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1 Introduction

Prompt-photon production plays a very important role in our understanding of the physics of
hadron collisions. At the leading order (LO) in QCD perturbation theory, prompt photons are
produced via light-quark annihilation, with emission of a hard gluon recoiling against the photon,
or via quark-gluon Compton scattering, with the emission of a quark. When the Compton process
dominates the cross section, tests or even measurements of the gluon density inside the proton
can be performed. This is the case of photon production at small xT = 2ET/

√
S (xT <∼ 0.1) in

pp̄ collisions, and it is true for all values of xT that are accessible in fixed-target proton-nucleon
collisions, due to smaller content of antiquarks relative to gluons in the nucleon sea. In particular,
prompt-photon production at large xT can therefore be used to constrain or measure the gluon
density at large x. This region of the gluon density is of great importance for the study of
high-transverse-momentum phenomena at hadron colliders, and it is not accessible using only
Deep-Inelastic-Scattering (DIS) data.

The cross section for inclusive photon production has been computed at the next-to-leading
order (NLO) in perturbation theory [1]–[3]. The NLO computation of isolated photon produc-
tion [4]–[7], which is the relevant quantity for the measurements carried out in high-energy pp̄
collisions, is also available in the limit of small size of the isolation cone [8]–[9]. These calculations
include all light-parton fragmentation processes up to NLO [10].

These theoretical results have been used [11]–[14] to probe the overall consistency of the
prompt-photon production data from both fixed-target [15]–[16] and collider experiments [17]–
[19].

The interpretation of the data has not provided so far a fully satisfactory picture. The study by
Huston et al. [13] exposed a tendency of the xT distributions to be steeper than theory, regardless
of the value of

√
S. This result could not be accomodated by a simple modification of the parton

densities, since different experiments probe different values of xT . These authors therefore pro-
posed that additional mechanisms should be introduced to explain the pattern of the data. In the
fixed-target regime, such a mechanism would be provided by the presence of a non-perturbative
kT kick, which would smear the ET spectra. This phenomenon was also advocated to help explain
the spectra of fixed-target heavy-quark production [20]. In the high-energy regime, probed by the
Tevatron experiments, the ET smearing necessary to reconcile theory and data could be provided
by the inclusion of multi-gluon emission effects from the evolution of the initial state, as advocated
by Baer and Reno [21].

The analysis by Vogelsang and Vogt [14] indicated that allowing for different choices of fac-
torization and renormalization scales, a satisfactory fit to the data could be accomodated by
modifying the gluon density within the range allowed by the DIS data available in 1995. This
interpretation is apparently not viable anymore [22], because of the most recent constraints on
the gluon density extracted at small x from the HERA data, and, in particular, because of the
latest fixed-target prompt-photon data from E706 [23].

The comparison of the E706 data with NLO QCD, carried out in [23], seems to confirm the
need for an intrinsic-kT smearing corresponding to 〈kT 〉 ∼ 1 GeV. These conclusions are shared in
a recent global fit of the parton densities performed by the MRST group [24]. In this same study
(see also [25]), however, a strong dependence of 〈kT 〉 on

√
S is claimed to be necessary to properly

describe the lower-energy data published by WA70.

In conclusion, the comparison of the large-xT fixed-target data with NLO QCD still presents
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some puzzling features, which will need to be properly clarified before use of these data can be
made to place robust constraints on the large-x gluon distribution inside the proton. This is
unfortunate, since these data provide today the only independent probe on high-x gluons. Their
accurate interpretation is therefore a fundamental ingredient for an accurate prediction of the
production rate of high-ET jets at the Tevatron, a measurement which has challenged perturbative
QCD in the recent past [26].

