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Topological Defects and Cosmology1
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Abstract. Many particle physics models of matter admit solutions corresponding
to stable or long-lived topological defects. In the context of standard cosmology it
is then unavoidable that such defects will form during phase transitions in the very
early Universe. Certain types of defects lead to disastrous consequences for cosmology,
others may play a useful role, as possible seeds for the formation of structure in the
Universe, or in mediating baryon number violating processes. In all cases, topological
defects lead to a fruitful interplay between particle physics and cosmology.

I INTRODUCTION

Most aspects of high energy physics beyond the standard model can only be
tested by going to energies far greater than those which present accelerators can
provide. Fortunately, the marriage between particle physics and cosmology has
provided a way to “experimentally” test the new theories of fundamental forces.

The key realization is that physics of the very early Universe may explain the
origin of the structure on the scales of galaxies and beyond. It now appears that a
rich set of data concerning the nonrandom distribution of matter on a wide range
of cosmological scales, and on the anisotropies in the cosmic microwave background
(CMB), may potentially be explained by high energy physics. Topological defects
provide one class of mechanisms for generating the initial density fluctuations [1].
Topological defects are relevant to cosmology in other ways. Models with defects
often predict observational signatures which are not detected. In this way, studying
the consequences of particle physics models in the context of cosmology may lead
to severe constraints on new microscopic theories. Finally, particle physics and field
theory may provide an explanation for another deep cosmological puzzle, namely
the origin of the observed small but non-vanishing net baryon to entropy ratio.

1) Invited lectures at WHEPP-5, IUCAA, India, Jan. 12 - 26 1998.

http://arxiv.org/abs/hep-ph/9806473v1


II DEFECT FORMATION AND CLASSIFICATION

According to our current view of particle physics, matter at high energies and
temperatures must be described in terms of fields. Gauge symmetries have proved
to be extremely useful in describing the standard model of particle physics. Spon-
taneous breaking of an internal symmetry group is a crucial building block of both
the standard model and its extensions such as Grand Unified Theories and Super-

symmetry.
Spontaneous symmetry breaking is induced by an order parameter ϕ taking on a

nontrivial expectation value< ϕ > below a certain temperature Tc. In some particle
physics models, ϕ is a fundamental scalar field in a nontrivial representation of the
gauge group G which is broken. However, ϕ could also be a fermion condensate, as
in the BCS theory of superconductivity. In many models, topological defects are
unavoidable products of the symmetry breaking phase transition.
Consider a single component real scalar field with a typical symmetry breaking

potential

V (ϕ) =
1

4
λ(ϕ2 − η2)2 , (1)

where λ ≪ 1 is a coupling constant. In the presence of a thermal heat bath at
a temperature T , finite temperature effects lead to a correction to the free energy
density (1) which are (to leading order) proportional to T 2ϕ2. At temperatures
above a critical temperature Tc ∼ η, the symmetry is unbroken and the energeti-
cally favored state is ϕ = 0, whereas for temperatures below Tc, the state ϕ = 0
becomes unstable and the symmetry is broken. The state which now minimizes the
free energy density is not unique. The states minimizing V (ϕ) form the vacuum

manifold M, in our example ϕ = ±η.
The phase transition will take place over a time interval short compared to the

expansion time of the Universe, and will lead to correlation regions of radius ξ < t
inside of which ϕ is approximately constant, but outside of which ϕ ranges randomly
over M. The correlation regions are separated by topological defects, in the above
example domain walls, regions in space where ϕ leaves the vacuum manifold M
and where, therefore, potential energy is localized.
Topological defects are familiar from solid state and condensed matter systems.

Crystal defects, for example, form when water freezes or when a metal crystallizes.
Point defects, line defects and planar defects are possible. Defects are also common
in liquid crystals [2]. They arise in a temperature quench from the disordered to
the ordered phase. Vortices in 4He are analogs of global cosmic strings. Vortices
and other defects are also produced [3] during a quench below the critical temper-
ature in 3He. Finally, vortex lines may play an important role in the theory of
superconductivity [4].
The analogies between defects in particle physics and condensed matter physics

are quite deep. Defects form for the same reason: the vacuum manifold is topo-
logically nontrivial. The arguments [5] which say that in a theory which admits



defects, such defects will inevitably form, are applicable both in cosmology and in
condensed matter physics.
The symmetry breaking phase transition takes place at T = Tc. From condensed

