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Chiral Disorder and QCD at Finite Chemical Potential
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We investigate the effects of a finite chemical potential
µ in QCD viewed as a disordered medium. In the quenched
approximation, A4 = iµ induces a complex electric Aharonov-
Bohm effect that causes the diagonal contribution to the
quark return probability to vanish at µ = mπ/2 (half the pion
mass). In two-color QCD, the weak-localization contribution
to the quark return probability remains unaffected causing a
mutation in the spectral statistics. In full QCD, the complex
electric flux is screened and the light quarks are shown to
diffuse asymmetrically with a substantial decrease in the con-
ductivity along the ‘spatial’ directions. Mean-field arguments
suggest that a d=1 percolation transition may take place in
the range 1.5ρ0 < ρ < 3ρ0, where ρ0 is nuclear matter density.

PACS numbers : 11.30.Rd, 12.38.Aw, 64.60.Cn

1. QCD at finite chemical potential µ is still not well
understood despite the many efforts invested by a num-
ber of groups in the past years. Lattice Monte-Carlo
algorithms are difficult to implement at finite µ owing
to the complex character of the measure [1]. Results
from strong coupling arguments [2] and quenched simu-
lations [1,3] are available but do not seem to be transpar-
ent physically. A number of theoretical constraints can
be implemented using symmetry and data [4]. However,
they are only reliable for densities typically of the order
of nuclear matter density ρ0. Results from constituent
quark models at higher densities point at the possibility
of a chiral transition at about 3 times nuclear matter den-
sity [5] and the occurrence of a diquark superconducting
phase at even higher densities [6].
In this letter we would like to address the effects of a fi-

nite chemical potential on the chiral disorder of the QCD
ground state. At µ = 0 we have recently [7,8] shown that
light quarks in a finite Euclidean volume V are in a diffu-
sive mode, with a diffusion constant D = 2F 2/Σ where
F is the weak pion decay constant and Σ = |〈qq〉| the
light quark condensate. The effects of matter cause the
medium to change thereby affecting the diffusion prop-
erties of the light quarks. In many ways our problem is
similar to the problem of electrons in disordered metals
under the influence of external sources [9].

2. The eigenvalue equation of the Dirac operator for
fundamental quarks in a fixed gluon field A at finite
chemical potential µ is

(i∇/[A] + iµγ4) qk = λk[A] qk . (1)

for the right-eigenfunctions, and

(i∇/[A]− iµγ4) Qk = λ∗
k[A]Qk . (2)

for the left-eigenfunctions. The eigenvalues are com-
plex and paired by chiral symmetry. The set (qk, Qk)
is biorthogonal. Generalizing the construction [7] for the
case of a finite chemical potential, we may write the prob-
ability p(t, µ) for a light quark to start at x(0) in V and
return back to the same position x(t) after a proper time
duration t, as

p(t, µ) =
V 2

N
e−2m|t|

〈

|〈x(0)|ei(i∇/[A]+iµγ4)|t||x(0)〉|2
〉

A
. (3)

The averaging in (3) is over all gluon configurations us-
ing the unquenched QCD measure with massive (sea)
quarks. The normalization in (3) is per state, where N
is the total number of quark states in the four-volume V .
Equation (3) can be resolved in terms of (1-2)

p(t) =
V 2

N
e−2m|t|

∑

j,k

×
〈

ei|t|(λj−λ∗

k)[A]qj(x)Q
∗
j (x)Qk(x)q

∗
k(x)

〉

A
(4)

where the exponent e−2m|t| is solely due to the valence
quark mass. We note that (4) is gauge-invariant and
amenable to lattice Monte-Carlo simulation. It requires
both the eigenvalues and eigenfunctions.
For analytical considerations, it is best to rewrite (3)

in terms of the standard Euclidean propagators for the
quark field,

p(t, µ) =
V 2

N
lim
y→x

∫

dλ1dλ2

(2π)2
e−i(λ1−λ2)|t|

×
〈

Tr
(

S(x, y; z1, µ)S
†(x, y; z2, µ)

)

〉

A
(5)

with z1,2 = m− iλ1,2, and

S(x, y; z, µ) = 〈x| 1

i∇/[A] + iµγ4 + iz
|y〉 . (6)