To improve the reliability of the perturbative predictions for the production of prompt photons
at large xT , and detect the presence of potentially large corrections beyond NLO that could
change the interpretation of the current data, in the present work we consider an extension of the
NLO formalism that includes large logarithmically-enhanced effects as the production threshold
is approached. This is the kinematical region of interest for the fixed-target data. As the xT of
the photon is increased, the parton luminosity becomes steeper, being driven down by the strong
suppression of the gluon density at large x. We thus enter a regime of inhibited radiation: further
radiation of soft gluons is strongly suppressed, and logarithmically-enhanced effects (Sudakov
effects) arise at any order in the perturbative expansion. These logarithms spoil the reliability of
the fixed-order expansion in the strong coupling αs and, hence, their summation to all pertubative
orders is necessary. For simplicity, this regime can be described in terms of the distance from
the kinematic threshold, which is reached when xT ∼ 1. In this limit, the coefficients of the
perturbative series for the cross section are enhanced by powers of ln(1 − xT ) that have to be
resummed at all orders. This simplified description applies to the case of hypothetical structure
functions that are not strongly suppressed at high x. It is, however, an appropriate framework for
the classification of the perturbative corrections we are interested in.

In this work we will present all the formalism that is needed to compute the resummed cross
section for direct photons, integrated over the photon rapidity and at fixed transverse energy. In
particular, we give explicit resummation formulae that are valid up to next-to-leading logarithmic
(NLL) accuracy. No phenomenological applications will be discussed here, but they will be ex-
plored in a forthcoming work. Furthermore, the formulae for the resummed correction factors will
be presented and illustrated, but not derived here. The general formalism [27] used to obtain the
resummation factors, which has already been used for the NLL resummation of the heavy-quark
total production cross-section in Ref. [28], will be presented in a forthcoming publication [29].

The rest of this work is organised as follows. The general theoretical framework is discussed in
Sect. 2. In Sect. 3 we fix our notation and present the formulae for the Born cross section, together
with their Mellin transforms. Soft-gluon resummation at large xT is considered in Sect. 4. The
NLL resummation factors are presented in Sects. 4.1, 4.2. In Sect. 4.3, the fixed-order expansion of
the resummed formulae is compared with the NLO results of Refs. [1, 3]. This comparison is also
exploited to fix certain constant factors in the resummed formulae. In Sect. 5 we discuss similarities
and differences between the resummed factors for the prompt-photon cross section and those for
other hard-scattering processes, and we prove the consistency of the results obtained in the case
of prompt photons with the coherence properties of large-angle soft-gluon emission. Section 6
contains our conclusions.

More technical details are left to the Appendices. In Appendix A, we give the NLL formulae
for the radiative factors in the Mellin transform representation. Previous experience in the case of
heavy-flavour production has shown that this is what is needed to perform a reliable phenomeno-
logical analysis [28]. In Appendix B, the threshold limit of the partonic cross sections is discussed.
In particular, a prediction for the logarithmic terms at the next-to-next-to-leading order (NNLO)
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is given. Finally, in Appendix C the simpler case of photoproduction of direct photons is discussed.

While completing this paper, a study of the NLL resummation for single-inclusive distribu-
tions, covering the case of prompt-photon production, has been released by Laenen, Oderda and
Sterman [30].

2 General framework

The presence of large logarithmically-enhanced contributions is a common feature in the study of
the production cross sections of systems of high mass or high transverse energy near threshold.
In this kinematic regime, known as the Sudakov regime, only additional soft gluons can be pro-
duced. The radiative tail of the real emission is thus strongly suppressed and cannot balance the
virtual corrections. The imperfect compensation between real and virtual terms leads to the large
logarithmic contributions.

General techniques for resumming soft-gluon corrections to hadroproduction processes have
been developed over the past several years, starting from the case of Drell-Yan (DY) pair pro-
duction [31, 32]. The resummation program of the soft-gluon contributions is best carried out in
the Mellin-transform space, or N -space, where N denotes the parameter that is conjugate to the
kinematic variable that measures the distance from threshold. In N -moment space the threshold-
production region corresponds to the limit N → ∞ and the typical structure of the logarithmic
contributions is as follows

σ̂
(0)
N

{

1 +
∞
∑

n=1

αn
s

2n
∑

m=1

cn,m lnmN

}

, (1)

where σ̂
(0)
N is the corresponding partonic cross-section at LO. In the DY process the logarithmic

terms in the curly bracket of Eq. (1) can be explicitly summed and organized in a radiative factor
∆DY,N that has an exponential form [31, 32, 33]:

∆DY,N(αs) = exp

{

∞
∑

n=1

αn
s

n+1
∑

m=1

Gnm lnmN

}

(2)

= exp
{

lnN g
(1)
DY (αs lnN) + g

(2)
DY (αs lnN) + αsg

(3)
DY (αs lnN) + . . .

