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1. Introduction

In recent years we have grown increasingly accustomed to the great suc-
cess of the Standard Model (SM) of electroweak interactions. However,
up to now only a relatively restricted sector of the SM has been checked.
The Yang–Mills character of the gauge-boson self-interactions and the Higgs
mechanism of mass generation still await conclusive confirmation. This
leaves ample of room for interesting physics at upcoming collider experi-
ments, either within or outside the SM. If any physics beyond the SM exists,
it will reveal itself in the production of new particles (direct signals) or in
deviations in the interactions between the SM particles (indirect signals).

Reactions that involve the production and subsequent decay of pairs of
unstable gauge bosons (e+e− → V1V2 → 4f+nγ) constitute powerful search
tools for such indirect signals. In this context, the limelight is presently on
the production of pairs of W bosons at LEP2, the second stage of the LEP
program. With energies above the nominal W-pair-production threshold,
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LEP2 offers a twofold possibility of testing the SM. First of all, it allows a
precise direct measurement of the W-boson mass (MW) with an envisaged
precision of ∆MW = 40 – 50MeV [1]. By combining this precise measure-
ment of MW with the high-precision data on α, Gµ, and MZ, the mass of the
top quark can be calculated within the SM as a function of the Higgs-boson
mass MH and the strong coupling αs [2]. The so-obtained top-quark mass
can then be confronted with the direct bounds from the Tevatron and the
indirect ones from the precision measurements at LEP1/SLC. In this way
improved limits on MH can be obtained. On the other hand, LEP2 can
provide information on the structure of the triple gauge-boson couplings
(TGC) [3]. These couplings appear at tree level in LEP2 processes like
e+e− → 4f or e+e− → νeν̄eγ, in contrast to LEP1 observables where they
only entered through loop corrections. At LEP2 one hopes to determine the
TGC with a relative precision of ∼ 10% with respect to the SM couplings.

At a high-energy linear collider (LC), with its envisaged energy in the
range 500 – 2000GeV, one can go one step further. Apart from TGC studies
well below the per-cent level, the high LC energies also open the possibility of
studying quartic gauge-boson couplings in reactions like e+e− → 6f or γγ →
4f , thereby entering the realm of the symmetry-breaking mechanism [4].
On top of that one can look for signs of a strongly-interacting symmetry-
breaking sector (i.e. resonances or phase shifts), by studying longitudinal
gauge-boson interactions in e+e− → 4f, 6f and γγ → 4f .

In order to successfully achieve the above-mentioned physics goals, a
very accurate knowledge of the SM predictions for the various observables
is mandatory. This requires a proper understanding of radiative corrections
as well as a proper treatment of finite-width effects. In the next sections we
address these two topics in detail.

2. Gauge-invariant treatment of unstable gauge bosons

2.1. Lowest order

The above-described physics issues all involve an investigation of pro-
cesses with photons and/or fermions in the initial and final state and un-
stable gauge bosons as intermediate particles. If complete sets of graphs
contributing to a given process are taken into account, the associated ma-
trix elements are in principle gauge-invariant, i.e. they are independent of
gauge fixing and respect Ward identities. However, the gauge bosons that
appear as intermediate particles can give rise to poles 1/(p2V −M2

V ) in phys-
ical observables if they are treated as stable particles. This can be cured
by introducing the finite decay width. In field theory, such widths arise
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naturally from the imaginary parts of higher-order diagrams describing the
gauge-boson self-energies, resummed to all orders. However, in doing a
Dyson summation of self-energy graphs, we are singling out only a very
limited subset of all possible higher-order diagrams. It is therefore not sur-
prising that one often ends up with a result that violates Ward identities
and/or retains some gauge dependence resulting from incomplete higher-
order contributions.