Since the eigenvalues (1) are complex, it is important that
m > max Imλk in (5-6). For small µ the imaginary parts
are of order µ2 (second order perturbation theory) so it is
enough to have m > µ2 in units where the infrared scale
is of order 1. For large µ, m should be made large and
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then reduced after integration. This will be understood
throughout.
Setting λ1,2 = Λ ± λ/2 and neglecting the effects of Λ

in the averaging in (5) [7], we find that in the flavor sym-
metric limit, the correlation function in (5) relates to the
‘baryonic’ pion correlation function [10] after a proper
analytical continuation of the current quark mass [7].
Specifically,

p(t, µ) =
EV 2

2πN
lim
y→x

∫

dλ

2π
e−iλ|t|CπB

(x, y; z) (7)

where

1ab CπB
(x, y; z) =

〈

Tr
(

S(x, y; z, µ)iγ5τ
aS(y, x; z,−µ)iγ5τ

b
)

〉

A
(8)

with z = m−iλ/2 and E =
∫

dΛ. For conventional pions
both propagators in (8) carry µ with the same sign.

3. The effects of µ in (1) is that of a complex and
constant 4-vector potential A4 = iµ. It breaks particle-
antiparticle symmetry much like a vector potential breaks
particle-particle (antiparticle-antiparticle) symmetry. It
acts like a complex electric Aharonov-Bohm effect in the
particle-antiparticle channel. The particle-antiparticle
system breaks apart for µ typically of the order of the
binding energy (about the pion mass). This phenomenon
is reminiscent of the destruction of heavy-mesons by
chromo-electric fields [11], and charge or spin density
waves by transverse electric fields [12], although not iden-
tical since in our case the ‘electric field’ is zero.
In the quenched approximation, the only dependence

on µ in (8) is that shown in the external propagators. In
the semi-classical approximation and for three colors (for
two colors see below) it acts as a ‘complex’ flux on the
‘diffusons’ (particle-antiparticle) [7]. For z = m, the long
paths contributions to (8) are given by

CπB
(x, y;m) ≈ 1

V

∑

Q

eiQ·(x−y)Σ
2

F 2

1

Q̃2 +m2
π

(9)

with Qα = nα2π/L and Q̃α = Qα + 2iµδ4α in V = L4.
The factor 2 in front of A4 reflects on the fact that the
fluxes add in the ‘diffuson’. Using the Gell-Mann Oakes
Renner (GOR) relation F 2m2

π = mΣ, and the analytical
continuation m → m− iλ/2, we find

CπB
(x, y; z) ≈ 1

V

∑

Q

eiQ·(x−y) 2Σ

−iλ+ 2m+DQ̃2
(10)

with the diffusion constant D = 2F 2/Σ [7]. Inserting
(10) into (7), we observe that the ‘diffusion’ pole in the
lower part of the complex plane depends critically on the
value of the chemical potential µ.
In the zero mode approximation nα = 0 or for large

times t > τerg = L2/D, the quark return probability is

p(t, µ) ≈ θ(mπ − 2µ) e−D(m2

π−4µ2)|t| (11)

where we have used E/∆ = N and ̺ = 1/∆V , with
Σ = π̺, according to the Banks-Casher relation. Here ∆
is the mean interlevel spacing between the eigenvalues for
µ = 0. The occurrence of the step-function theta in (11)
reflects on the fact that the diffusion pole moves from
the lower-half to the upper-half of the complex λ-plane.
For t > τerg the quark return probability vanishes for
µ = mπ/2 in the quenched approximation. Physically,
this means that the complex electric flux splits the quark-
antiquark pair in the quenched approximation a situation
reminiscent of the magnetic fluxes in type-I superconduc-
tors [13]. This result is consistent with current quenched
lattice simulations [3] and the results of schematic chiral
random matrix models for finite µ [14–16].
We note that in the double scaling limit Dm2

πtH ∼
mV ≪ 1 and Dµ2tH ∼ µ2V ≪ 1, (11) is about 1 and
universal. This regime is amenable to a random matrix
model analysis and signals the onset of a new universality
for the complex eigenvalues of (1). It can be modeled
using a reduction to 0-dimension.