}

. (3)

Note that the exponentiation in Eq. (2) is not trivial. The sum over m in Eq. (1) extends up to
m = 2n while in Eq. (2) the maximum value for m is smaller, m ≤ n + 1. In particular, this
means that all the double logarithmic (DL) terms αn

s cn,2n ln
2n N in eq. (1) are taken into account

by simply exponentiating the lowest-order contribution αsc1,2 ln
2N . Then, the exponentiation in

Eq. (2) allows one to define the improved perturbative expansion in Eq. (3). The function lnN g
(1)
DY

resums all the leading logarithmic (LL) contributions αn
s ln

n+1N , g
(2)
DY contains the next-to-leading

logarithmic (NLL) terms αn
s ln

n N , αsg
(3)
DY contains the next-to-next-to-leading logarithmic (NNLL)

terms αn+1
s lnnN , and so forth. Once the functions g

(k)
DY have been computed, one has a systematic

perturbative treatment of the region of N in which αs lnN ∼< 1, which is much larger than the
domain αs ln

2N ≪ 1 in which the fixed-order calculation in αs is reliable.

The QCD exponentiation formula for the DY process formally resembles analogous results for
QED. This is because the underlying hard-scattering subprocess involves only two QCD partons,
i.e. the annihilating qq̄ pair, and, hence, both its kinematics and its colour structure are simple.
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In the case of prompt-photon production, instead, all the LO hard-scattering subprocesses

q + q̄ → g + γ , q + g → q + γ , q̄ + g → q̄ + γ , (4)

involve three coloured partons and, then, Sudakov resummation is by far less trivial.

A key ingredient for the exponentiation in the DY process is the factorization of the corre-
sponding multigluon matrix elements in the soft limit. Since the colour structure of a two-parton
hard-scattering is trivial¶, primary soft radiation from the two hard partons factorizes as in QED.
Then the subsequent parton radiation can be factorized in non-interfering angular-ordered cas-
cades because of the coherence properties [35] of QCD emission.

In the case of prompt-photon production, and, in general, in scattering processes produced by
hard interactions of more than two QCD partons, the colour and momentum flows in the partonic
subprocess are more involved. In particular, the interplay between colour exchange in the hard
scattering and colour transitions induced by parton radiation spoils QED-like factorization of
soft-gluon emission. Therefore, both colour correlations and soft-gluon interferences have to be
properly taken into account. It turns out that, in general, the threshold logarithmic corrections
cannot be resummed in a single exponential factor [36]: one has to deal with exponential matrices
that couple the various colour channels of the hard-scattering subprocess.

However, the three-parton subprocesses in Eq. (4) are a special case among the multiparton
configurations. There is only one colour-singlet state‖ that can be constructed by combining qq̄g
and then, because of colour conservation, soft-gluon radiation cannot induce colour transitions in
the hard-scattering subprocess. Owing to the absence of colour correlations, we conclude that the
logarithmically-enhanced threshold corrections in prompt-photon hadroproduction are embodied
by three radiative factors (one factor for each of the LO partonic channels in Eq. (4))

∆qq̄→gγ
N (αs) , ∆qg→qγ

N (αs) , ∆q̄g→q̄γ
N (αs) , (5)

that, after all-order resummation, have an exponential form analogous to the DY radiative factor
in Eq. (3). Nonetheless, the similarity with the DY process regards only the colour structure. The
hard-scattering kinematics is different in prompt-photon production and the factors in Eq. (5)
still contain soft-gluon interference effects that are non-trivial. The pattern of these soft-gluon
interferences is typical of multiparton hard-scatterings.