Until a few years ago two approaches were popular in the construction of
lowest-order LEP2/LC Monte Carlo generators. The first one, the so-called
“fixed-width scheme”, involves the systematic replacement 1/(p2V −M2

V ) →
1/(p2V −M2

V + iMV ΓV ), where ΓV denotes the physical width of the gauge
boson with mass MV and momentum pV . Since in perturbation theory the
propagator for space-like momenta does not develop an imaginary part, the
introduction of a finite width also for p2V < 0 has no physical motivation
and in fact violates unitarity, i.e. the cutting equations. This can be cured
by using a running width iMV ΓV (p

2
V ) instead of the constant one iMV ΓV

(“running-width scheme”).
As in general the resonant diagrams are not gauge-invariant by them-

selves, the introduction of a constant or running width destroys gauge invari-
ance. At this point the question arises whether the gauge-breaking terms
are numerically relevant or not. After all, the gauge breaking is caused by
the finite decay width and is, as such, in principle suppressed by powers of
ΓV /MV . For LEP1 observables we know that gauge breaking can be neg-
ligible for all practical purposes. However, the presence of small scales can
amplify the gauge-breaking terms. This is for instance the case for almost
collinear space-like photons [5] or longitudinal gauge bosons (VL) at high
energies [6], involving scales of O(p2

B
/E2

B
) for B = γ, VL. The former plays

an important role in TGC studies in the reaction e+e− → e−ν̄eud̄, where
the electron may emit a virtual photon with p2γ as small as m2

e . The latter

determines the high-energy behaviour of the generic reaction e+e− → 4f .
In these situations the external current coupled to the photon or to the
longitudinal gauge boson becomes approximately proportional to p

B
. Sen-

sible theoretical predictions, with a proper dependence on p2γ and a proper
high-energy behaviour, are only possible if the amplitudes with external
currents replaced by the corresponding gauge-boson momenta fulfill appro-
priate Ward identities.

In order to substantiate these statements, a truly gauge-invariant scheme
is needed. It should be stressed, however, that any such scheme is arbitrary
to a greater or lesser extent: since the Dyson summation must necessarily
be taken to all orders of perturbation theory, and we are not able to com-
pute the complete set of all Feynman diagrams to all orders, the various
schemes differ even if they lead to formally gauge-invariant results. Bearing
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this in mind, we need besides gauge invariance some physical motivation
for choosing a particular scheme. In this context two options can be men-
tioned. The first option is the so-called “pole scheme” [7]. In this scheme
one decomposes the complete amplitude by expanding around the poles. As
the physically observable residues of the poles are gauge-invariant, gauge in-
variance is not broken if the finite width is taken into account in the pole
terms ∝ 1/(p2V −M2

V ). It should be noted that there is no unique definition
of these residues. Their calculation involves a mapping of off-shell matrix
elements with off-shell kinematics on on-resonance matrix elements with
restricted kinematics. The restricted kinematics, however, is not unambigu-
ously fixed. After all, it contains more than just the invariant masses of the
unstable particles and one has to specify the variables that have to be kept
fixed when determining the residues. The resulting implementation depen-
dence manifests itself in differences of subleading nature, e.g. O(ΓV /MV )
suppressed deviations in the leading pole-scheme residue. In particular near
phase-space boundaries, like thresholds, the implementation differences can
take on noticeable proportions.

We roughly sketch the pole-scheme method for a single unstable particle.
The Dyson resummed lowest-order matrix element is given by

M∞ =
W (p2V , ω)

p2V −M2
V

∞
∑

n=0

(

ΣV (p
2
V )

p2V −M2
V

)n

=
W (p2V , ω)

p2V −M2
V − ΣV (p2V )

(1)

=
W (M2, ω)

p2V −M2

1

Z(M2)
+

[

W (p2V , ω)

p2V −M2
V − ΣV (p2V )

− W (M2, ω)

p2V −M2

1

Z(M2)

]

,

where ΣV (p
2
V ) is the self-energy of the unstable particle, M2 is the pole

in the complex p2V plane, and Z(M2) is the wave-function factor: M2 −
M2

V − ΣV (M
2) = 0 and Z(M2) = 1− Σ′

V (M
2) . The first term in the last

expression of (1) represents the single-pole residue, which is closely related
to on-shell production and decay of the unstable particle. The argument
ω denotes the dependence on the other variables, i.e. the implementation
dependence. The second term has no pole and can be expanded in powers
of p2V −M2.