matter physics it is well known that in many cases topological defects form during
phase transitions, particularly if the transition rate is fast on a scale compared to
the system size. When cooling a metal, defects in the crystal configuration will be
frozen in; during a temperature quench of 4He, thin vortex tubes of the normal
phase are trapped in the superfluid; and analogously in a temperature quench of a
superconductor, flux lines are trapped in a surrounding sea of the superconducting
Meissner phase.
In cosmology, the rate at which the phase transition proceeds is given by the

expansion rate of the Universe which is very fast in the early Universe. Hence,
topological defects will inevitably be produced in a cosmological phase transition [5],
provided the underlying particle physics model allows such defects.
The argument which ensures that in theories which admit topological defects,

such defects will be produced during a phase transition in the very early Universe
is called the Kibble mechanism [5]. At high temperatures T ≫ Tc, ϕ = 0. When
T drops below Tc, the point ϕ = 0 becomes unstable and at all points in space
the field will start rolling towards the vacuum manifold. However, the fluctuations
which determine in which direction the field rolls at points separated by a large
distance s are uncorrelated. For a system in thermal equilibrium, the correlation
length ξ(t), the length s beyond which the fluctuations are random, is bounded
from above by causality:

ξ(t) < t . (2)

We now turn to the classification of topological defects [5]. We consider theories
with an n-component order parameter ϕ and with a free energy density of the form

(1) with ϕ2 =
n∑

i=1

ϕ2
i . There are various types of local and global topological defects

(regions of trapped energy density) depending on the number n of components of
ϕ (see e.g. [6] for a comprehensive survey of topological defect models). The words
“local” and “global” refer to whether the symmetry which is broken is a gauge or
global symmetry. In the case of local symmetries, the topological defects have a
well defined core outside of which ϕ contains no energy density in spite of non-
vanishing gradients ∇ϕ: the gauge fields Aµ can absorb the gradient, i.e., Dµϕ = 0
when ∂µϕ 6= 0, where the covariant derivative Dµ is defined by Dµ = ∂µ + ie Aµ, e
being the gauge coupling constant. Global topological defects, however, have long
range density fields and forces.
For n = 1, the vacuum manifold (set of ground states) consists of two points. The

defects which result are two dimensional, domain walls. For n = 2, the vacuum
manifold is a circle. This leads to one dimensional defects, cosmic strings. If
n = 3, then the set of ground states is S2 and the resulting defects are monopoles.
Obviously, in three space dimensions the dimensionality of the defects is 3 − n.



For n = 4 no stable defects exist. There are, however, space-time defects called
textures.
Theories with domain walls are ruled out [7] since a single domain wall stretching

across the Universe today would over-close the Universe. Local monopoles are also
ruled out [8] since they would over-close the Universe. Local textures are ineffective
at producing structures because there is no trapped potential energy, and since the
spatial gradients of the condensate can be compensated by gauge fields.
As an example, let us consider local cosmic strings (see e.g. [6,9,10] for recent

reviews). These arise in theories with a complex order parameter (n = 2). In this
case the vacuum manifold of the model is M = S1 which has non-vanishing first
homotopy group:

Π1(M) = Z 6= 1 . (3)

A cosmic string is a line of trapped energy density which arises whenever the field
ϕ(x) circles M along a closed path in space (e.g., along a circle). In this case,
continuity of ϕ implies that there must be a point with ϕ = 0 on any disk whose
boundary is the closed path.
To construct a field configuration with a string along the z axis [11], take ϕ(x) to

cover M along a circle with radius r about the point (x, y) = (0, 0):

ϕ(r, ϑ) ≃ ηeiϑ , r ≫ η−1 . (4)

This configuration has winding number 1, i.e., it covers M exactly once. Main-
taining cylindrical symmetry, we can extend (4) to arbitrary r

ϕ(r, ϑ) = f(r)eiϑ , (5)

where f(0) = 0 and f(r) tends to η for large r. The width w can be found by
balancing potential and tension energy. The result is

w ∼ λ−1/2η−1 . (6)

For local cosmic strings, the energy density decays exponentially for r ≫ w. In
this case, the energy µ per unit length of a string is finite and depends only on the
symmetry breaking scale η

µ ∼ η2 (7)

