weakly interacting

in the infrared, so that there is no chiral symmetry breaking or confinement.

At two-loops the solution of the RG equation can be written as:

b log

(

q

µ

)

=
1

α
− 1

α(µ)
− 1

α∗

log

(

α (α(µ)− α∗)

α(µ) (α− α∗)

)

, (6)

where α = α(q). For α, α(µ) < α∗ we can introduce a scale defined by

Λ = µ exp

[ −1

b α∗

log

(

α∗ − α(µ)

α(µ)

)

− 1

b α(µ)

]

, (7)

so that

1

α
= b log

(

q

Λ

)

+
1

α∗

log

(

α

α∗ − α

)

. (8)

Then for q ≫ Λ the running coupling displays the usual perturbative behavior:

α ≈ 1

b log
( q
Λ

) , (9)

while for q ≪ Λ it approaches the fixed point α∗:

α ≈ α∗

1 + 1
e

( q
Λ

)bα∗

. (10)

Thus for Nf in the range where an infrared fixed-point exists, Λ represents the

intrinsic scale of the theory: above the scale Λ the coupling becomes asymptotically

free, while below Λ the coupling rapidly approaches the infrared fixed-point.

It is interesting to note that the solution for α = α(q) can be written generally

as

α = α∗

[

W
(

qbα∗/eΛbα∗

)

+ 1
]

−1
, (11)
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where W (x) = F−1(x), with F (x) = xex, is the Lambert W function [13], [14] . In

the limit of small x, W (x) ≈ x, giving Eq. (10) for q ≪ Λ. In the limit of large x,

W (x) ≈ log x, giving Eq. (9) for q ≫ Λ.

3 Chiral Symmetry Breaking

The physics of an SU(N) gauge theory, even at zero temperature, depends strongly

on the number of massless flavors. As we have just noted, if (11N/2 − Nf )/N

is small, the coupling remains small at all scales and the theory neither confines

nor spontaneously breaks chiral symmetry. The quarks and gluons remain massless

and the theory is governed by an infrared fixed point and is therefore conformally

invariant in the infrared.

For Nf small compared to 11N/2, the situation is quite different. With

Nf = 0, lattice simulations indicate that the theory confines producing a physical

spectrum of massive glueballs. In the case of real-world QCD (N = 3 with two light

flavors), confinement and the spontaneous breakdown of the chiral symmetry from

SU(2)L×SU(2)R×U(1)L+R to SU(2)L+R×U(1)L+R are approximate experimental

features, seen also in lattice simulations. Small Nf can also be explored by taking

the large N limit with Nf fixed. There the chiral symmetry is U(Nf )L × U(Nf )R,

the chromodynamic anomaly being irrelevant to leading order. It was was shown

by Coleman and Witten [15] that under reasonable assumptions, confinement then

necessarily implies the spontaneous breaking of U(Nf )L × U(Nf )R to U(Nf )L+R.

These two different phases of a zero-temperature SU(N) theory can be char-

acterized by a simple chiral order parameter, the expectation value of the quark
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bilinear

M i
j = 〈q̄iLqjR〉, (12)

a.k.a. the quark condensate. For some range of (11N/2 − Nf )/N small, the order

parameter vanishes, while for Nf small compared to 11N/2, it is non-vanishing.

The location and character of the transition constitute an important and unresolved

problem in the study of gauge field theories. This problem has been studied by the

continuum gap equation method, by the consideration of instanton configurations,

and by lattice simulations. After summarizing the results of the first approach here,

we will comment on the other approaches and compare the results.

It is also interesting to compare this phase transition with the finite temper-

ature transition of an SU(N) gauge theory. There, the transition is known to be

second order [16] for Nf = 2 and has been argued to be strongly first order [17]

for Nf ≥ 3. An important distinction between finite and zero temperature is that

at finite temperature, the quarks are screened at distance scales large compared to

the inverse temperature. This is because in Euclidean field theory at finite temper-

ature, the integral over the energy is replaced by a sum over Matsubara frequencies

given by 2nπ T for bosons and (2n + 1)π T for fermions, where n is an integer.

Only the n = 0 bosons survive at large distances. Thus to characterize a finite

temperature transition in which the order parameter vanishes continuously, it isn’t

necessary to consider the quarks or fermionic bound states of quarks. This is not

the case in the zero-temperature transition to be considered here. Furthermore, at

zero temperature quarks experience long range interactions, which are screened at

finite temperature. These differences have important consequences.
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4 The Gap Equation with an Infrared Fixed Point

We examine the chiral phase transition by making a set of simple assumptions whose

validity we will examine later. First of all, we assume that the transition takes place

at a value of Nf such that the infrared coupling is reliably governed by the two-loop

fixed point described above. Even though this may not be a very small coupling,

we assume that the transition may be studied by focusing on the underlying quark

and gluon degrees of freedom, ignoring other bound states or resonances that might

be formed. Next we assume that the transition is governed to first approximation

by a gap equation in RG-improved ladder approximation. The most attractive

channel then corresponds to the breaking pattern SU(Nf )L ×SU(Nf )R ×U(1)L+R

to SU(Nf )L+R × U(1)L+R.