The second option is based on the philosophy of trying to determine
and include the minimal set of Feynman diagrams that is necessary for
compensating the gauge violation caused by the self-energy graphs. This
is obviously the theoretically most satisfying solution, but it may cause an
increase in the complexity of the matrix elements and a consequent slowing
down of the numerical calculations. For the gauge bosons we are guided by
the observation that the lowest-order decay widths are exclusively given by
the imaginary parts of the fermion loops in the one-loop self-energies. It
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is therefore natural to perform a Dyson summation of these fermionic one-
loop self-energies and to include the other possible one-particle-irreducible
fermionic one-loop corrections (“fermion-loop scheme”) [5, 6]. For the LEP2
process e+e− → 4f this amounts to adding the fermionic corrections to the
triple gauge-boson vertex. The complete set of fermionic contributions forms
a gauge-independent subset and obeys all Ward identities exactly, even with
resummed propagators [6].

Having two gauge-invariant calculational schemes to compare with, we
can now have a closer look at the ever-popular fixed- and running-width
schemes. The running-width scheme violates electromagnetic and SU(2)
gauge invariance already in e+e− → 4f and is found to produce completely
unreliable results [5, 6]. Within the fixed-width scheme electromagnetic
gauge invariance is preserved in e+e− → 4f for massless external parti-
cles, eliminating problems with almost collinear space-like photons. This
is indeed confirmed by the numerical comparison in Refs. [5, 6]. In more
general reactions, like e+e− → 4fγ, electromagnetic gauge invariance is
broken. Owing to the presence of non-transverse W-boson contributions,
electromagnetic gauge invariance in e+e− → 4fγ can be achieved only if the
process e+e− → 4f is SU(2) gauge-invariant. At high energies (EV ≫ MV )
the fixed-width scheme in general violates SU(2) gauge invariance by terms
of the order MV ΓV /E

2
V [6]. In matrix elements for physical processes the

gauge-invariance-violating terms are enhanced by a factor EV /MV for each
effectively longitudinal gauge boson. The process e+e− → 4f involves at
most two longitudinal gauge bosons, such that the SU(2) gauge violation
is suppressed by ΓV /MV at the matrix-element level. Therefore, the high-
energy behaviour of the cross-section in the fixed-width scheme is consistent
with unitarity, which is confirmed by the numerical comparison in Ref. [6].
However, our argument implies a bad high-energy behaviour for processes
with more intermediate (longitudinal) gauge bosons, like longitudinal gauge-
boson scattering in e+e− → 6f .1

2.2. Radiative corrections

The implementation of radiative corrections adds an additional level of
complexity by the sheer number of contributions (103 – 104) that have to be
evaluated.

1 A fixed-width scheme that preserves electromagnetic and SU(2) gauge invariance is
only possible if one uses one complex gauge-boson mass, everywhere. Consequently,
the complex W and Z masses have to be related byM2

W−iMWΓW = c2W(M2
Z−iMZΓZ),

leading to a relation between the decay widths that is not supported by experiment.
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By employing the fermion-loop scheme all one-particle-irreducible fermi-
onic one-loop corrections can be embedded in the tree-level matrix elements.
This results in running couplings, propagator functions, vertex functions,
etc. However, there is still the question about the bosonic corrections. A
large part of these bosonic corrections, as e.g. the leading QED corrections,
factorize and can be treated by means of a convolution, using the fermion-
loop-improved cross-sections in the integration kernels. This allows the in-
clusion of higher-order QED corrections and soft-photon exponentiation. In
this way various important effects can be covered, as e.g. the large negative
soft-photon corrections near the nominal W-pair threshold, the distortion of
angular distributions as a result of hard-photon boost effects, and the aver-
age energy loss due to radiated photons [2, 8]. Nevertheless, the remaining
bosonic corrections can be large, especially at high energies [2, 8, 9].

In order to include these corrections one might attempt to extend the
fermion-loop scheme. In the context of the background-field method [10] a
Dyson summation of one-loop bosonic self-energies can be performed with-
out violating the Ward identities [11]. However, the resulting matrix ele-
ments depend on the quantum gauge parameter at the loop level that is
not completely taken into account. As mentioned before, the perturbation
series has to be truncated; in that sense the dependence on the quantum
gauge parameter could be viewed as a parametrization of the associated
ambiguity.

As an additional complication for such Dyson-summation techniques, we
mention that a consistent calculation of the radiative corrections involves
also the one-loop corrections to the decay widths. Since this requires the
imaginary part of the two-loop self-energies, also other (imaginary parts of)
two-loop corrections are needed to restore gauge invariance. An efficient
way of overcoming this complication is still under investigation.