4. For two-color QCD the situation is special since in
this case the Dirac operator possesses an additional sym-
metry [17] due to the pseudo-real nature of the SU(2)
representations. In the diffusive picture of the QCD vac-
uum this means that the quark return probability re-
ceives contributions from both ‘diffusons’ (diagonal) and
‘cooperons’ (interference) paths in the semi-classical ap-
proximation [7] (and references therein). The ‘cooper-
ons’ are just the weak-localization contribution to the
quark return probability [9]. In the standard description
of diffusion they follow from the interference between the
classical loops traveled in opposite directions (coherent
backscattering) and reflect on the time-reversal invari-
ance of the underlying microscopic Hamiltonian. While
the ‘diffusons’ sense 2 flux lines, the ‘cooperons’ are flux-
blind. A rerun of the above arguments now give

CπB
(x, y; z) ≈ +

1

V

∑

Q

eiQ·(x−y) 2Σ

DQ̃2 + 2m− iλ

+
1

V

∑

Q

eiQ·(x−y) 2Σ

DQ2 + 2m− iλ
(12)

instead of (9). The first term is the ‘diffuson’ contribu-
tion, and the second term the ‘cooperon’ contribution.
Inserting (12) into (7) yields

p(t, µ) ≈ e−Dm2

π|t|
(

θ(mπ − 2µ) e+4Dµ2|t| + 1
)

(13)

in the zero mode approximation or t > τerg = L2/D.
For µ > mπ/2 the ‘diffuson’ contribution (first term)
drops and we are only left with the ‘cooperon’ contribu-
tion which is of order e−2m|t|. The latter is of order 1
and universal for µ2 < m ≪ 1/V . The transition to the
‘cooperon’ phase is simply a transition to the supercon-
ducting phase in this case.

2



In the universal regime and for small current quark
masses, the chemical potential is µ ≪ 1/

√
V and small.

Hence, the complex eigenvalues λk carry an imaginary
part of order 1/V which is of the order of the microscopic
level spacing for the ‘unperturbed’ real parts. If we focus
on the level-correlations between only the real parts of
λ’s in the microscopic limit x = V λ ∼ 1 we expect a
mutation in the level correlations from the orthogonal to
unitary ensemble. The mutation follows a migration of
part of the quark levels from the real axis to the complex
plane under the influence of the tiny chemical potential.
The spectral rigidity Σ2(N,µ) for the real parts of λ’s
can be estimated using semi-classical arguments [7]. The
result is [18]

Σ2(N,µ) ≈ θ(mπ − 2µ)
1

2π2
ln

(

1 +
N2

α̃2

)

+
1

2π2
ln

(

1 +
N2

α2

)

(14)

where N = E/∆ ≫ 1, α̃ = D(m2
π − 4µ2)/2∆ and α =

2m/∆. The level spacing ∆ = 1/̺V is taken to be that
of the µ = 0 limit. The behavior (14) can be addressed
using current quenched lattice Monte-Carlo simulations
in QCD [1,3].

5. In unquenched QCD, the vacuum supports quark-
antiquark pairs. The ‘baryonic’ pion correlations are
screened by pair creation, rendering the quark-antiquark
system blind to the complex electric Aharonov-Bohm flux
(constant A4). As a result, the correlations in (8) are
primarily that of a quark-antiquark in a vacuum for zero
nucleon density with µ ≤ mN/3 where mN is the nucleon
mass (ignoring binding energies).
At finite nucleon density, the quark return probability

follows from a pertinent analytical continuation of the
pion propagator in matter. In a mean-field approxima-
tion we have [19,20]

CπB
(x, y;m) ≈ 1

V

∑

Q

eiQ·(x−y) (1− αρ)2

(1− βρ)

Σ2

F 2

×
(

Q2
4 +

(

1− γρ

1− βρ

)

~Q2 +

(

1− αρ

1− βρ

)

m2
π

)−1

(15)

with Qσ = nσ2π/L in V = L4. Here α = 〈N |qq|N〉/Σ
measures the strength of the pion-nucleon sigma term
relative to the scalar condensate, with 1/α ∼ 3ρ0. The
parameters β ∼ α and γ ∼ 2α relate to the S-wave pion-
nucleon scattering lengths [4,19]. The leading density ap-
proximation follows from the mean-field analysis by keep-
ing only the leading term in the nucleon density ρ [4,19].
In the space-like regime under consideration there is no
imaginary contribution to (15).
Using the GOR relation F 2m2