In the broken phase, a common dynamical mass Σ(p), with p the magnitude

of a Euclidean momentum, will then be generated for all the Nf quarks. It can be

taken to serve as the order parameter for the chiral phase transition, and is related

simply to the quark condensate. Although this quantity, unlike the quark conden-

sate, is gauge dependent, it is possible to extract gauge-independent information

from it.

With only the quark and gluon degrees of freedom employed, an analysis of

the gap equation leads to the conclusion that the chiral transition is one in which

the order parameter vanishes continuously at the transition. Near the transition,

Σ(p) is small compared to the intrinsic scale Λ, and the equation can be linearized

to study the momentum regime Σ(p) < p < Λ that dominates the transition. At

low momenta the running coupling α(k) appearing in the gap equation approaches
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its fixed point value α∗. It is well known that the gap equation has non-vanishing

solution only when this coupling exceeds a gauge-invariant critical1 value

αc ≡
π

3C2(R)
=

2π N

3 (N2 − 1)
. (13)

It can be shown that when the coupling exceeds this critical value, the CJT effective

potential [5] becomes unstable at the origin, indicating that a chirally-asymmetric

solution is energetically favored and therefore represents the ground state of the

theory.

Setting α∗ equal to αc gives an estimate [4] of the critical number of flavors

N c
f = N

(

100N2 − 66

25N2 − 15

)

, (14)

above which there is no chiral symmetry breaking. Note that the ratio N c
f/N is

predicted to be very close to 4 for all N .

We next discuss the critical behavior at this transition. Since the infrared

behavior is governed by the fixed point α∗, we can get a simplified look at the tran-

sition by taking the coupling to be constant and equal to α∗ > αc in a momentum

range up to some cutoff Λ∗ < Λ. The well-known solution to this simplified model

(often referred to in the literature as quenched QED) is a non-vanishing dynamical

mass Σ(p) falling monotonically as a function of p from some value Σ(0) [19, 20].

For α∗ → αc from above (Nf → N c
f from below), Σ(0) exhibits the behavior

Σ(0) ≈ Λ∗ exp





−π
√

α∗

αc
− 1



 . (15)

Thus the order parameter Σ(0) is predicted to vanish non-analytically as α∗ → αc.

1A more general definition [18] of the critical coupling is that the anomalous dimension of ψψ
becomes 1.
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We expect a similar critical behavior in the full theory. After all, the intrinsic

scale Λ introduced in Eq. (7), where α(Λ) ≈ 0.78α∗, plays the role of an ultravi-

olet cutoff. Asymptotic freedom sets in beyond this scale and the dynamical mass

function falls rapidly (∼ 1/p2). Indeed we find that with a running coupling the

critical behavior is exponential as above, but that the coefficient in the exponential

depends on the details of physics at scales on the order of Λ. It is not universally

−π.

This can be understood analytically in the following manner. Following

Ref. [21], the gap equation can be converted to differential form with appropriate

boundary conditions, and the solution to the linearized equation can be written as

Σ(p) =
cΣ(0)2

p
sin

∫ p

aΣ(0)

dk

k

√

α(k)/αc − 1 (16)

for momenta p below the scale Λc at which α(Λc) = αc, where c is chosen so that

Σ(Σ(0)) = Σ(0). We have dropped terms explicitly proportional to derivatives of

α(k) since the coupling is near the fixed point in this range and we have taken

the lower limit of the integral to be of order Σ(0) (a = O(1)). For k > Λc, the

solution takes a different form, expressible in terms of a hyperbolic sine function

when the running is slow. The two solutions must match at p = Λc and the upper

solution must satisfy the ultraviolet boundary condition. Note that Λc/Λ vanishes

like (r − 1)1/bα∗ as r → 1, where r ≡ α∗/αc.

The matching condition at Λc says simply that

∫ Λc

aΣ(0)

dk

k

√

α(k)/αc − 1 (17)

takes on some value depending on the details of the upper solution. It can be

seen to be finite in the limit r → 1 and it must be less than π if the dynamical
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mass is to remain positive for all momenta. (Solutions with nodes also exist, but

a computation of the vacuum energy [5, 22] indicates that the nodeless solution

represents the stable ground state.) Because α(k) ≈ α∗ for small momenta, it

can then be seen that 1/ log(Λc/Σ(0)) vanishes like
√
r − 1 as r → 1. Since Λc/Λ

behaves like (r− 1)1/bα∗ , it follows that 1/ log(Λ/Σ(0)) also vanishes like
√
r − 1 as

r → 1.