As a more appealing and economic strategy we discuss in the next section
how the radiative corrections can be calculated in an approximated pole-
scheme expansion.

3. Radiative corrections in the double-pole approximation

The presently most favoured framework for evaluating the radiative cor-
rections to resonance-pair-production processes, like W- and Z-pair produc-
tion, involves the so-called double-pole approximation (DPA). This approx-
imation restricts the complete pole-scheme expansion to the term with the
highest degree of resonance. In the case of W/Z-pair production only the
double-pole residues are hence considered. The intrinsic error associated
with this procedure is αΓV /(πMV ) <∼ 0.1%, except far off resonance and
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e+

e−
W

W

f1

f̄ ′
1

f̄ ′
2

f2
production decays

Fig. 1. The generic structure of the factorizable W-pair contributions. The shaded
circles indicate the Breit–Wigner resonances.

close to phase-space boundaries where also the implementation dependence
of the double-pole residues can lead to enhancement factors. For this reason
the DPA is only valid a few ΓV above the nominal (on-shell) gauge-boson-
pair threshold.

In the DPA one can identify two types of contributions. One type com-
prises all diagrams that are strictly reducible at both unstable gauge-boson
lines (see Fig. 1). These corrections are therefore called factorizable and
can be attributed unambiguously either to the production of the gauge-
boson pair or to one of the subsequent decays. The second type consists
of all diagrams in which the production and/or decay subprocesses are not
independent (see Fig. 2). We refer to these effects as non-factorizable cor-
rections (NFC). In the DPA the NFC arise exclusively from the exchange
or emission of photons with Eγ

<∼ O(ΓV ). Hard photons as well as other
massive particles do not lead to double-resonant contributions.

In the case of photon emission from a W boson (see Fig. 3), the split-up

γ

W

W

γ

W
W

W

γ

W
W

W

W

W

γ

W

W

Fig. 2. Examples for virtual (top) and real (bottom) non-factorizable corrections
to W-pair production.
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between factorizable and non-factorizable corrections can be achieved with
the help of a partial-fraction decomposition of the two W-boson propagators
separated by the photon [12]:

1

[p2 −M2][(p − k)2 −M2]
=

1

2(p · k)

(

1

(p− k)2 −M2
− 1

p2 −M2

)

, (2)

whereM2 = M2
W− iMWΓW, k is the momentum of the emitted photon, and

p is the momentum of the W boson before emission. In this way one obtains
a sum of two resonant W-boson propagators multiplied by an ordinary on-
shell eikonal factor. This decomposition allows a gauge-invariant split-up
of the real-photon matrix element in terms of one contribution where the
photon is effectively emitted from the production part, and another two
where the photon is effectively emitted from one of the two decay parts.
The squares of the three contributions can be identified as factorizable cor-
rections, whereas the interference terms are of non-factorizable nature. The
same type of split-up can be performed for the corresponding virtual cor-
rections.

The factorizable corrections have the nice feature that they can be ex-
pressed in terms of corrections to on-shell subprocesses, i.e. the production
of two on-shell gauge bosons (V1V2) and their subsequent on-shell decays.
In this way the well-known on-shell radiative corrections to the production
and decay of pairs of gauge bosons (see Ref. [8] and references therein) ap-
pear as basic building blocks of the factorizable corrections. For instance,
for the virtual factorizable corrections in DPA one finds

Mf =
∑

V pol.

Me+e−→V1V2MV1→f1f̄2MV2→f3f̄4

(q21 −M2)(q22 −M2)
, (3)

withM2 = M2
V −iMV ΓV and q21,2 the invariant masses squared of the bosons

V1,2. The off-shell character of the reaction is reflected by the occurrence of
the two Breit–Wigner resonances.

3.1. Factorizable real-photon corrections in double-pole approximation

As indicated above, the factorizable real-photon corrections are charac-
terized by their close relation to on-shell subprocesses. In this context three
regimes for the photon energy play a role:

• for hard photons [Eγ ≫ ΓV ] the Breit–Wigner poles of the gauge-
boson resonances before and after photon radiation (see s′V and sV in
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Fig. 3) are well separated in phase space. This leads to three distinct

regions of on-shell contributions, where the photon can be assigned
unambiguously to the gauge-boson-pair-production subprocess or one
of the two decays. Therefore, the double-pole residue can be expressed
as the sum of the three on-shell contributions without increasing the
intrinsic error of the DPA. Note that in the same way it is also possible
to experimentally assign the photon to one of the subprocesses, since
misassignment errors are suppressed.

