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1 Introduction

To solve QCD at high-energy we must find both the hadronic states and the exchanged
pomeron giving unitary scattering amplitudes. Experimentally (in first approximation)

the pomeron appears to be a Regge pole at small Q2 and 1 a single gluon at larger Q2.
Neither property is present in QCD perturbation theory. In this talk I will outline a high-
energy, transverse momentum cut-off, “solution” of QCD in which these non-perturbative
properties of the pomeron are directly related to the confinement and chiral symmetry
breaking properties of hadrons.

The arguments have taken me a long time to assemble. They involve

i) the techniques of multi-regge QCD calculations,

ii) the dynamics of the massless quark U(1) anomaly,

iii) Reggeon Field Theory phase-transition analysis.

The emphasis will be on ii) in this talk. A major outcome of the results2 is a demonstration
of how confinement and chiral symmetry breaking, normally understood as consequences
of the vacuum, can instead be produced by a “wee-parton” distribution. This is a very

non-trivial property that provides, I hope, a deeper basis for the parton model (and even 3

the constituent quark model) in QCD !

The framework for my analysis is multi-regge theory. By using reggeon unitarity equa-

tions 4,5, well-known Regge limit QCD calculations 6,7,8 can be extended to obtain multipar-
ticle amplitudes involving multiple exchanges of reggeized gluons and quarks in a variety
of channels. In particular we can study amplitudes, such as those of the form illustrated
in Fig. 1, in which Regge pole bound states (e.g. the pion) and their scattering amplitudes

(pomeron exchange) appear. Presently the simultaneous study of bound states and their
scattering amplitudes is impossible in any other formalism.

Fig. 1 The Anticipated Formation of Pion Scattering Amplitudes
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In general, limits wrt all mass, gauge symmetry, and cut-off parameters are crucial. The
most important feature, however, is the dynamical role played by new “reggeon helicity-flip”
vertices that appear in the amplitudes we discuss. Hadron amplitudes are initially isolated
via a (“volume”) infra-red divergence that appears when SU(3) gauge symmetry is partially

broken to SU(2) and the limit of zero quark mass is also taken. The divergence is produced

by quark loop helicity-flip vertices involving chirality violation (c.f. instanton interactions).
The chirality violation survives the massless quark limit because of an infra-red effect closely

related to the triangle anomaly 9. The divergence produces (what we call) a “wee parton
condensate” which is directly responsible, when the gauge symmetry is partially broken, for
confinement and chiral symmetry breaking.

The pomeron, in first approximation, is a reggeized gluon in the wee parton condensate
and so is obviously a Regge pole. Although we will not give any description of supercritical

RFT 5 in this talk we do find that all the essential features of this phase are present. We
briefly discuss the restoration of SU(3) gauge symmetry. It is closely related with the

critical behaviour of the pomeron 10 and the associated disappearance of the supercritical

condensate. We note that the large Q2 of deep-inelastic scattering provides a finite volume
constraint that can keep the theory (locally) in the supercritical phase as the full gauge

symmetry is restored. A single gluon (in the background wee parton condensate) should

then be a good approximation for the pomeron. Finally we discuss the (very special)
circumstances under which our solution can be realized in QCD.

2 Multi-Regge Theory

This is an abstract formalism based on the existence of asymptotic analyticity domains

for multiparticle amplitudes derived 5,11 via “Axiomatic Field Theory” and “Axiomatic S-
Matrix Theory”. All the assumptions made are expected to be valid in a completely massive
spontaneously-broken gauge theory. Since we begin with massive reggeizing gluons, this is
effectively the starting point for our analysis of QCD. We can very briefly list the key
ingredients as follows.

i) Angular Variables
For an N-point amplitude we can introduce variables corresponding to any Toller diagram,
i.e. any tree diagram, drawn as in Fig. 2, that involves only three-point vertices. The result

is that we can write

MN (P1, .., PN ) ≡MN (t1, .., tN−3, g1, .., gN−3)

where tj = Q2
j and gj is in the little group of Qj ,

i.e. for tj > 0, gj ∈ SO(3), and for tj < 0, gj ∈

SO(2,1). A set of 3N - 10 independent variables

is obtained, N-3 ti variables, N-3 zj (≡ cos θj)

variables and N-4 ujk (≡ ei(µj−νk)) variables.