This can also be seen in a direct, numerical solution of the integral gap

equation. In Landau gauge and after Wick rotation to Euclidean space, this equation

can be written in the form

Σ(p) =
1

4

∫

dk2

M2

k2Σ(k)

k2 +Σ(k)2
α(M2)

αc
(18)

where M = max(p, k) and the approximation α((p − k)2) ≈ α(M2) has been made

before doing the angular integration. We solve this equation with a numerical

ultraviolet cutoff much larger than Λ and plot log(Σ(0)/Λc) versus 1/
√
r − 1 in

Figure 1. The result is insensitive to the numerical cutoff and exhibits straight line

behavior as r → 1. The slope of the line is 0.82π. If the theory is modified in

some way at scales on the order of Λ, straight line behavior is still exhibited, but

with a slope depending on the details of the modification. Thus the only feature of

the critical behavior determined purely by the infrared, fixed point behavior is that

1/ log(Λ/Σ(0)) vanishes like
√
r − 1 as r → 1.

Below the scale of the dynamical mass Σ(p), the quarks decouple, leaving a

pure gauge theory behind. One might worry that this would invalidate the above

analysis since it relies on the fixed point which only exists when the quarks con-

tribute to the β function. This is not a problem, however, since when Σ(0) ≪ Λ,
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the dominant momentum range in the gap equation, leading to the above critical

behavior (15), is Σ(0) < p < Λ. In this range, the quarks are effectively massless

and the coupling does appear to be approaching an infrared fixed point. Below the

scale Σ(0) confinement sets in. The confinement scale can be estimated by noting

that at the decoupling scale Σ(0), the effective coupling constant is of order αc. A

simple estimate using the above expressions then shows that the confinement scale

is roughly the same order as the chiral symmetry breaking scale, Σ(0).

If Nf is reduced sufficiently below N c
f so that α∗ is not close to αc, both

Σ(0) and the confinement scale become of order Λ. The linear approximation to the

gap equation is then no longer valid and it is no longer the case that higher order

contributions to the effective potential can be argued to be small. The methods of

this paper are then no longer useful.

From the behavior of Σ(0) near the transition, the corresponding behavior

of the Goldstone boson decay constant, the quark condensate, and other physical

scales can be estimated. We return to this question after considering further the

nature of the chiral phase transition we have just described.

The smooth vanishing of the order parameter Σ(0), Eq. (15), suggests that

the chiral symmetry phase transition at Nf = N c
f (α∗ = αc) might be second order.

In a second order transition, however, an infinite correlation length is associated

with a set of scalar and pseudoscalar degrees of freedom, with vanishing masses,

described by an effective Landau-Ginzburg Lagrangian. In the broken phase, the

Goldstone bosons are massless and the other scalar masses vanish at the transition.

There are no other light degrees of freedom. In the symmetric phase, the scalars and

pseudoscalars form a degenerate multiplet. The situation here is quite different. We
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first demonstrate this by showing that in the symmetric phase, there are no light

scalar and pseudoscalar degrees of freedom. We then comment more generally on

the physics of the transition.

4.1 The Symmetric Phase

To search for light, scalar and pseudoscalar degrees of freedom in the symmet-

ric phase, we examine the color-singlet quark-antiquark scattering amplitude in the

same (RG-improved ladder) approximation leading to the above critical behavior. If

the transition is second order, then poles should appear which move to zero momen-

tum as we approach the transition. We take the incoming (Euclidean) momentum

of the initial quark and antiquark to be q/2, but keep a non-zero momentum trans-

fer by assigning outgoing momenta q/2± p for the final quark and antiquark. Any

light scalar resonances should make their presence known by producing pole in the

scattering amplitude (in the complex q2 plane).