• for “semi-soft” photons [Eγ = O(ΓV )] the Breit–Wigner poles are rel-
atively close together in phase space, resulting in a substantial overlap
of the line shapes. The assignment of the photon is now subject to
larger errors, and the DPA has to be applied with caution.

• for soft photons [Eγ ≪ ΓV ] the Breit–Wigner poles are on top of each
other, resulting in a pole-scheme expansion that is identical to the one
without the photon.

If the photon is integrated out, the reduction of the five-particle phase
space to a four-particle one introduces a parametrization dependence. As
we will see in the following, the size of the radiative corrections depends
strongly on the choice of parametrization of the four-particle phase space.

When one produces two resonances, or one resonance and a stable parti-
cle, the line shape of such a resonance is measured from the invariant-mass
distribution of its decay products. This has to be contrasted with the Z res-
onance at LEP1, which is defined as a function of the centre-of-mass energy
squared. Depending on how one measures the invariant-mass distribution,
different sources of Breit–Wigner distortions can be identified. At LEP1
such a distortion is caused by initial-state radiation (ISR) [13], but in our
case also final-state radiation (FSR) can be responsible.

In Ref. [14] it has been shown that such a FSR-induced distortion is
a general property of resonance-pair reactions, irrespective of the adopted
scheme for implementing the finite-width effects. The only decisive factor for
the distortion to take place is whether the virtuality of the unstable particle
is defined with or without the radiated photon (see Fig. 3). Upon integration
over the photon momentum, the former definition (s′V ) is free of large FSR
effects from the V -decay system. It can only receive large corrections from
the other (production or decay) stages of the process. The latter definition
(sV ), however, does give rise to large FSR effects from the V -decay system.
In contrast to the LEP1 case, where the ISR-corrected line shape receives
contributions from effectively lower Z-boson virtualities, the sV line shape
receives contributions from effectively higher virtualities s′V of the unstable
particle. As was argued above, only sufficiently hard photons (Eγ ≫ ΓV )
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e+

e− p

V

p−k

V

γ

k

Fig. 3. Photon radiation from an unstable particle V. Virtualities: sV = (p − k)2

and s′V = p2.

can be properly assigned to one of the on-shell production or decay stages
of the process in the DPA. For semi-soft photons [Eγ = O(ΓV )], however,
the assignment lacks a solid motivation and an invariant-mass definition in
terms of the decay products without the photon seems more natural. As
was pointed out in Ref. [14], exactly these semi-soft photons are responsible
for the FSR-induced distortion effects. The hard FSR photons move the
virtuality s′V of the unstable particle far off resonance for near-resonance
sV values, resulting in a suppressed contribution to the sV line shape. This
picture fits in nicely with the negligible overlap of the three on-shell double-
pole contributions for hard photons, discussed above.

The size of the FSR-induced distortion can be parametrized in terms
of the shift in the peak position and the corresponding peak reduction fac-
tor with respect to the lowest-order line shape. These parameters depend
strongly on the type of unstable particle and the precise experimental def-
inition of the associated invariant mass.2 The shift in the peak position
generally amounts to several times −10MeV. As extreme values we men-
tion −110MeV for an unstable Z boson that decays as Z → e+e− and
−45MeV for an unstable W boson that decays as W → eνe, assuming no
minimum opening angle between the leptons and the photon. The peak
reduction factor lies in the range 0.95 – 0.75. All this stresses the impor-
tance of a proper inclusion of FSR effects in the experimental method for
extracting the gauge-boson masses from the reconstructed line shapes.