Fig. 2 A Tree Diagram with Three
Point Vertices.
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ii) Multi-Regge Limits
These limits are defined by zj →∞ , ∀j. We will also be interested in Helicity-Pole Limits

in which some ujk → ∞ and some zj → ∞. In a helicity-pole limit a smaller number of

invariants is taken large. In a “maximal” helicity-pole limit the maximal number of ujk are

taken large.

iii) Partial-wave Expansions

Using f(g) =
∑∞

J=0

∑
|n|,|n′|<J D

J
nn′(g)aJnn′ , for a function f(g) defined on SO(3), leads to

MN (t
˜
, g
˜
) =

∑

J
˜
,n
˜
,n′

˜

∏

i

DJi
nin′

i

(gi) aJ
˜
,n
˜
,n′

˜

(t
˜
)

iv) Asymptotic Dispersion Relations
By dispersing in all zj variables simultaneously, and applying the Bargman-Weil formula,

we can write MN =
∑

C MC
N +M0 where

MC
N =

1

(2πi)N−3

∫
ds′1 . . . ds

′
N−3∆

C(..ti., ..ujk., ..s
′
i.)

(s′1 − s1)(s
′
2 − s2) . . . (s

′
N−3 − sN−3)

and
∑

C is over all sets of (N-3) Regge limit asymptotic cuts. M0 is non-leading in the multi-
regge limit. The resulting separation into spectral components, which can be described using

a “hexagraph” notation 2,5, is crucial for the development of multiparticle complex angular
momentum theory.

v) Sommerfeld-Watson Representations of Spectral Components
For each spectral component a multiple transformation of the partial-wave expansion can
be performed, e.g.

MC
4 =

1

8

∑

N1,N2

∫ dn2dn1dJ1 un2

2 un1

1 dJ10,n1
(z1)d

n1+N2
n1,n2

(z2)d
n2+N3

n2,0
(z3)

sinπn2 sinπ(n1 − n2) sinπ(J1 − n1)
aCN2N3

(J1, n1, n2, t
˜
)

+
∑̃

J
˜
n
˜

dJ10,n1
(z1)u

n1

1 dJ2n1,n2
(z2)u

n2

2 dJ3n2,0
(z3)aJ

˜
n
˜
(t
˜
)

These representations give the form of the asymptotic behaviour in both multi-Regge and
helicity-pole limits. In particular, in a “maximal” helicity-pole limit, in which the maximal
number of ujk →∞, only a single (analytically-continued) partial-wave amplitude appears.

vi) t-channel Unitarity in the J-plane
After the hexagraph separation, multiparticle unitarity in every t-channel can be projected
and continued to complex J as an equation for partial-wave amplitudes, i.e.

a+J − a−J = i

∫
dρ

∑

N
˜

∫
dn1dn2

sinπ(J − n1 − n2)

∫
dn3dn4

sinπ(n1 − n3 − n4)
· · · a+

JN
˜
n
˜

a−
JN
˜
n
˜
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Regge poles at ni = αi, together with the phase-space
∫
dρ and the “nonsense poles” at

J = n1 + n2 − 1, n1 = n3 + n4 − 1, ... generate multi-reggeon thresholds, i.e. Regge cuts.

vii) Reggeon Unitarity
In ANY J-plane of any partial-wave amplitude, the “threshold” discontinuity due to M
Regge poles with trajectories α

˜
= (α1, α2, · · ·αM ) is given by the reggeon unitarity equation

disc
J=αM (t)

aN
˜
n
˜
(J) = ξM

∫
dρ̂ aα

˜
(J+)aα

˜
(J−)

δ
(
J − 1−

∑M
k=1(αk − 1)

)

sin π
2 (α1 − τ ′1) . . . sin

π
2 (αM − τ ′M )

Writing ti = k2i (with
∫
dt1dt2λ

−1/2(t, t1, t2) = 2
∫
d2k1d

2k2δ
2(k − k1 − k2)),

∫
dρ̂ can be

written in terms of two dimensional “ k⊥” integrations, anticipating the reggeon diagram

results of direct s-channel high-energy calculations 6,7,8. The generality of reggeon unitarity
makes it particularly powerful when applied to the partial-wave amplitudes appearing in
(maximal) helicity-pole limits.