If the Dirac indices of the initial quark and antiquark are λ and ρ, and

the those of the final state quark and antiquark are σ and τ , then the scattering

amplitude can be written for sufficiently small q as:

Tλρστ (p, q) = δλρδστ
1

p2
T (p, q) + ... , (19)

where the dots indicate pseudoscalar, vector, axial-vector, and tensor components,

and we have factored out 1/p2 to make T (p, q) dimensionless. We contract Dirac

indices so that we obtain the Schwinger-Dyson (SD) equation for the scalar s-channel

scattering amplitude, T (p, q), containing only t-channel gluon exchanges. If p2 ≫ q2,

then q2 will simply act as an infrared cutoff in the loop integrations.
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The SD equation in the scalar channel is:

T (p, q) =
α∗

αc
π2 + 4π2λ

p2

Λ2
∗

+
α∗

4αc

(

∫ p2

q2

dk2

k2
T (k, q) +

∫ Λ2
∗

p2

dk2

k2
T (k, q)

p2

k2

)

+λ

∫ Λ2
∗

q2

dk2

k2
T (k, q)

p2

Λ2
∗

. (20)

For the purpose of this discussion we neglect the running of the gauge coupling α

up to the scale Λ∗. This is a good approximation at the low momenta of interest

here, where the coupling is near the infrared fixed point α∗. For convenience, we use

Landau gauge (ξ = 1) where the quark wavefunction renormalization vanishes. The

issue of gauge invariance is addressed in the Appendix. The first term in Eq. (20) is

simply one gluon exchange, while the second term arises from a chirally symmetric,

four-quark interaction, i.e. a Nambu—Jona-Lasinio (NJL) [23] interaction, which

we have introduced here for purposes of this analysis. It allows us to make contact

with the familiar study of light degrees of freedom in the NJL theory when it is

near-critical.

For momenta p2 > q2, Eq. (20) can be converted to a differential equation:

p4
d2

(dp2)2
T = − α∗

4αc
T , (21)

with appropriate boundary conditions determined from Eq. (20). The solutions of

Eq. (21) have the form.

T (p, q) = A

(

p2

Λ2
∗

) 1

2
+ 1

2
η

+B

(

p2

Λ2
∗

) 1

2
−

1

2
η

, (22)

where the coefficients A and B are functions of q2/Λ2
∗
, and for α∗ < αc,

η =
√

1− α∗/αc . (23)
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The coefficients A and B can be determined by substituting the solution back into

Eq. (20). This gives:

A =
−2π2

(1 + η)2

(1− η)
(

1− λ
λ∗

) (

q2

Λ2
∗

)

−
1

2
+ 1

2
η

1− λ
λα

+

(

λ
λα

−
(

1−η
1+η

)2
)

(

q2

Λ2
∗

)η
, (24)

and

B =
2π2 (1− η)

(

1− λ
λα

) (

q2

Λ2
∗

)

−
1

2
+ 1

2
η

1− λ
λα

+

(

λ
λα

−
(

1−η
1+η

)2
)

(

q2

Λ2
∗

)η
, (25)

where

λα ≡
[

1

2
+

1

2
η

]2

, (26)

and

λ∗ ≡
[

1

2
− 1

2
η

]2

. (27)

If we denote the location of the poles of the functions A and B in the complex

q2 plane by q20, we then have

|q20 | = Λ2
∗

( |λα − λ|
|λ− λ∗|

)

1

η

. (28)

We see immediately that as λ→ λα (the critical NJL coupling) for α∗ < αc the pole

approaches the origin q20 = 0, indicating the existence of light degrees of freedom.

This is to be expected for a second order phase transition. As α∗ is increased the

corresponding particles become broad resonances [24]. Of course in this region our

analysis is not complete, precisely because of the existence of the light scalar and

pseudoscalar degrees of freedom. These light degrees of freedom must be incor-

porated into the analysis, for example they will have an effect on the two loop β

function. Furthermore as discussed by Chivukula et. al. [25] one generally expects

that, with more than two flavors of quarks, as λ is tuned towards λα the theory
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undergoes a Coleman-Weinberg transition [26] to the chirally broken phase before

λ reaches λα.

Now consider the limit η → 0 (α∗ → αc), with λ < 1/4, we have

|q20 | → Λ2
∗

(

1 +
η

1/4 − λ

)
1

η

→ Λ2
∗
exp

(

4

1− 4λ

)

. (29)

Thus we see that at α∗ → αc, with λ < 1/4, there are no poles in the complex q2-

plane with q20 ≪ Λ∗. There are therefore no light scalar and pseudoscalar degrees

of freedom to constitute an effective Landau-Ginzburg theory, so the chiral phase

transition is not second order along the line α∗ = αc. This is in agreement with the

analysis of Ref. [27].

Now imagine starting out with α∗ < αc and λ ≈ λα, so that we have a

light scalar resonance, and then dialing the parameters so that α∗ increases and λ

decreases in such a way that we approach the critical line α∗ = αc. We then see

from Eqs. (28) and (27) that we must first cross the line λ = λ∗, and that as we

approach this line, the mass of the scalar grows and actually diverges. Thus the

scalar resonance disappears from the physical spectrum before we reach α∗ = αc.

Even before we reach this point, the width of the scalars becomes as large as their

mass, and they can no longer be considered resonances.