General theoretical methods to perform Sudakov resummation in processes initiated by hard
scattering of more than two QCD partons have recently been developed by two groups. The
KOS formalism [36]–[38] uses the Wilson line approach to treat colour correlations and soft-gluon
interferences. It has been explicitly applied to the calculation with NLL accuracy of the the
invariant-mass distributions of heavy-quark pairs and dijets (see also ref. [30]). The more recent
BCMN formalism [28] is based on generalized soft-gluon factorization and has been used for the
NLL calculation of the total cross section for heavy-quark hadroproduction. The consistency of
the NLL results for the total cross section [28] with those for the invariant mass distribution [36]
of heavy-quark pairs shows that, although different, the two formalisms are equivalent to a large
extent.

¶This is the reason why similar exponentiation formulae apply to many other two-jet-dominated processes [34].
‖In other words, the qq̄g colour-amplitude Mαᾱa

qq̄g (α, ᾱ and a are the colour indices of the quark, antiquark and
gluon, respectively) is necessarily proportional to the matrix taαᾱ of the fundamental representation of the gauge
group SU(Nc).
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In the rest of this paper, we first introduce our notation and then we present the resummed
expressions of the prompt-photon radiative factors (5) to NLL accuracy. The results include the
complete soft-gluon interferences to this accuracy, as evaluated by using the BCMN formalism.
Details of our general formalism will be presented elsewhere [29].

3 Notation and fixed-order calculations

We consider the inclusive production of a single prompt photon in hadron collisions:

H1(P1) +H2(P2) → γ(p) +X . (6)

The colliding hadrons H1 and H2 respectively carry momenta P ν
1 and P ν

2 . In their centre-of-mass
frame, using massless kinematics, they have the following light-cone coordinates

P ν
1 =

√

S

2
(1, 0, 0) , P ν

2 =

√

S

2
(0, 0, 1) , (7)

where S = (P1 + P2)
2 is the centre-of-mass energy squared. The photon momentum p is thus

parametrized as

pν =

(

ET√
2
eη,ET ,

ET√
2
e−η

)

, (8)

where ET and η are the transverse energy and the pseudorapidity, respectively. We also introduce
the customary scaling variable xT (0 ≤ xT ≤ 1):

xT = 2
ET√
S

. (9)

We are interested in the prompt-photon production cross section integrated over η at fixed ET .
According to perturbative QCD, the cross section is given by the following factorization formula

dσγ(xT , ET )

dET

=
1

E3
T

∑

a,b

∫ 1

0
dx1 fa/H1

(x1, µ
2
F )
∫ 1

0
dx2 fb/H2

(x2, µ
2
F )

·
∫ 1

0
dx

{

δ

(

x− xT√
x1x2

)

σ̂ab→γ(x, αs(µ
2);E2

T , µ
2, µ2

F , µ
2
f) (10)

+
∑

c

∫ 1

0
dz z2 dc/γ(z, µ

2
f) δ

(

x− xT

z
√
x1x2

)

σ̂ab→c(x, αs(µ
2);E2

T , µ
2, µ2

F , µ
2
f)

}

.

where a, b, c denotes the parton indices (a = q, q̄, g), and fa/H1
(x1, µ

2
F ) and fb/H2

(x1, µ
2
F ) are the

parton densities of the colliding hadrons evaluated at the factorization scale µF . The first and
the second term in the curly bracket on the right-hand side of Eq. (10) respectively represent
the direct and the fragmentation component of the cross section. The fragmentation component
involves the parton fragmentation function dc/γ(z, µ

2
f) of the observed photon at the factorization

scale µf , which, in general, differs from the scale µF of the parton densities.
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The rescaled∗∗ partonic cross sections σ̂ab→γ and σ̂ab→c in Eq. (10) are computable in QCD
perturbation theory as power series expansions in the running coupling αs(µ

2), µ being the renor-
malization scale in the MS renormalization scheme:

σ̂ab→γ(x, αs(µ
2);E2

T , µ
2, µ2

F , µ
2
f) = ααs(µ

2)

[

σ̂
(0)
ab→dγ(x) +

∞
∑

n=1

αn
s (µ

2) σ̂
(n)
ab→γ(x;E

2
T , µ

2, µ2
F , µ

2
f)

]

,

(11)

σ̂ab→c(x, αs(µ
2);E2

T , µ
2, µ2

F , µ
2
f) = α2

s(µ
2)

[

σ̂
(0)
ab→c(x) +

∞
∑

n=1

αn
s (µ

2) σ̂
(n)
ab→c(x;E

2
T , µ

2, µ2
F , µ

2
f)

]

. (12)

Note that the ratio between the direct and the fragmentation terms in Eqs. (11) and (12) is of the
order of α/αs, where α is the fine structure constant. This ratio is compensated by the photon-
fragmentation function dc/γ, which (at least formally) is of the order of α/αs, so that direct and
fragmentation components equally contribute to Eq. (10).