3 Reggeon Diagrams in QCD

Leading-log Regge limit calculations of elastic and multi-regge production amplitudes in

(spontaneously-broken) gauge theories show6,7,8 that both gluons and quarks “reggeize”,
i.e. they lie on Regge trajectories. Non-leading log calculations are described by “reggeon
diagrams” involving reggeized gluons and quarks. Reggeon unitarity implies that a complete
set of reggeon diagrams arise from higher-order contributions.

Gluon reggeon diagrams involve a reggeon propagator for each reggeon state and also
gluon particle poles e.g. the two-reggeon state

←→

∫
d2k1

(k21 +M2)

d2k2
(k22 +M2)

δ2(k′1 + k′2 − k1 − k2)

J − 1 + ∆(k21) + ∆(k22)

The BFKL equation 6 corresponds to 2-reggeon unitarity, as illustrated in Fig. 3

Fig. 3 Iteration of the 2-Reggeon State.

with R22 = [(k21 +M2)(k22
′
+M2) + (k22 +M2)(k21

′
+M2)]/[(k1 − k′1)

2 +M2] + · · ·

We assume that two leading-order properties of the limit M → 0 generalize to all
orders. The first is that infra-red divergences exponentiate to zero all diagrams that do not
carry zero color in the t-channel. The second property is that infra-red finiteness implies

canonical scaling (∼ Q−2) for color zero reggeon amplitudes when all transverse momenta

are simultaneously scaled to zero (this requires αs(Q
2)→/∞ when Q2 → 0).
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4 Reggeon Diagrams for Helicity-Pole Limit Amplitudes

For our purposes, “maximal” helicity-pole limits of multiparticle amplitudes are the most
interesting to study. Because the Sommerfeld-Watson representation involves only a single
partial-wave amplitude, reggeon unitarity implies that reggeon diagrams again appear. Al-

though we will not discuss it here, the physical significance of such diagrams is subtle 2. In
particular, “physical” k⊥ planes in general contain lightlike momenta !

As an example, we introduce variables for the 8-pt amplitude corresponding to the tree

diagram of Fig. 4. We consider the “helicity-flip” limit z, u1, u
−1
2 , u3, u

−1
4 →∞. The

behavior of invariants is

P1.P2 ∼ u1u
−1
2 , P1.P3 ∼ u1zu3 ,

P2.P4 ∼ u−1
2 u−1

4 , P1.Q3 ∼ u1z ,

Q1.Q3 ∼ z , P4.Q1 ∼ zu−1
4 · · ·

P1.Q, P2.Q, P3.Q, P4.Q finite

(u1, u
−1
2 → ∞ is a “helicity-flip” limit,

u1, u2 →∞ is a “non-flip” limit.)
Fig. 4 Variables for the 8-pt Amplitude

Reggeon unitarity determines that the helicity-flip limit is described by reggeon

diagrams of the form shown in Fig. 5. The

amplitudes contain all elastic scattering

reggeon diagrams. The TF are new “reggeon

helicity-flip” vertices that play a crucial role in

our QCD analysis. (These vertices do not ap-

pear in elastic scatttering reggeon diagrams). Fig. 5 Reggeon Diagrams for
the 8-pt Amplitude

5 Reggeon Helicity-Flip Vertices

The TF vertices are most simply isolated kinematically by considering a “non-planar” triple-
regge limit which, for simplicity, we will define by introducing three distinct light-cone mo-

menta. (This limit actually gives a sum of three TF vertices of the kind discussed above 2,

but in this talk we will not elaborate on this subtlety.) We use the tree diagram of Fig. 6(a)
to define momenta and study the special kinematics
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P1 → (p1, p1, 0, 0), p1 →∞

P2 → (p2, 0, p2, 0), p2 →∞

P3 → (p3, 0, 0, p3), p3 →∞

Q1 → (0, 0, q2,−q3)

Q2 → (0,−q1, 0, q3)

Q3 → (0, q1,−q2, 0)
Fig. 6 (a) A Tree Diagram and (b) a quark loop

coupling for three quark scattering.