There is nothing special about the scalar and pseudoscalar channels in the

above analysis. A similar analysis of the other channels, such as vector and axial-

vector, would also reveal that there are no light excitations in the symmetric phase

near the critical coupling αc. That this should be the case is not surprising. With

the transition governed by a long-range gauge force with an infrared fixed point,
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approximate conformal invariance should be exhibited at momentum scales small

compared to Λ in the symmetric phase. (For further discussions on this point see

Ref. [28].) Thus no light scales will be present, in contrast to phase transitions

governed by short range forces as in the NJL or the finite temperature theories.

4.2 The Broken Phase

In the broken phase near the transition, one light scale, Σ(0), appears. It is therefore

natural (in the assumed absence of instanton effects) to expect that the entire

physical spectrum of the theory will be set by Σ(0) and scale to zero with it as

Nf → N c
f from below. This point has been stressed recently by Chivukula [29].

Thus there will clearly be no effective Landau-Ginzburg Lagrangian. No finite

set of light degrees of freedom can be isolated in the broken phase in the limit

Nf → N c
f , and no light degrees of freedom (other than quarks and gluons) exist in

the symmetric phase!

Within this general picture, it is important to describe the spectrum of res-

onances in more detail. If, for example, a near-critical theory is the basis for a

technicolor theory of electroweak symmetry breaking [10], then the the light scale

Σ(0) will correspond to the electroweak scale and the spectrum of resonances at this

scale will have a direct impact on precision electroweak measurements. In partic-

ular, the S parameter [30] will depend sensitively on this spectrum. An especially

interesting question in this regard is whether parity doubling or even inversion of

parity partners appears in this light spectrum as N c
f is approached.

The Goldstone boson decay constant Fπ is also proportional to Σ(0). A

simple dimensional estimate suggests that F 2
π ≈ NΣ2(0)/16π2. Because of the
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dominance of the fixed point at scales below Λ, this is clearly a “walking” theory.

If the coupling stays close to αc then the dynamical mass Σ(p) falls roughly like

1/p in this range. As a consequence, the condensate 〈q̄iLq
j
R〉 is enhanced well above

the value it would have in a QCD-like theory. A simple estimate gives < q̄iLq
j
R >≈

NΣ(0)2Λ/16π2.

Finally, it is important to note that with the entire spectrum of physical

states collapsing to zero with Σ(0) at the transition, the analysis of the transition

using only the quark and gluon degrees of freedom is open to question. It seems

reasonable, however, to conjecture that these states will not be important at the

momentum scales Σ(0) < k < Λ dominating the transition. Some evidence for this

is provided by estimates of higher order effects to which we now turn.

5 Higher Order Estimates

We have so far analyzed the chiral symmetry breaking phase transition using the

ladder gap equation, i.e. the SD equation with the lowest order kernel, and the

running gauge coupling determined by the two-loop β function. In order to consider

higher order effects we first develop a gauge-invariant technique to estimate the

critical coupling without relying on the intricacies of the SD equation.

In Ref. [31], it was noted that to lowest order the SD criticality condition

can be written in the form

γ(2− γ) = 1 , (30)

where γ is the anomalous dimension of the quark mass operator. To all orders in

perturbation theory, this condition is gauge invariant (since γ is gauge invariant)
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and is equivalent to the condition [18] γ = 1 mentioned previously in the text.

However if these conditions are truncated at a finite order in perturbation theory

they lead to different results. We will take Eq. (30) to define the critical coupling

order by order, since it allows us to reproduce the known leading order result.

Through three loops γ is given in the MS scheme by [32]

γ = γ0α+ γ1α
2 + γ2α

3 + ... (31)

where

γ0 =
3C2(R)

2π
(32)

γ1 =
1

16π2
[3C2(R)

2 − 10C2(R)Nf

3
+

97C2(R)N

3
] (33)

γ2 =
1

64π3
[129C2(R)

3 −
70C2(R)N

2
f

27
− 129C2(R)

2N

2
+

11413C2(R)N
2

54

+C2(R)Nf N

(

−556

27
− 48 ζ(3)

)

+ C2(R)
2Nf (−46 + 48 ζ(3))] (34)

Inserting this result in Eq. (30) and truncating to one-loop we find

2γ0α = 1. (35)

Solving for α we find a one-loop estimate of the critical coupling that agrees with

standard result:

α(1)
c =

π

3C2(R)
=

2π N

3 (N2 − 1)
. (36)

At two-loops the critical condition is

2γ0α+ 2γ1α
2 − γ20α

2 = 1. (37)

Solving for α we find a two-loop estimate of the critical coupling:

α(2)
c =

36π

45C2(R)− 97N + 10Nf
±

√
24π

√

9C2(R) + 97N − 10Nf
√

C2(R) (−45C2(R) + 97N − 10Nf )
. (38)
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The + sign gives the positive root. We compare this with the one-loop estimate by

taking N large and using the value Nf ≈ 4N corresponding to criticality:

α(2)
c ≈ (

√
11808 − 72)π

69N
≈ 1.67

N
. (39)

Numerically it can be seen that the O(α2) terms in the criticality condition, Eq.