Throughout the paper we always use parton densities and parton fragmentation functions as
defined in the MS factorization scheme. In general, we consider different values for the renormal-
ization and factorization scales µ, µF , µf , although we always assume that all of them are of the
order of the photon transverse energy ET .

The LO terms σ̂
(0)
ab→dγ in Eq. (11) are due to the tree-level parton scatterings

a + b → d+ γ , (13)

where the flavour indices a, b, d are those explicitly denoted in the subprocesses of Eq. (4). Using
our normalization, the two independent (non-vanishing) partonic cross sections for the direct
component are:

σ̂
(0)
qq̄→gγ(x) = π e2q

CF

Nc

x2

√
1− x2

(

2− x2
)

(14)

σ̂(0)
qg→qγ(x) = σ̂

(0)
q̄g→q̄γ(x) = π e2q

1

2Nc

x2

√
1− x2

(

1 +
x2

4

)

, (15)

where eq is the quark electric charge. Note that, having integrated over the photon pseudorapidity,
the expressions (14, 15) are even functions of the photon transverse energy ET , i.e. they depend

on x2 rather than on x. The NLO terms σ̂
(1)
ab→γ in Eq. (11) were first computed in Ref. [1].

The partonic contributions σ̂ab→c to the fragmentation component of the cross section are
exactly equal to those of the single-hadron inclusive distribution. Their explicit calculation up to
NLO was performed in Ref. [10].

We are mainly interested in the behaviour of QCD corrections near the partonic-threshold
region x → 1, i.e. when the transverse energy ET of the photon approaches the partonic centre-
of-mass energy

√
x1x2S. In this region, the LO cross sections (14, 15) behave as

σ̂
(0)
ab→dγ(x) ∼

1√
1− x2

. (16)

This integrable singularity is a typical phase-space effect. At higher perturbative orders, the
singularity in Eq. (16) is enhanced by double-logarithmic corrections due to soft-gluon radiation
and the cross section contributions in Eqs. (11, 12) behave as

σ̂(n)(x) ∼ σ̂(0)(x) ln2n(1− x) . (17)
∗∗These functions are related to the partonic differential cross sections by σ̂ab→i = E3

T dσ̂ab→i/dET (i = γ, c).
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Resummation of these soft-gluon effects to all orders in perturbation theory can be important to
improve the reliability of the QCD predictions.

3.1 N-moment space

The resummation program of soft-gluon contributions has to be carried out [31, 32] in the Mellin-
transform space, or N -space. Working in N -space, one can disentangle the soft-gluon effects in the
parton densities from those in the partonic cross section and one can straightforwardly implement
and factorize the kinematic constraints of energy and longitudinal-momentum conservation.

It is convenient to consider the Mellin transform σγ,N(ET ) of the dimensionless hadronic distri-
bution E3

Tdσγ(xT , ET )/dET . The N -moments with respect to x2
T and at fixed ET are thus defined

as follows:

σγ,N(ET ) ≡
∫ 1

0
dx2

T (x2
T )

N−1 E3
T

dσγ(xT , ET )

dET
. (18)

In N -moment space, Eq. (10) takes a simple factorized form

σγ,N(ET ) =
∑

a,b

fa/H1, N+1(µ
2
F ) fb/H2, N+1(µ

2
F )

·
{

σ̂ab→γ, N(αs(µ
2);E2

T , µ
2, µ2

F , µ
2
f) (19)

+
∑

c

σ̂ab→c, N(αs(µ
2);E2

T , µ
2, µ2

F , µ
2
f) dc/γ, 2N+3(µ

2
f)