(independent of the coupling λ). The value of µ is the only free parameter in a
cosmic string model.
Monopoles are point-like defects which can be constructed in a way similar to the

above, and which arise in models with Π2(M) 6= 1, e.g. in our toy model with n = 3.
Textures [16] arise in models with non-vanishing Π3(M), e.g. in a toy model like (1)
with n = 4. In contrast to the case of domain walls, strings and monopoles, textures
contain no trapped potential energy: a texture is a configuration of spatial gradient



energy which is unstable. Texture configurations with Hubble radius spatial extent
will collapse within one Hubble expansion time. This is, however, long enough for
them to seed inhomogeneities in the early Universe.
We conclude this section with a brief discussion of the evolution of a cosmic

string network for t > tG. The key processes are loop production by intersections
of infinite strings and loop shrinking by gravitational radiation. These two processes
combine to create a mechanism by which the infinite string network loses energy
(and length as measured in comoving coordinates). It can be shown (see e.g.
[12]) that, as a consequence, the correlation length of the string network is always
proportional to its causality limit ξ(t) ∼ t. Hence, the energy density ρ∞(t) in long
strings is a fixed fraction of the background energy density ρc(t)

ρ∞(t) ∼ µξ(t)−2 ∼ µt−2 (8)

or

ρ∞(t)

ρc(t)
∼ Gµ . (9)

We conclude that the cosmic string network approaches a “scaling solution” in
which the statistical properties of the network are time independent if all distances
are scaled to the horizon distance.

III DEFECTS AND STRUCTURE FORMATION

The only local field theory defects which could be relevant for structure formation
are cosmic strings. Hence, this section will focus on the cosmic string theory of
structure formation. The starting point in this theory is the scaling solution for
the cosmic string network, according to which at all times t (in particular at teq,
the time when perturbations can start to grow) there will be a few long strings
crossing each Hubble volume, plus a distribution of loops of radius R ≪ t.
The cosmic string model admits three mechanisms for structure formation: loops,

filaments, and wakes. Cosmic string loops have the same time averaged field as a
point source with mass [13] M(R) = βRµ, R being the loop radius and β ∼ 2π.
Hence, loops will be seeds for spherical accretion of dust and radiation. However,
according to cosmic string evolution simulations [14], most of the energy in strings
is in the long strings, and hence the loop accretion mechanism is sub-dominant.
The second mechanism involves long strings moving with relativistic speed in

their normal plane which give rise to velocity perturbations in their wake [15]. Space
normal to the string is a cone with deficit angle [17]

α = 8πGµ . (10)

If the string is moving with normal velocity v through a bath of dark matter, a
velocity perturbation



δv = 4πGµvγ (11)

[with γ = (1− v2)−1/2] towards the plane behind the string results. At times after
teq, this induces planar overdensities (“wakes”), the most prominent (i.e., thickest
at the present time) and numerous of which were created at teq, the time of equal
matter and radiation [18–20]. The corresponding planar dimensions are proportional
to the Hubble radius at teq in comoving coordinates.
The thickness d of these wakes can be calculated using the Zel’dovich

approximation [21]. The result is (for Gµ = 10−6)

d ≃ Gµvγ(v)z(teq)
2 teq ≃ 4vMpc . (12)

Wakes arise if there is little small scale structure on the string. In this case, the
string tension equals the mass density, the string moves at relativistic speeds, and
there is no local gravitational attraction towards the string.
In contrast, if there is small scale structure on strings, then the coarse-grained

string tension T is smaller [22] than the mass per unit length µ , and thus there
is a gravitational force towards the string which gives rise to cylindrical accretion,
producing filaments [23].
Which of the mechanisms – filaments or wakes – dominates is determined by the

competition between the velocity induced by the Newtonian gravitational potential
of the strings and the velocity perturbation of the wake.
The cosmic string model predicts a scale-invariant spectrum of density pertur-

bations, exactly like inflationary Universe models but for a rather different reason.
Consider the r.m.s. mass fluctuations on a length scale 2πk−1 at the time tH(k)
when this scale enters the Hubble radius. From the cosmic string scaling solution
it follows that a fixed (i.e., tH(k) independent) number ṽ of strings of length of the
order tH(k) contribute to the mass excess δM(k, tH(k)). Thus

δM

M
(k, tH(k)) ∼

ṽµtH(k)

G−1t−2
H (k)t3H(k)

∼ ṽ Gµ . (13)