Consider, first, three quarks scattering via gluon exchange with a quark loop coupling
as in Fig. 6(b). The non-planar triple-regge limit gives

→ g6
p1p2p3
t1t2t3

Γ1+2+3+(q1, q2, q3) ←→ g3
p1p2p3
t1t2t3

TF (Q1, Q2, Q3)

where γi+ = γ0 + γi and Γµ1µ2µ3
is given by the quark triangle diagram i.e.

Γµ1µ2µ3
= i

∫
d4k Tr{γµ1

(q/3 + k/ +m)γµ2
(q1/ + k/ +m)γµ3

(q/2 + k/ +m)}

[(q1 + k)2 −m2][(q2 + k)2 −m2][(q3 + k)2 −m2]

wherem is the quark mass. We denote theO(m2) chirality-violating part of TF (≡ g3 Γ1+2+3+ )

by TF,m2

and note that the limits q1, q2, q3 ∼ Q→ 0 and m→ 0 do not commute, i.e.

TF,m2

∼

Q→ 0

Q i m2
∫

d4k

[k2 −m2]3
= R Q

where R is independent of m. This non-commutativity is an “infra-red anomaly” due to

the triangle Landau singularity 9.

TF is one of a general set of quark loop reggeon interactions that have ultra-violet

divergences. To maintain the reggeon Ward identities that ensure gauge invariance 2, we
introduce Pauli-Villars fermions as a regularization. (Note that we take the regulator mass
mΛ → ∞ after m → 0. This implies that the initial theory with m 6= 0 is non-unitary for

k⊥ >∼ mΛ.) For the regulated vertex, TF ,m2

, we obtain (for m 6= 0)

TF ,m2

(Q) ∼ TF,m2

− TF,m2
Λ ∼

Q→ 0
Q2

However, since TF,0 = 0, we also have

TF ,0(Q) ∼ −R Q

implying that imposing gauge invariance for m 6= 0 gives a slower vanishing as Q→ 0 when
m = 0.
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After color factors are included and all related diagrams summed, TF ,0(Q) survives only
in very special vertices coupling reggeon states with “anomalous color parity”. We define

color parity (Cc) via the transformation Ai
ab → −A

i
ba for gluon color matrices and say that

a reggeon state has anomalous color parity if the signature τ (i.e. whether the number of

reggeons is even or odd) is not equal to the color parity. (Note that the reggeized gluon

and the BFKL two reggeon state both

have normal color parity.) We will be

particularly interested in the “anomalous

odderon” three-reggeon state with color

factor fijkA
iAjAk that has τ = −1 but

Cc = +1 (c.f. the winding-number cur-

rent Kµ = ǫµνγδfijkA
i
νA

j
γA

k
δ ). TF ,0(Q)

appears in the triple coupling of three

anomalous odderon states as in Fig. 7.

Fig. 7 An Anomalous Odderon
Triple Coupling.

6 A Quark Mass Infra-Red Divergence

A vital consequence of the “anomalous” behavior of TF ,0 as Q→ 0 is that an additional
infra-red divergence is produced (as m → 0) in massless gluon reggeon diagrams. The

divergence occurs in diagrams involving the TF where Q1 ∼ Q2 ∼ Q3 ∼ 0 is part of the

integration region. This requires that TF be a disconnected component of a vertex coupling

distinct reggeon channels, as in
Fig. 8. In this diagram an anoma-
lous odderon reggeon state ( ≡

) is denoted by while
denotes any normal reggeon

state. Fig. 8 is of the general form
illustrated in Fig. 5, except that
we are allowing the vertices Vi to
involve more complicated external
states than a single scattering quark. Fig. 8 A Divergent Reggeon Diagram

The canonical scaling of the anomalous odderon states gives the infra-red behaviour

∫
· · ·

d2Q1 d2Q2 d2Q

Q2
1Q

2
2Q

2(Q−Q1)2(Q−Q2)2
V1(Q1)V2(Q2)V3(Q−Q2)V4(Q−Q1)