}

,

where we have introduced the customary N -moments fa/H,N and da/γ,N of the parton densities
and parton fragmentation functions:

fa/H,N(µ
2) ≡

∫ 1

0
dx xN−1 fa/H(x, µ

2) , (20)

da/γ,N(µ
2) ≡

∫ 1

0
dz zN−1 da/γ(z, µ

2) . (21)

Note that the N -moments of the partonic cross sections in Eq. (19) are again defined with
respect to x2

T :

σ̂ab→γ, N (αs(µ
2);E2

T , µ
2, µ2

F , µ
2
f) ≡

∫ 1

0
dx2 (x2)N−1 σ̂ab→γ(x, αs(µ

2);E2
T , µ

2, µ2
F , µ

2
f) . (22)

In particular, the N -moments of the LO contributions in Eqs. (14, 15) are given by the following
explicit expressions:

σ̂
(0)
qq̄→gγ, N = π e2q

CF

Nc

Γ(1/2) Γ(N + 1)

Γ(N + 5/2)
(2 +N) , (23)

σ̂
(0)
qg→qγ, N = σ̂

(0)
q̄g→q̄γ, N = π e2q

1

8Nc

Γ(1/2) Γ(N + 1)

Γ(N + 5/2)
(7 + 5N) . (24)

Note also the pattern of moment indices in the various factors of Eq. (19), i.e. fa/H, N+1 for the
parton densities and dc/γ, 2N+3 for the parton fragmentation functions. This non-trivial pattern
follows from the conservation of the longitudinal and transverse momenta.

7



The threshold region xT → 1 corresponds to the limit N → ∞ in N -moment space. In this
limit, the soft-gluon corrections (17) to the higher-order contributions of the partonic cross sections
become

σ̂
(n)
N ∼ σ̂

(0)
N ln2n N . (25)

The resummation of the soft-gluon logarithmic corrections to all orders in perturbation theory is
considered in the following Section.

4 Soft-gluon resummation at high ET

4.1 Resummed cross section to NLL accuracy

In the threshold or large-N limit, the various partonic channels contribute in different ways to the
prompt-photon cross section σγ, N(ET ) in Eq. (19).

Firstly, we can compare the direct and fragmentation contributions to Eq. (19). The partonic
cross sections σ̂ab→γ, N and σ̂ab→c, N have the same large-N behaviour, but, owing to the hard
(although collinear) emission always involved in any splitting process c → γ + X , the photon-
fragmentation function dc/γ,N is of the order of 1/N . Therefore, in Eq. (19) the fragmentation
component is formally suppressed by a factor of 1/N with respect to the direct component and in
our resummed calculation we can neglect the fragmentation contributions.

Then, we can discuss the differences in the large-N behaviour of the partonic cross sec-
tions σ̂ab→γ, N(αs) for the direct processes. The cross sections for the partonic channels ab =
qq̄′, q̄q′, qq, qq′, q̄q̄, q̄q̄′ (q and q′ denote quarks of different flavours) vanish at LO and are hence
suppressed by a factor of αs with respect to σ̂qq̄→γ, N (αs), σ̂qg→γ, N(αs), σ̂q̄g→γ, N(αs). Moreover, in
the large-N limit this relative suppression is furtherly enhanced by a factor of O(1/N) because
the photon has to be accompanied by (at least) two final-state fermions that are not produced by
the decay of an off-shell gluon. Therefore, we make no attempt to resum soft-gluon corrections
to these partonic channels. The partonic cross section σ̂gg→γ, N(αs) has a different large-N be-
haviour. It begins to contribute at NLO via the partonic process g + g → γ + q + q̄, which again
leads to a suppression effect of O(1/N) with respect to the LO subprocesses. However, owing to
the photon-gluon coupling through a fermion box, the partonic subprocess g + g → γ + g is also
permitted. This subprocess is logarithmically-enhanced by multiple soft-gluon radiation in the
final state, but it starts to contribute only at NNLO in perturbation theory. It follows that the
partonic channel ab = gg is suppressed by a factor of α2

s with respect to the LO partonic channels
ab = qq̄, qg, q̄g and it enters the resummed cross section only at NNLL accuracy.