Note that the above argument predicting a scale invariant spectrum will hold for
all topological defect models which have a scaling solution, in particular also for
global monopoles and textures.
The amplitude of the r.m.s. mass fluctuations (equivalently: of the power spec-

trum) can be used [24] to normalize Gµ. Since today on galaxy cluster scales

δM

M
(k, t0) ∼ 1 , (14)

the growth rate of fluctuations linear in a(t) yields

δM

M
(k, teq) ∼ 10−4 , (15)



and therefore, using ṽ ∼ 10,

Gµ ∼ 10−5 . (16)

A similar value is obtained by normalizing the model to the COBE amplitude of
CMB anisotropies on large angular scales [25,26] (the normalizations from COBE and
from the power spectrum of density perturbations on large scales agree to within a
factor of 2). Thus, if cosmic strings are to be relevant for structure formation, they
must arise due to a symmetry breaking at energy scale η ≃ 1016GeV. This scale
happens to be the scale of unification (GUT) of weak, strong and electromagnetic
interactions. It is tantalizing to speculate that cosmology is telling us that there
indeed was new physics at the GUT scale.
With cosmic strings, hot dark matter (HDM) is viable, in contrast to the situation

in inflationary Universe models where the adiabatic fluctuations on scales of galaxies
get erased by free streaming. Cosmic string loops survive free streaming, and can
generate nonlinear structures on galactic scales, as discussed in detail in [27,28].
Accretion of hot dark matter by a string wake was studied in [20]. In this case,
nonlinear perturbations develop only late. Accretion onto loops and small scale
structure on the long strings provide two mechanisms which may lead to high
redshift objects such as quasars and high redshift galaxies. The first mechanism
has recently been studied in [29], the second in [30,31].
The power spectrum of density fluctuations in a cosmic string model with HDM

has recently been studied numerically by Mähönen [32], based on previous work of
[33] (see also [34] for an earlier semi-analytical study). The spectral shape agrees
quite well with observations. Over the past year there has been significant progress
in our ability to calculate the angular power spectrum of CMB anisotropies and the
linear power spectrum of density perturbations in defect models [35] using the same
simulations. This now allows us to quantify the bias problem which arises in defect
models: since the primordial perturbations are isocurvature and not adiabatic, a
COBE-normalized defect model generically predicts insufficient linear power in the
spectrum of density perturbations to match the observations [35–37]. The required
bias factor depends, however, quite sensitively on the details of the defect scaling
solution which are at present not well understood. With strings and hot dark
matter, a bias factor of between 2 or 3 [38] seems to be required (although the work
of [32] gives a smaller bias). It would be premature to conclude, however, that
defect models are inconsistent with observations. The standard inflationary cold
dark matter model also has a bias problem (in this case a COBE-normalized model
predicts too much linear power), a problem which can be at least partially solved by
going to an open Universe or adding a cosmological constant. In a similar way, the
bias problem for cosmic strings can be substantially lessened [38,39]. It is, however,
also important to keep in mind that a cosmic string model with hot dark matter
in a natural way gives rise to a bias factor greater than 1.
A more robust way of differentiating between defect models and adiabatic infla-

tionary theories is to focus on predictions which are truly distinctive. The cosmic



string theory of structure formation makes several such predictions, both in terms
of the galaxy distribution and in terms of CMB anisotropies. On large scales (corre-
sponding to the comoving Hubble radius at teq and larger, structure is predicted to
be dominated either by planar [18–20] or filamentary [23] galaxy concentrations. For
models in which the strings have no local gravity, the resulting nonlinear structures
will look very different from the nonlinear structures in models in which local grav-
ity is the dominant force. As discovered and discussed recently in [40], a baryon
number excess is predicted in the nonlinear wakes. This may explain the “cluster
baryon crisis” [41], the fact that the ratio of baryons to dark matter in rich clusters
is larger than what is compatible with the nucleosynthesis constraints in a spatially
flat Universe.
As described earlier, space perpendicular to a long straight cosmic string is con-

ical with deficit angle given by (10). Consider now CMB radiation approaching
an observer in a direction normal to the plane spanned by the string and its ve-
locity vector. Photons arriving at the observer having passed on different sides of
the string will obtain a relative Doppler shift which translates into a temperature
discontinuity of amplitude [42]