As an example we display in Fig. 4 the large FSR-induced distortion
effects for the double-resonance toy process νµν̄µ → ZZ → e−e+ντ ν̄τ . Apart
from being exactly calculable, this process is free of the usual gauge-invari-
ance problems and it only receives QED corrections from the Z → e+e−

decay. As such it is well suited for showing the salient features of FSR. Like
at LEP1, the size of the O(α) corrections indicates the need for a resumma-
tion of soft-photon effects. A justification of this can be found in the fact

2 In realistic event-selection procedures a minimum opening angle between the decay
products and the photon is required for a proper identification of all particles. This
affects the integration range of the photon momentum and therefore the size of the
distortion.
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dσ
dM2

1
dM2

2

[pb/GeV4]

M1 [GeV]89 90 91 92 93
0e+00

2e-08

4e-08

6e-08

8e-08

1e-07
born
+ O(α) corr
resummed

Fig. 4. The FSR-induced distortion of the line shape dσ/(dM2
1 dM2

2 ) corresponding
to the toy process νµν̄µ → ZZ → e−e+ντ ν̄τ for M2 = MZ. Here M1 and M2 stand
for the invariant masses of the e−e+ and ντ ν̄τ pair, respectively. Centre-of-mass
energy:

√
s = 200GeV. No minimum opening angle between the photon and e±.

Plot taken from Ref. [14].

that only semi-soft photons lead to the distortion. The resummation factor
δres that multiplies the lowest-order double-invariant-mass distribution in
Fig. 4 can be accurately approximated by

δres = (1 +
3

4
β)

∞
∫

1

dζ β (ζ − 1)β−1 |DZ(M
2
1 )|2

|DZ(ζM2
1 )|2

= (1 +
3

4
β)

πβ

sin(πβ)
Re

[

iD∗

Z(M
2
1 )

MZΓZ

(

DZ(M
2
1 )

M2
Z

)β
]

, (4)

with β = (2α/π) [log(M2
Z/m

2
e)− 1] and DZ(p

2) = p2 −M2
Z + iMZΓZ.

3 The
fact that the FSR-corrected line shape receives contributions from effectively
higher virtualities is reflected by the parameter ζ, which takes on values
above unity. Apart from the inversion of ζ, the situation is the same as for
ISR at LEP1. This analogy is also confirmed by simple rules of thumb for
the peak position and peak reduction factor (cf. Refs. [14, 15]).

3.2. Non-factorizable corrections

3 Equation (4) equally applies to other unstable particles and decay products, provided
the definitions of the resonance parameters (MZ,ΓZ) and β are properly adjusted.
For instance, a W → µνµ decay requires MZ → MW, ΓZ → ΓW, me → mµ and
α → α/2.
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γ

W

W

W

W

Fig. 5. Diagram contributing both to factorizable and non-factorizable corrections.

The NFC to gauge-boson pair production have been considered by sev-
eral authors in recent years. First it was shown that the NFC vanish in
inclusive quantities [16, 17], i.e. if the invariant masses of both gauge bosons
are integrated out. The NFC to differential distributions in W-pair produc-
tion were first calculated in Ref. [18], but the analytical results were given
only in an implicit form and the numerical evaluation was restricted to a
special phase-space configuration. Recently two groups have independently
provided both the complete formulae and an adequate numerical evaluation
for the leptonic final state [19, 20]. While these latter two calculations agree
analytically and numerically, they deviate from the results of Ref. [18]. Sub-
sequently, also numerical results for other final states in W-pair production
and Z-pair production were investigated [21]. In the following, we discuss
the results based on Refs. [19, 20, 21].

The manifestly non-factorizable diagrams (see Fig. 2 for examples) are
not gauge-invariant. A gauge-invariant definition of the NFC can be given
in different ways. One possibility, used in Ref. [19], is based on the fact
that only soft and semi-soft photons contribute in the DPA. The associated
matrix element can be written as a product of the lowest-order matrix ele-
ment times conserved soft-photon currents, which can be decomposed into
one production and two decay currents with the help of (2). The NFC are
then defined as all interferences between the three currents.

A second definition [20] makes use of the gauge independence of the
complete double-resonant corrections. The factorizable double-resonant cor-
rections are given by the product of gauge-invariant on-shell matrix ele-
ments for gauge-boson pair production and gauge-boson decays, and the
(transverse parts of the) gauge-boson propagators [see (3)]. Therefore, the
double-resonant NFC can be defined by subtracting the double-resonant
factorizable corrections from the complete double-resonant corrections. It
turns out that both definitions are equivalent in the DPA and, for charged
bosons, include parts of the diagram shown in Fig. 5 (cf. Ref. [16]).