× TF(Q1, Q)TF (Q,Q2) × [regular vertices and reggeon propagators]

for Fig. 8. Depending on the behaviour of the Vi , it is clear that a divergence may

indeed occur when Q ∼ Q1 ∼ Q2 → 0. In general we can show 2 that gauge invariance
produces a cancelation involving similar divergences of diagrams related to that of Fig. 8 by
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reggeon Ward identities for the reggeons within the anomalous odderon states. However,
the divergence of Fig. 8 is preserved and a cancelation eliminated if we partially break the
SU(3) gauge symmetry to SU(2). In this case, a divergence can occur in any diagram of

the form of Fig. 8 in which is any SU(2) singlet combination of massless gluons with

Cc = −τ = +1 (i.e. a generalized SU(2) anomalous odderon) and is any normal

reggeon state containing one or more SU(2) singlet massive reggeized gluons (or quarks).

A-priori reggeon Ward identities imply Vi ∼ Qi when Qi → 0, ∀ i. This would actu-
ally be sufficient to eliminate any divergence in Fig. 8. However, if we impose the “initial
condition” that V1, V2→/ 0, the divergence is present in a general class of diagrams, including

those having the general struc-
ture illustrated in Fig. 9. In
this diagram there are n+ 3
multi-reggeon states of the

form . Imposing

V1, V2 →/ 0 and assuming that
reggeon Ward identities are
satisfied by the remaining ver-
tices, i.e.

Vi(Qi) ∼ V (Qi) = Qi

i 6= 1, 2, gives that Fig. 9 has Fig. 9 A General Divergent Diagram

the infra-red behavior

∫
d2Q

Q2

[∫
d2Q

Q4

]n [
V (Q) TF (Q)

]n

giving (as m → 0) an overall logarithmic divergence. In general, this divergence occurs in

just those multi-reggeon diagrams which contain only SU(2) color zero states of the form

coupled by regular and TF ,0 vertices, as in the examples we have discussed.

7 Confinement and a Parton Picture

We define physical amplitudes by extracting the coefficient of the logarithmic divergence.
There is “confinement” in that a particular set of color-zero reggeon states is selected that
contains no massless multigluon states and has the necessary completeness property to
consistently define an S-Matrix. That is, if two or more such states scatter via QCD in-
teractions, the final states contain only arbitrary numbers of the same set of states. Since
k⊥ = 0 for the anomalous odderon component of each reggeon state, an “anomalous odd-
eron condensate” is generated.
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The form of physical amplitudes
is illustrated in Fig. 10. In ad-
dition to the k⊥ = 0 (“wee-
parton”) component, each phys-
ical reggeon state has a finite mo-
mentum “normal” parton compo-
nent carrying the kinematic prop-
erties of interactions. We em-
phasize that the “scattering” of
the k⊥ = 0 condensate is directly
due to the infra-red quark trian-
gle anomaly.

Fig. 10 A Physical Amplitude

The breaking of the gauge symmetry has produced physical states in which the “par-
tons” are separated into a universal wee-parton component and a normal reggeon parton
component which is distinct in each distinct physical state. However, the condensate has the
important property that it switches the signature compared to that of the normal parton
component. The following are a direct consequence.

• The “pomeron” has a reggeized gluon normal parton component, but is a Regge pole
with τ = −Cc = +1 and intercept 6= 0.

• There is a bound-state reggeon formed from two massive SU(2) doublet gluons, giving

an exchange-degenerate partner to the pomeron. The SU(2) singlet massive gluon lies
on this trajectory.

• There is chiral symmetry breaking -

studies of τ = −1 quark-antiquark exchange12 can be used to demonstrate the “reggeization
cancelation” shown in Fig. 11(a). Because of this cancelation the sum of quark-antiquark

diagrams shown in Fig. 11(b) gen-
erates a Regge pole with zero in-
tercept and with τ = −1, Cc =
+1 and P = −1. In the con-
densate we obtain a Regge pole
with τ = +1, P = −1, giving
the massless pion associated with
chiral symmetry breaking. (We
use the reggeon diagram notation
that = a reggeized
gluon and = a reggeized
quark/antiquark).