δT

T
= 4πGµvγ(v) , (17)

where v is the velocity of the string. Thus, the distinctive signature for cosmic
strings in the microwave sky are line discontinuities in T of the above magnitude.
Given ideal maps of the CMB sky it would be easy to detect strings. However,

real experiments have finite beam width. Taking into account averaging over a
scale corresponding to the beam width will smear out the discontinuities, and it
turns out to be surprisingly hard to distinguish the predictions of the cosmic string
model from that of inflation-based theories using quantitative statistics which are
easy to evaluate analytically, such as the kurtosis of the spatial gradient map of
the CMB [43] (see also [44,45] for other recently suggested statistics and for further
references). The angular power spectrum of the CMB on scales of a degree or less
can also be used to discriminate between different models. Whereas inflation-based
adiabatic theories predict a sequence of fairly narrow Doppler peaks, defect models
do not predict secondary peaks, and the first peak is often quite broad [46,47,38,39], the
basic reason being because the tensor and vector modes are important (see also [48]
for first evidence of the importance of tensor models). Forthcoming experiments
will easily be able to discriminate between the various predictions.
Global textures also produce distinctive non-Gaussian signatures [49] in CMB

maps. In fact, these signatures are more pronounced and on larger scales than the
signatures in the cosmic string model.

IV DEFECTS AND BARYOGENESIS

Baryogenesis is another area where particle physics and cosmology connect in a
very deep way. The goal is to explain the observed asymmetry between matter and



antimatter in the Universe. In particular, the objective is to be able to explain the
observed value of the net baryon to entropy ratio at the present time

∆nB

s
(t0) ∼ 10−10 (18)

starting from initial conditions in the very early Universe when this ratio vanishes.
Here, ∆nB is the net baryon number density and s the entropy density.
As pointed out by Sakharov [50], three basic criteria must be satisfied in order

to have a chance at explaining the data: The theory describing the microphysics
must contain baryon number violating processes, these processes must be C and
CP violating, and they must occur out of thermal equilibrium.
As was discovered in the 1970’s [51], all three criteria can be satisfied in GUT

theories. In these models, baryon number violating processes are mediated by su-
perheavy Higgs and gauge particles. The baryon number violation is visible in the
Lagrangian, and occurs in perturbation theory (and is therefore in principle easy
to calculate). In addition to standard model CP violation, there are typically many
new sources of CP violation in the GUT sector. The third Sakharov condition can
also be realized: After the GUT symmetry-breaking phase transition, the super-
heavy particles may fall out of thermal equilibrium. The out-of-equilibrium decay
of these particles can thus generate a non-vanishing baryon to entropy ratio.
The magnitude of the predicted nB/s depends on the asymmetry ε per decay,

on the coupling constant λ of the nB violating processes, and on the ratio nX/s
of the number density nX of superheavy Higgs and gauge particles to the number
density of photons, evaluated at the time td when the baryon number violating
processes fall out of thermal equilibrium, and assuming that this time occurs after
the phase transition. The quantity ε is proportional to the CP-violation parameter
in the model. In a GUT theory, this CP violation parameter can be large (order 1),
whereas in the standard electroweak theory it is given by the CP violating phases
in the CKM mass matrix and is very small. As shown in [51] it is easily possible to
construct models which give the right nB/s ratio after the GUT phase transition
(for recent reviews of baryogenesis see [52] and [53]).
The ratio nB/s, however, does not only depend on ε, but also on nX/s(td). If the

temperature Td at the time td is greater than the mass mX of the superheavy par-
ticles, then it follows from the thermal history in standard cosmology that nX ∼ s.
However, if Td < mX , then the number density of X particles is diluted exponen-
tially in the time interval between when T = mX and when T = Td. Thus, the
predicted baryon to entropy ratio is exponentially suppressed:

nB

s
∼

1

g∗
λ2εe−mX/Td , (19)

where g∗ is the number of spin degrees of freedom in thermal equilibrium at the time
of the phase transition. In this case, the standard GUT baryogenesis mechanism
is ineffective.