(37), evaluated at α = α
(2)
c are typically about 25% to 30% of the leading term for

Nf ≈ 4N . It can also be seen numerically that for for Nf ≈ 4N the four-loop term

[32] in γ is larger than the three-loop term, so it is not appropriate to go beyond two

loops in this expansion for these values of Nf , and we should only use the three-loop

term as an estimate of the error in our calculation.

Through three-loops, the β function is given by

β(α) = −bα2 − cα3 − dα4

where b and c are given by Eqs. (3) and (4), and in the MS scheme,

d =
1

32π2

(

2857N3 − 1415N2Nf + 79N(Nf )
2

54
− 205N

18
C2(R)Nf (40)

+
11

9
C2(R)(Nf )

2 + C2(R)
2Nf

)

Since the three-loop term is scheme dependent we cannot obtain a scheme indepen-

dent answer without going to the same order in β and γ, so we will only use the

three-loop term for error estimates.

In Table 1 we list some numerical results. We have computed the value of

N c
f for SU(N) gauge theories for values of N ranging form 2 to 10, showing the

results at different orders in perturbation theory. In section 4 (using the leading

order estimate of the critical coupling) it was shown that N c
f goes like 4N for large
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Nc N c
f (1,2) N c

f (2,2) N c
f (2,3) α

(1)
c α

(2)
c

2 7.86 8.27 7.12 1.4 1.11

3 11.9 12.4 10.9 0.785 0.595

4 15.9 16.6 14.6 0.559 0.412

5 20.0 20.8 18.3 0.436 0.317

6 24.0 24.9 22. 0.359 0.258

7 28.0 29.1 25.7 0.305 0.218

8 32.0 33.3 29.4 0.266 0.189

9 36.0 37.4 33.1 0.236 0.166

10 40.0 41.6 36.8 0.212 0.149

Table 1: Estimates of N c
f . The two numbers in parentheses give the order used in

the critical condition on γ and the β function. The comparison of the (2,2) and
(2,3) give an estimate of the error in truncating the β function at two-loops.

N . We see that going to two loops in the criticality condition produces a small

shift in this relation. We also list the estimated value of the critical coupling at one

and two loops. We see that even though the percentage shift of the value of N c
f is

small, the higher order terms of the beta function make a significant contribution

at the critical point. For Nc between 3 and 10 we estimate that the error in N c
f at

two-loops is about 12% from the truncation of the β function and about 10% from

the truncation of γ, while for Nc = 2 the errors are somewhat larger, around 14%

from each. It is important to emphasize that these are simply numerical estimates

of the next to leading contributions. Even at large N, there is no obvious small

parameter here leading to a controlled expansion. Thus the smallness of still higher

order terms is not guaranteed.
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6 Summary and Conclusions

In this paper, we have explored features of the chiral phase transition in SU(N)

gauge theories. We have argued that the transition takes place at a relatively large

value of Nf (N c
f ≈ 4N) where the infrared coupling is determined by a fixed point

accessible in the loop expansion of the β function, and that the transition can be

studied using a ladder gap equation. Our higher order estimates suggest that the

estimate of N c
f is good to about 20%. To phrase things in physical terms, the

effect of the light quarks is to screen the long range force, eventually disordering

the system and taking it to the symmetric phase. That the transition takes place

at a relatively large value of Nf means that the quarks are relatively ineffective at

long range screening.

With an infrared fixed point governing the transition, the order parameter

vanishes in a characteristic exponential fashion and all physical scales vanish in the

same way. There is no finite set of light degrees of freedom that can be identified to

form an effective, Landau-Ginzburg theory. In the symmetric phase (Nf > N c
f ) , no

light degrees of freedom are formed as Nf → N c
f . Thus the transition is continuous

but not conventionally second order. The validity of the approach is considered by

estimating higher order terms in both the β function and the anomalous dimension

of the mass operator.

In Ref. [33], it was noted that single instanton effects in a theory with an

infrared fixed point seem capable of triggering a chiral phase transition at similarly

large values of Nf/N . A detailed computation was carried only out for an SU(2)

gauge theory but the analysis indicated that this could be the case at larger values
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of N as well.