Since only soft and semi-soft photons are relevant, each virtual diagram
contributing to the NFC reduces to the corresponding lowest-order matrix
element times a correction factor that involves besides kinematical variables

12



only a scalar integral. After evaluation of this scalar integral, an expansion
of the residue around the poles at p2V = M2

V can be performed. The constant
finite width can be introduced either before integration or in the final result.
It regularizes besides the resonant propagators also logarithms of the form
log(p2V −M2

V ).
The real-photon NFC can be calculated in a similar way. The integration

region for the energy of the real photon can be extended to infinity without
changing the result. However, when integrating over the photon momentum,
the complete parametrization of phase space has to be specified [20]. In
analogy to the factorizable corrections, also the real-photon NFC are not
universal but depend on the choice of this parametrization, even in DPA. We
follow the usual procedure and take the invariant masses of decay fermion
pairs as independent variables.

After combining real and virtual contributions, the NFC yield a simple
polarization-independent correction factor to the lowest-order cross-section:

dσnf = δnf dσBorn. (5)

For the processes

e+(p+)+e−(p−) → V1(q1)+V2(q2) → f1(k1)+f̄2(k2)+f3(k3)+f̄4(k4), (6)

with V1V2 = WW or ZZ, this factor can be written as [20]

δnf(k1, k2; k3, k4) =
∑

a=1,2

b=3,4

(−1)a+b+1 QaQb

α

π
Re {∆(q1, ka; q2, kb)}. (7)

Here Qi (i = 1, 2, 3, 4) denotes the relative charge of fermion fi and q1 =
k1 + k2, q2 = k3 + k4 the momenta of the virtual bosons. Each term in
the sum of (7) corresponds to the photon exchange between two specific
final-state fermions that originate from different bosons. The function ∆ is
explicitly given in Ref. [20] and, in a different notation, in Ref. [19]. It has
in DPA the important property: (Ki ≡ q2i −M2

V + iMV ΓV )

∆ +∆

∣

∣

∣

∣

K1 →−K∗

1

+∆

∣

∣

∣

∣

K2 →−K∗

2

+∆

∣

∣

∣

∣

K1,2 →−K∗

1,2

= 0. (8)

The final result for the NFC has the following general features:

• Photon-exchange contributions between initial and final states cancel
between virtual and real corrections, leaving behind the cross-talk
between the two decay systems as only contributions. Consequently,
the NFC are independent of the production angle of the gauge bosons
and (7) is applicable to other initial states like qq̄ or γγ.
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• The mass-singular logarithms that are present in individual contri-
butions cancel, and the complete NFC are free of mass singulari-
ties. As a consequence, the typical order of magnitude of the NFC
is α/π ∼ 0.3%.

• Equation (8) implies that the NFC vanish if both virtual gauge bosons
are on-shell. This leads to a suppression with respect to the factoriz-
able corrections. For single-invariant-mass distributions the suppres-
sion factor is (q21,2−M2

V )/(MV ΓV ). This is of order one in the vicinity

of the resonance, i.e. for q21,2 − M2
V = O(MV ΓV ), ensuring that the

NFC are genuine double-pole contributions.

• As can be seen from (8), the NFC vanish if both invariant masses are
integrated over. Thus, they vanish for pure angular distributions and
therefore have no impact on standard TGC studies.

• Finally, the NFC vanish at high energies. This can be easily illustrated
by the result for the production of one stable and one unstable charged
particle with equal masses, where the correction factor becomes [18]

δnf = −α
(1− β)2

β
arctan

(

q2 −M2
V

MV ΓV

)

with β =
√

1− 4M2
V /s.

This simple formula describes qualitatively also the realistic case of the
single-invariant-mass distribution in the case of two unstable particles.

These features indicate that the NFC are less important than the factor-
izable corrections. But their actual relevance depends on the experimental
accuracy and the observable under consideration.