However, topological defects may come to the rescue [54]. As we have seen in the
previous section, topological defects will inevitably be produced in the symmetry
breaking GUT transition provided they are topologically allowed in that symmetry
breaking scheme. The topological defects provide an alternative mechanism of GUT
baryogenesis.
Inside of topological defects, the GUT symmetry is restored. In fact, the defects

can be viewed as solitonic configurations of X particles. The continuous decay of
defects at times after td provides an alternative way to generate a non-vanishing
baryon to entropy ratio. The defects constitute out of equilibrium configurations,
and hence their decay can produce a non-vanishing nB/s in the same way as the
decay of free X quanta.
The way to compute the estimate nB/s ratio is as follows: The defect scaling

solution gives the energy density in defects at all times. Taking the time derivative
of this density, and taking into account the expansion of the Universe, we obtain
the loss of energy attributed to defect decay. By energetics, we can estimate the
number of decays of individual quanta which the defect decay corresponds to. We
can then use the usual perturbative results to compute the resulting net baryon
number.
Provided that mX < Td, then at the time when the baryon number violating

processes fall out of equilibrium (when we start generating a non-vanishing nB) the
energy density in free X quanta is much larger than the defect density, and hence
the defect-driven baryogenesis mechanism is subdominant. However, if mX > Td,
then as indicated in (19), the energy density in free quanta decays exponentially.
In contrast, the density in defects only decreases as a power of time, and hence
soon dominates baryogenesis.
One of the most important ingredients in the calculation is the time dependence

of ξ(t), the separation between defects. Immediately after the phase transition
at the time tf of the formation of the defect network, the separation is ξ(tf) ∼
λ−1η−1. In the time period immediately following, the time period of relevance for
baryogenesis, ξ(t) approaches the Hubble radius according to the equation [55]

ξ(t) ≃ ξ(tf)(
t

tf
)5/4 . (20)

Using this result to calculate the defect density, we obtain after some algebra

nB

s
|defect ∼ λ2Td

η

nB

s
|0 , (21)

where nB/s|0 is the unsuppressed value of nB/s which can be obtained using the
standard GUT baryogenesis mechanism. We see from (21) that even for low values
of Td, the magnitude of nB/s which is obtained via the defect mechanism is only
suppressed by a power of Td. However, the maximum strength of the defect channel
is smaller than the maximum strength of the usual mechanism by a geometrical
suppression factor λ2 which expresses the fact that even at the time of defect
formation, the defect network only occupies a small volume.



It has been known for some time that there are baryon number violating pro-
cesses even in the standard electroweak theory. These processes are, however,
nonperturbative. They are connected with the t’Hooft anomaly [56], which in turn
is due to the fact that the gauge theory vacuum is degenerate, and that the dif-
ferent degenerate vacuum states have different quantum numbers (Chern-Simons
numbers). In theories with fermions, this implies different baryon number. Config-
urations such as sphalerons [57] which interpolate between two such vacuum states
thus correspond to baryon number violating processes.
As pointed out in [58], the anomalous baryon number violating processes are in

thermal equilibrium above the electroweak symmetry breaking scale. Therefore,
any net baryon to entropy ratio generated at a higher scale will be erased, unless
this ratio is protected by an additional quantum number such as a non-vanishing
B − L which is conserved by electroweak processes.
However, as first suggested in [59] and discussed in detail in many recent papers

(see [60] for reviews of the literature), it is possible to regenerate a non-vanishing
nB/s below the electroweak symmetry breaking scale. Since there are nB violating
processes and both C and CP violation in the standard model, Sakharov’s condi-
tions are satisfied provided that one can realize an out-of-equilibrium state after
the phase transition. Standard model CP violation is extremely weak. Thus, it ap-
pears necessary to add some sector with extra CP violation to the standard model
in order to obtain an appreciable nB/s ratio. A simple possibility which has been
invoked often is to add a second Higgs doublet to the theory, with CP violating
relative phases.
The standard way to obtain out-of-equilibrium baryon number violating pro-

cesses immediately after the electroweak phase transition is [60] to assume that the
transition is strongly first order and proceeds by the nucleation of bubbles (note
that these are two assumptions, the second being stronger than the first!).
Bubbles are out-of-equilibrium configurations. Outside of the bubble (in the false

vacuum), the baryon number violating processes are unsuppressed, inside they are
exponentially suppressed. In the bubble wall, the Higgs fields have a nontrivial
profile, and hence (in models with additional CP violation in the Higgs sector)
there is enhanced CP violation in the bubble wall. In order to obtain net baryon
production, one may either use fermion scattering off bubble walls [61] (because
of the CP violation in the scattering, this generates a lepton asymmetry outside
the bubble which converts via sphalerons to a baryon asymmetry) or sphaleron
processes in the bubble wall itself [62,63]. It has been shown that, using optimistic
parameters (in particular a large CP violating phase ∆θCP in the Higgs sector) it
is possible to generate the observed nB/s ratio. The resulting baryon to entropy
ratio is of the order