It is interesting to compare our results with the phase structure of super-

symmetric SU(N) theories where exact results are available [34]. In such theories

there is also a large range of Nf where the theory is asymptotically free and an

infrared fixed point occurs. A transition to a strongly coupled phase occurs at

N c
f,SUSY = 3N/2. Thus it seems plausible that infrared fixed points are fairly

generic in asymptotically free gauge theories with a large number of flavors. One

prominent difference between the supersymmetric and non-supersymmetric cases

is that the strongly coupled phase N + 1 < Nf ≤ N c
f,SUSY does not have chiral

symmetry breaking or confinement for N > 3. However a class of supersymmetric

chiral gauge theories (with antisymmetric tensor fields) have been found [35] where

the theory does go from an infrared fixed point to confinement upon the removal of

one flavor.

The results of this paper can be contrasted with preliminary lattice work

[36] and the instanton liquid model [37] which suggest that the chiral transition

takes place at much smaller values of Nf contrary to earlier lattice results [38]. The

transition would then be an intrinsically strong coupling phenomenon inaccessible

to the methods used here. The quarks would have to be much more effective at long

range screening than indicated by the gap equation, disordering the system even

in the presence of a strong, attractive long range force. Further work on all these

approaches will be required to help to resolve this difference.

Appendix - Gauge Invariance and Collinear Divergences

We first discuss the gauge dependence of the quark-antiquark scattering am-

24



plitude used in Section 4 to demonstrate the absence of light excitations in the

symmetric phase. We will then discuss the presence of collinear divergences in this

amplitude. To demonstrate gauge invariance to leading order, we follow the analysis

of [39]. As was done before we will take the incoming (Euclidean) momentum of

the initial quark and antiquark to be q/2, and have a non-zero momentum transfer

by assigning outgoing momenta q/2± p for the final quark and antiquark. The SD

equation in the scalar channel (and in a covariant gauge with gauge parameter ξ)

is:

T (p, q) =
g2 Z2

1 (p, q)

4αξ Z3(p)
π +

4π2λZ4(p, q) p
2

Λ2
∗

+
πp2

αξ

∫

d4k

(2π)4
g2 Z2

1 (p, k)

Z3(p− k) (p − k)2
T (k, q)

k2 Z2
2 (k)

+
4π2p2

Λ2
∗

∫

d4k

(2π)4
λZ4(p, k)

T (k, q)

k2 Z2
2 (k)

. (41)

The renormalization factors Z1, Z2, Z3, and Z4 correspond to the gauge vertex,

the quark wavefunction, the gauge boson wavefunction, and the four-quark vertex

respectively; and

αξ =
π

(3 + ξ)C2(R)
. (42)

Using the definition of the renormalized couplings

gR(p, k) =
g Z1(p, k)

√

Z3(p− k)Z2(k)Z2(p)
(43)

λR(p, k) =
λZ4(p, k)

Z2(k)Z2(p)
(44)

and the approximations

g2R(p, k)

4π
≈ g2

4π

Z1(max(p, k))

Z3(max(p, k))Z2(k)Z2(p)
≡ α(max(p, k)) (45)

25



and

λR(p, k) ≈ λ
Z4(max(p, k))

Z2(k)Z2(p)
≡ λ(max(p, k)) (46)

we can perform the angular integrations to obtain

T (p, q) =
α(p)Z2(p)Z2(q)

αξ
π2 + 4π2λ(p)Z2(p)Z2(q)

p2

Λ2
∗

+
1

4αξ

(

∫ p2

q2

dk2

k2
α(p)

Z2
2 (p)

Z2
2 (k)

T (k, q) +

∫ Λ2
∗

p2

dk2

k2
α(k)T (k, q)

p2

k2

)

+

∫ p2

q2

dk2

k2
λ(p)

Z2
2 (p)

Z2
2 (k)

T (k, q)
p2

Λ2
∗

+

∫ Λ2
∗

p2

dk2

k2
λ(k)T (k, q)

p2

Λ2
∗

. (47)

In order to get a gauge invariant result, it is helpful to divide the scattering am-

plitude by the gauge dependent normalization factors of the four quark legs, so we

introduce

T̃ (p, q) =
T (p, q)

Z2(p)Z2(q)
. (48)

We then have

T̃ (p, q) =
α∗

αξ
π2 + 4π2λ

p2

Λ2
∗

+
α∗

4αξ

(

∫ p2

q2

dk2

k2
Z2(p)

Z2(k)
T̃ (k, q) +

∫ Λ2
∗

p2

dk2

k2
Z2(k)

Z2(p)
T̃ (k, q)

p2

k2

)

+λ

(

∫ p2

q2

dk2

k2
Z2(p)

Z2(k)
T̃ (k, q)

p2

Λ2
∗

+

∫ Λ2
∗

p2

dk2

k2
Z2(k)

Z2(p)
T̃ (k, q)

p2

Λ2
∗

)

,(49)

where we have used the fact that α(p) approaches a fixed point for p≪ Λ. Here we

will be satisfied with a result to leading order in α∗, neglecting terms suppressed

by α2
∗
, λ2, and α∗λ. With this approximation we can also neglect the running of λ.