In conclusion, since we are interested in explicitly perform soft-gluon resummation up to NLL
order, we can limit ourselves to considering the partonic cross sections σ̂qq̄→γ, σ̂qg→γ, σ̂q̄g→γ.

As discussed in Sect. 2, the soft-gluon corrections to the partonic channels ab = qq̄, qg, q̄g are
not affected by colour correlations. Thus, in the resummed expressions σ̂

(res)
ab→γ, N for the partonic

cross sections, the logarithmically-enhanced threshold contributions can be factorized with respect
to the corresponding LO cross sections σ̂

(0)
ab→dγ, N in Eqs. (23, 24). The all-order resummation

formulae are

σ̂
(res)
qq̄→γ, N(αs(µ

2);E2
T , µ

2, µ2
F , µ

2
f) = α αs(µ

2) σ̂
(0)
qq̄→gγ, N Cqq̄→γ(αs(µ

2), Q2/µ2;Q2/µ2
F )

· ∆qq̄→gγ
N+1 (αs(µ

2), Q2/µ2;Q2/µ2
F ) , (26)

8



σ̂
(res)
qg→γ, N(αs(µ

2);E2
T , µ

2, µ2
F , µ

2
f) = α αs(µ

2) σ̂
(0)
qg→qγ, N Cqg→γ(αs(µ

2), Q2/µ2;Q2/µ2
F )

· ∆qg→qγ
N+1 (αs(µ

2), Q2/µ2;Q2/µ2
F ) , (27)

σ̂
(res)
q̄g→γ, N(αs(µ

2);E2
T , µ

2, µ2
F , µ

2
f) = σ̂

(res)
qg→γ, N (αs(µ

2);E2
T , µ

2, µ2
F , µ

2
f) , (28)

where
Q2 = 2E2

T . (29)

Note that the right-hand side of Eqs. (26, 27) does not depend on the factorization scale µf

of the photon fragmentation functions. Thus, the resummed partonic cross sections σ̂
(res)
ab→γ, N turn

out to be independent of µf . This is in agreement with the subdominance of the fragmentation
contributions near threshold, as discussed above.

The functions Cab→γ(αs) in Eqs. (26, 27) do not depend on N and, thus, contain all the
contributions that are constant in the large-N limit. These functions are computable as power
series expansions in αs

Cab→γ(αs(µ
2), Q2/µ2;Q2/µ2

F ) = 1 +
+∞
∑

n=1

(

αs(µ
2)

π

)n

C
(n)
ab→γ(Q

2/µ2;Q2/µ2
F ) . (30)

The physical origin and the structure of the constant factors Cab→γ(αs) is discussed in Sect. 4.3.

The lnN -dependence of the resummed cross sections is entirely embodied by the radiative
factors ∆ab→dγ

N on the right-hand side of Eqs. (26, 27). Note, the mismatch between the moment

index of the radiative factor and that of σ̂
(0)
ab→dγ, N : the former depends on N + 1, like the parton

densities in Eq. (19). The explicit expressions of the radiative factors are given in the following
subsection.

4.2 The radiative factors

The soft-gluon factors ∆ab→dγ
N depend on the flavour of the QCD partons a, b, d involved in the LO

hard-scattering subprocess a + b → d + γ. According to the discussion of Sect. 2, the resummed
expressions for ∆ab→dγ

N have an exponential form. To explain the exponentiation structure and to
facilitate the comparison with other hadroproduction processes, we use a notation similar to that
in Ref. [32] and we write the prompt-photon radiative factors as follows

∆ab→dγ
N (αs(µ

2), Q2/µ2;Q2/µ2
F ) = ∆a

N (αs(µ
2), Q2/µ2;Q2/µ2

F ) ∆
b
N(αs(µ

2), Q2/µ2;Q2/µ2
F )

· Jd
N(αs(µ

2), Q2/µ2) ∆
(int) ab→dγ
N (αs(µ

2), Q2/µ2) . (31)

The resummed formulae to NLL accuracy for the various contributions on the right-hand side of
this equation are presented below.