nB

s
∼ α2

W (g∗)−1(
mt

T
)2∆θCP , (22)

where αW refers to the electroweak interaction strength, g∗ is the number of spin
degrees of freedom in thermal equilibrium at the time of the phase transition, and



mt is the top quark mass. The dependence on the top quark mass enters because
net baryogenesis only appears at the one-loop level.
However, analytical and numerical studies show that, for the large Higgs masses

which are indicated by the current experimental bounds, the electroweak phase
transition will unlikely be sufficiently strongly first order to proceed by bubble
nucleation. In addition, there are some concerns as to whether it will proceed by
bubble nucleation at all (see e.g. [64,65]).
Once again, topological defects come to the rescue. In models which admit

defects, such defects will inevitably be produced in a phase transition independent
of its order. Moving topological defects can play the same role in baryogenesis
as nucleating bubbles. In the defect core, the electroweak symmetry is unbroken
and hence sphaleron processes are unsuppressed [66]. In the defect walls there is
enhanced CP violation for the same reason as in bubble walls. Hence, at a fixed
point in space, a non-vanishing baryon number will be produced when a topological
defect passes by.
Defect-mediated electroweak baryogenesis has been worked out in detail in [67]

(see [68] for previous work) in the case of cosmic strings. The scenario is as follows:
at a particular point x in space, antibaryons are produced when the front side of
the defect passes by. While x is in the defect core, partial equilibration of nB takes
place via sphaleron processes. As the back side of the defect passes by, the same
number of baryons are produced as the number of antibaryons when the front side
of the defect passes by. Thus, at the end a positive number of baryons are left
behind.
As in the case of defect-mediated GUT baryogenesis, the strength of defect-

mediated electroweak baryogenesis is suppressed by the ratio SF of the volume
which is passed by defects divided by the total volume, i.e.

nB

s
∼ SF

nB

s
|0 , (23)

where (nB/s)|0 is the result of (22) obtained in the bubble nucleation mechanism.
A big caveat for defect-mediated electroweak baryogenesis is that the standard

electroweak theory does not admit topological defects. However, in a theory with
additional physics just above the electroweak scale it is possible to obtain defects
(see e.g. [69,70] for some specific models). The closer the scale η of the new physics
is to the electroweak scale ηEW , the larger the volume in defects and the more
efficient defect-mediated electroweak baryogenesis. Using the result of (20) for the
separation of defects, we obtain (for non-superconducting strings)

SF ∼ λ(
ηEW

η
)3/2vD . (24)

where vD is the mean defect velocity.
Obviously, the advantage of the defect-mediated baryogenesis scenario is that

it does not depend on the order and on the detailed dynamics of the electroweak
phase transition.



V SUMMARY

As we have seen, topological defects may play an important role in cosmology.
Defects are inevitably produced during symmetry breaking phase transitions in the
early Universe in all theories in which defects are topologically stable. Theories
giving rise to domain walls or local monopoles are ruled out by cosmological con-
straints. Those producing cosmic strings, global monopoles and textures are quite
attractive.

If the scale of symmetry breaking at which the defects are produced is about
1016 GeV, then defects can act as the seeds for galaxy formation. Defect theories
of structure formation predict a roughly scale-invariant spectrum of density per-
turbations, similar to inflation-based models. However, the phases in the density
field are distributed in a non-Gaussian manner, thus leading to distinctive signa-
tures both in CMB maps and in large-scale structure surveys by means of which
the predictions of defect models can be distinguished between each other as well as
from those of inflationary models.

Since defect models lead to isocurvature perturbations on scales larger than the
Hubble radius, the relative normalization of CMB anisotropies and of the power
spectrum of density perturbations is different from what is obtained in inflation-
based adiabatic models. It appears that a bias factor greater than 1 is required
in order for defect models to match the current observations. Note, however, that
bias is automatic in a cosmic string model with hot dark matter. The predictions
of defect models also differ from those of inflation-based models with respect to
the acoustic oscillations in the CMB angular power spectrum. Defect models do
not predict the narrow Doppler peaks which adiabatic models predict. Thus, the
predictions of defect models can be tested using future CMB experiments.

Topological defects may also play a crucial role in baryogenesis. This applies both
to GUT and electroweak baryogenesis. The crucial point is that defects constitute
out-of-equilibrium configurations, and may therefore be the sites of net baryon
production.
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