π = mΣ, and the ana-
lytical continuation m → m− iλ/2, we may rewrite (15)
as

CπB
(x, y; z) ≈ 1

V

∑

Q

eiQ·(x−y)

× 2Σ (1− αρ)

−iλ+ 2m+D4Q2
4 +DS

~Q2
(16)

with temporal and spatial diffusion coefficients

D4 = D
1− βρ

1− αρ
,

DS = D
1− γρ

1− αρ
. (17)

Hence D4 ∼ D and ρ independent, while DS vanishes
for ρ ∼ 1/γ ∼ 1/(2α) ∼ 1.5ρ0 in the mean-field approxi-
mation [21]. At this point the quark density of states at
zero virtuality is about ̺(µ) ∼ (1 − αρ)Σ ∼ ̺/2 by the
Banks-Casher relation [22]. Using the Kubo-formula we
conclude that the conductivity vanishes along the spatial
directions σS = DS̺ = 0. This is not a metal-insulator
transition as the conductivity σ4 = D4̺ 6= 0 is still non-
zero. It can be regarded as an ‘asymmetric’ percolation
transition from d=4 to d=1, with a diffusive quark return
probability [8] of the form

p(t, µ) ≈ e−2m|t|

√

4πE4|t|
(18)

where we have used E/∆∗ = N ≫ 1 and a density
dependent level spacing ∆∗/∆ ∼ 1/(1 − αρ). Here
E4 = D4/L

2 is the ‘temporal’ Thouless energy as op-
posed to ES = DS/L

2 the ‘spatial’ Thouless energy. A
similar phenomenon takes place at finite temperature [8].
At this stage there are two courses of action: The

conductivity σ4 vanishes continuously with the depletion
of the number of quark states at zero virtuality corre-
sponding to a vanishing of the quark density of states at
ρ ∼ 3ρ0. (In fact this is what happens if only the lead-
ing density approximation were used.) This transition is
likely of second-order or higher and would be in overall
agreement with some constituent quark model results [5].
Alternatively, it may terminate abruptly for a density
1.5ρ0 < ρ < 3ρ0 through a d=1 percolation transition.
This is intuitively more appealing if we were to proceed
from the high-density region backward, and support the
idea that a nucleon Fermi-surface in 3-dimensions cor-
respond to an array of ‘rods’ in d=4 Euclidean space
(nucleon-worldlines) forcing the conductivity to be es-
sentially 1-dimensional by Pauli-blocking. Ideas in favor
of a percolation transition at finite density have been also
stressed recently by Satz [23] using different arguments.

6. We have shown that the disordered properties of
the QCD ground state are quantitatively altered by a
finite chemical potential µ. In quenched QCD the ef-
fects of A4 = iµ are analogous to that of a complex elec-
tric Aharonov-Bohm effect, causing the ‘baryonic’ quark-
antiquark pair to accumulate 2 flux lines and rupture at
µ = mπ/2. This result is in agreement with quenched
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lattice simulations [1,3]. In two-color QCD, the quark-
quark and antiquark-antiquark pairs are flux-blind. As
a result, the weak-localization contribution to the quark
return probability remains unaffected. In the universal
limit µ2 < m ≪ 1/V , the quark spectrum in two-color
QCD exhibits a change in the spectral statistics from an
orthogonal to unitary ensemble again at µ = mπ/2.
In the unquenched approximation the electric flux is

screened and the diffusion becomes asymmetric. The
light quarks take longer time to diffuse along the spa-
tial directions owing to the presence of a Fermi surface.
This asymmetry is commensurate with the softening in
the pion dispersion relation at ρ ∼ ρ0 due to pion-nucleon
S-wave rescattering. As a result, the bulk Ohmic conduc-
tivity of the system becomes quasi 1-dimensional, with a
potential for a d=1 percolation transition in the density
range 1.5ρ0 < ρ < 3ρ0.
Most of our results can be numerically checked by an-

alyzing the quark return probability in the ergodic and
diffusive regime at finite chemical potential in lattice
QCD or in continuum models such as the instanton liquid
model [4,24].
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