Fig. 11 (a) The Reggeization Cancelation and
(b) the Sum of Quark-AntiQuark Diagrams.

We will not discuss Reggeon Field Theory, except to note that all the features of my

supercritical RFT solution 5 are present. (This solution was very controversial 20 years ago

- although it was supported by Gribov !)
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8 Restoration of SU(3) Gauge Symmetry

We make only a few brief comments on this, obviously important, subject. To discuss it in
detail requires extensive use of Reggeon Field Theory and, in this talk, we are avoiding this.

Because of complimentarity13, restoring SU(3) symmetry (which involves decoupling a color

triplet Higgs scalar field) should be straightforward if we impose a transverse momentum
cut-off k⊥ < Λ⊥. Restoring the symmetry involves removing the mass scale that produces
the reggeon condensate and distinguishes normal (finite momentum) partons from wee (zero

momentum) partons. If the (partially) broken theory can be mapped completely onto
supercritical RFT then the condensate and the odd-signature partner for the pomeron will

disappear simultaneously and the result will be the critical pomeron 10. The wee-parton
condensate will be replaced by a universal, small k⊥, wee parton, critical phenomenon that
merges smoothly with the large k⊥ normal (or constituent) parton component of physical

states, just as originally envisaged by Feynman 14. (Note that, because of the odd SU(3)

color charge parity of the pomeron, the two-gluon BFKL pomeron will not contribute.)

Mapping partially-broken QCD onto supercritical RFT has further consequences. In
particular, it implies that the Λ⊥ scale mixes with the symmetry breaking mass scale and
becomes a “relevant parameter” for the critical behavior. It then follows that, after the
symmetry breaking scale is removed, there will (for a general number of quark flavors) be a
Λ⊥c such that Λ⊥ > Λ⊥c implies the pomeron is in the subcritical phase, while Λ⊥ < Λ⊥c

will give the supercritical phase. This implies that the supercritical phase can be realized
with the full gauge symmetry restored if Λ⊥ is taken small enough. However, αPI (0) and the
mass of the exchange degenerate, composite, “reggeized gluon” will be functions of Λ⊥. We

can also anticipate that in deep-inelastic diffraction large Q2 will act as an additional (local)
lower k⊥ cut-off and produce a “finite volume” effect that can keep the theory supercritical
as the SU(3) symmetry is restored.

To remove Λ⊥ requires Λ⊥c = ∞. As we briefly elaborate in the next Section, this
requires a specific quark flavor content. It is interesting that, for any quark content, we can
take Λ⊥ << Λ⊥c , and go deep into the supercritical phase. We obtain a picture in which
constituent quark hadrons interact via a massive composite “gluon” (and an exchange de-

generate pomeron). Confinement and chiral symmetry breaking are realized via a simple,
universal, wee parton component of physical states. This is remarkably close to the real-
ization of the constituent quark model via light-cone quantization that has been advocated

by light-cone enthusiasts 3.

9 When is this Solution Realized in QCD ??

We have found a high-energy S-Matrix via a transverse momentum infra-red phenomenon
involving massless gluons and quarks. At first sight, it would appear that this could not
occur in QCD since non-perturbative effects should eliminate massless gluons for k⊥ <
λQCD! Our solution requires that massless QCD remain weak-coupling at k⊥ = 0. This is

10



the case only if there are a sufficient number of massless quarks in the theory to give an
infra-red fixed point for αs.

With the maximum number of flavors allowed by asymptotic freedom, there is such an
infra-red fixed point and we can also break SU(3) symmetry to SU(2) with an asymptotically-
free scalar field. This can be used to show that Λ⊥c =∞. This, in turn, implies that critical
pomeron scaling occurs for all k⊥ and allows a smooth match with perturbative QCD.

The above arguments suggest that if “single gluon” supercritical pomeron behavior is
actually observed at HERA then new QCD physics, in the form of a new fermion sector,

remains to be discovered above the (diffractive) Q2 range presently covered. Everything is
consistent if the electroweak scale is a QCD scale, i.e. the “Higgs sector” of the Standard

Model, that is yet to be discovered, is composed15 of higher-color (sextet) quarks. A special
definition of QCD is necessarily involved, but we will not discuss this here.
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