We first consider the NFC to e+e− → WW → 4f . In Fig. 6 we show
the NFC to the single-invariant-mass distribution dσ/dM1 of the process
e+e− → WW → νee

+e−ν̄e for various centre-of-mass energies. With M1,2

we denote the invariant masses of the first and second fermion–antifermion
pairs, respectively. The NFC are roughly 1% for

√
s = 172GeV and decrease

fast with increasing energy. They distort the invariant-mass distribution
and thus in principle influence the determination of the W-boson mass from
the direct reconstruction of the decay products. The corresponding mass
shift can be estimated by the displacement of the maximum of the single-
invariant-mass distribution caused by the corrections shown in Fig. 6. This
displacement turns out to be of the order of 1 – 2MeV, i.e. small compared
to the LEP2 accuracy.

In Fig. 7 we compare the results for the single-invariant-mass distri-
bution dσ/dM1 for various final states, once calculated using the code of
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Fig. 6. Relative NFC to the single-invariant-mass distribution dσ/dM1 for e
+e− →

WW → νee
+e−ν̄e. Plot taken from Ref. [20].
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based on Ref. [19]. Centre-of-mass energy:

√
s = 184GeV.

Ref. [20] and once using the code of Ref. [19]. The NFC are similar for
all final states. The NFC to the distribution dσ/dM2 can be derived from
the results for dσ/dM1 by a CP transformation of the final state [21]. The
results for the single-invariant-mass distributions agree very well between
the two different calculations, in particular for large invariant masses and
for invariant masses close to the W-boson mass, which dominate the cross-
sections. The discrepancies for smaller invariant masses are of the order of
the non-double-resonant corrections and are due to different implementa-
tions of the corrections. While in the numerical evaluations of Ref. [19] the
phase space and the Born matrix element are taken entirely on-shell, these
are taken off-shell in the evaluation of Refs. [20, 21].
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Results for the dependence of the NFC on angles and energies of the
final-state fermions can be found in Refs. [20, 21]. These NFC are typically
of the order of one percent, i.e. somewhat larger than for the invariant-mass
distributions. The largest effects of some per cent can be observed near the
edges of phase space, where statistics is limited.

Next we consider the NFC to e+e− → ZZ → 4f . Figure 8 shows the
NFC to the single-invariant-mass distribution dσ/dM1, which is identical
to dσ/dM2. Again the results of Ref. [21] agree well with those based on
Ref. [19]. For opposite signs of Q1 and Q3 the sign of the corrections is
reversed with respect to e+e− → WW → 4f . The corrections by themselves
are very small and phenomenologically unimportant. The smallness of these
corrections results from the fact that δnf is symmetric in k1 ↔ k2 and
k3 ↔ k4 after integration over the decay angles. For all observables that
involve an integration over the phase space that respects this symmetry,
the NFC are suppressed either by the charges or the vector couplings of the
final-state fermions [21].

If the decay angles are not integrated out, this suppression does not
apply. In fact, owing to the presence of four charged final-state fermions,
the NFC to angular Z-pair distributions are enhanced with respect to the
W-pair case by a factor of roughly four for purely leptonic final states, and
can amount to up to 10% [21]. Note, however, that the cross-section for
Z-pair production is only one tenth of the W-pair production cross-section.

4. Summary
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For a gauge-invariant treatment of finite-width effects in lowest-order
off-shell gauge-boson pair production two consistent schemes exist, i.e. the
fermion-loop scheme and the pole scheme. For the calculation of the ra-
diative corrections the latter scheme offers a promising framework in the
form of the double-pole approximation. This approximation results in a
split-up of the corrections in so-called factorizable and non-factorizable cor-
rections. As far as the factorizable corrections are concerned, in particular
the photonic ones are crucial for coming up with adequate theoretical pre-
dictions. While in this context the importance of initial-state radiation is
evident and commonly acknowledged, also the Breit–Wigner distortions in-
duced by final-state radiation should be taken into account properly. The
non-factorizable corrections to W-pair and Z-pair production are small with
respect to the experimental accuracy at LEP2. As a consequence, the fac-
torizable corrections are sufficient for theoretical predictions for LEP2. The
size of the non-factorizable corrections might, however, compete with the
expected experimental accuracy at future linear e+e− colliders with higher
luminosity.
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F. Zwirner, (CERN 96-01, Genève, 1996) Vol. 1, p. 79, hep–ph/9602351.

[3] G. Gounaris et al., in Physics at LEP2, eds. G. Altarelli, T. Sjöstrand and
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