This is actually not a bad approximation, since in the infrared λ(p) approaches a

fixed-point given by equation (27). Now the RG solution for the quark wavefunction

renormalization is:

Z2(p) =

(

Λ2
∗

p2

)γ

, (50)
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where

γ =
α∗C2(R) ξ

4π
+O(α2

∗
) (51)

Next we substitute the form

T̃ (p, q) = A

(

p2

Λ2
∗

) 1

2
+ 1

2
η

+B

(

p2

Λ2
∗

) 1

2
−

1

2
η

, (52)

into equation (49). Integrating this equation we see that to leading order in α∗ the

ξ dependent terms take the form

α∗

4αξ

(

1
2 − 1

2η + γ
) (

1
2 + 1

2η + γ
) ≈ 1 +O(α2

∗
) (53)

So our solution for the scattering amplitude (equations (24) and (25)) and the

conclusion that there are no light scalar degrees of freedom as one approaches the

critical point from the symmetric side of the critical curve are gauge invariant results

to leading order.

We next discuss the collinear divergences present in T (p, q). Consider the

differential cross-section for the scattering of the quark and antiquark at O(α3). If

the invariant amplitude at O(α2) is given by M, then from equations (22)-(25) we

have, to next-to-leading order,

|M|2 ≈ 9π2α2C2(R)
2

p4
+

27πα3C2(R)
3

2p4

(

1 + ln

(

p2

q2

))

, (54)

The differential cross section is:

dσ0 = (2π)4δ(4)(p1 + p2 − q1 − q2)|M|2 d3q1
(2π)32E1

d3q2
(2π)32E2

, (55)

which gives

dσ0
dq1dΩ1dq2dΩ2

=
1

(2π)2
δ(4)(p1 + p2 − q1 − q2)|M|2E1E2

4
. (56)
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This is not, however, a physically observable cross-section. To obtain a physically

observable cross-section we must combine this with the differential cross- section

where a collinear gluon (with momentum k and implicit summation on the gauge

index a) is emitted:

dσ1g = (2π)4δ(4)(p1 + p2 − q1 − q2)|Ma|2 d3q1
(2π)32E1

d3q2
(2π)32E2

d3k

(2π)32k
, (57)

A physical experiment cannot separately resolve the collinear gluon and quark, so it

is appropriate to frame the discussion in terms of the momentum of the observed jet

(we consider first the case where k is approximately collinear with q2, so qj = q2+k).

Changing variables we have

dσ1g
dq1dΩ1dqjdΩj

=
1

(2π)2
δ(4)(p1+p2− q1− qj)

E1Ej

4

∫

d3k

(2π)32k

(Ej − k)

Ej
|Ma|2. (58)

Thus, to see the cancellation of the collinear divergence we must add |M|2 to the

final integral in equation (58).

In order to project out the scalar channel of the gluon emission amplitude,

we must contract the amplitude with δρλ/4 and [γα, γβ ]στ/16, where ρ and λ (σ and

τ) are the Dirac indices of the initial (final) quark and antiquark. We then have

Ma = − ig
3C2(R)

p2q2j

3

4

(

ǫαqβj − ǫβqαj

)

T a , (59)

where ǫα is the gluon polarization vector. Squaring and summing over gluons and

gluon polarizations we have:

|Ma|2 = −g
6C2(R)

3

p4q2j

27

8
. (60)

Putting the gluon on shell (k2 = 0), and performing the integration (with the

requirement that the gluon momentum k be within a small cone of opening angle δ
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around the quark momentum q2) we have:

∫

d3k

(2π)32k

(Ej − k)

Ej
|Ma|2 ≈ −27g6C2(R)

3

8p2

∫ Ej

0

dk k2(Ej − k)

(2π)22k

∫ δ

0

θdθ

q22 + (Ej − k)kθ2

≈ −27πα3C2(R)
3

4p4
ln

(

E2
j δ

2

q22

)

. (61)

where we have only kept terms which diverge as q22 → 0. When combined with the

integration over the region of phase space corresponding to k being approximately

collinear with q1, and setting q1 = q2 = q, we see that these terms cancel with the

ln(q2) dependence in equation (54), as expected [40].
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Figure Caption

Figure 1. Numerical solution of the Schwinger-Dyson equation with a running

coupling possessing an infrared fixed point. Here Σ0 is the dynamical mass and r

is the ratio of the fixed point coupling to the critical coupling.
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