Each term ∆a
N(αs(µ

2), Q2/µ2;Q2/µ2
F ) depends on the flavour a of a single parton, on the

factorization scheme of the parton density fa/H,N(µ
2
F ) and on the factorization scale µF . In the

MS scheme, we have

∆a
N(αs(µ

2), Q2/µ2;Q2/µ2
F ) = exp

{

∫ 1

0
dz

zN−1 − 1

1− z

∫ (1−z)2Q2

µ2
F

dq2

q2
Aa(αs(q

2)) +O(αs(αs lnN)k)

}

,

(32)
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where Aa(αs) are perturbative functions

Aa(αs) =
αs

π
A(1)

a +
(

αs

π

)2

A(2)
a +O(α3

s) . (33)

The lower-order terms A(1)
a and A(2)

a are

A(1)
a = Ca , A(2)

a =
1

2
CaK , (34)

where Ca = CF if a = q, q̄ and Ca = CA if a = g, while the coefficient K is the same both for
quarks [39] and for gluons [40] and it is given by††

K = CA

(

67

18
− π2

6

)

− 10

9
TRNf . (35)

The term Jd
N (αs(µ

2), Q2/µ2) depends on the parton flavour d and is independent both of the
factorization scale and of the factorization scheme:

Jd
N(αs(µ

2), Q2/µ2) = exp

{

∫ 1

0
dz

zN−1 − 1

1− z

[

∫ (1−z)Q2

(1−z)2Q2

dq2

q2
Ad(αs(q

2)) +
1

2
Bd(αs((1− z)Q2))

]

+ O(αs(αs lnN)k)
}

. (36)

The functions Ad(αs) are given in Eq. (33) and the functions Bd(αs) have analogous perturbative
expansions:

Bd(αs) =
αs

π
B

(1)
d +O(α2

s) (37)

with [39, 40]

B
(1)
d=q,q̄ = −3

2
CF , B

(1)
d=g = −1

6
(11CA − 4TRNf ) . (38)

Likewise Jd
N , the remaining contribution ∆

(int)
N in Eq. (31) is independent of the factorization

scale and scheme. Nonetheless, it depends on the flavours of all the QCD partons entering the
LO scattering subprocess:

∆
(int) ab→dγ
N (αs(µ

2), Q2/µ2) = exp

{

∫ 1

0
dz

zN−1 − 1

1− z
Dab→dγ(αs((1− z)2Q2)) +O(αs(αs lnN)k)

}

.

(39)
The function Dab→dγ(αs) has the following perturbative expansion

Dab→dγ(αs) =
αs

π
D

(1)
ab→dγ +O(α2

s) , (40)

with
D

(1)
ab→dγ = (Ca + Cb − Cd) ln 2 . (41)

The factorized structure in Eq. (31) has a direct physical interpretation. The factors ∆a
N

and ∆b
N take into account soft-gluon radiation emitted collinearly to the initial-state partons.

Consistently, these are the sole factors that depend on the factorization scale µF of the parton

††In SU(Nc) QCD, the colour factors are CF = (N2

c − 1)/(2Nc), CA = Nc and TR = 1/2.
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densities of the colliding hadrons. The factor Jd
N is due to collinear (either soft or hard) radiation

in the final-state jet that is produced by the fragmentation of the parton d recoiling against the
triggered photon. The factor ∆

(int)
N contains the contribution of soft-gluon emission at large angle

with respect to the direction of the hard partons entering the LO scattering subprocess. This
factor thus embodies the soft-gluon interference effects anticipated in Sect. 2.

According to this interpretation, the perturbative functions in Eqs. (33, 37, 40) measure the
intensity of the coupling of i) soft-collinear gluons (function Aa(αs)), ii) hard-collinear partons
(function Ba(αs)) and iii) large-angle soft gluons (function Dab→dγ(αs)). Note that, due to their
collinear nature, the functions Aa(αs) and Ba(αs) depend on the colour and flavour of the sole
parton a. On the contrary, Dab→dγ(αs) depends on the colour charges of all the QCD partons.

The physical origin of the several contributions on the right-hand side of Eq. (31) is furtherly
discussed in Sect. 5, where we compare the promp-photon radiative factors with the analogous
resummed factors that control the threshold behaviour of other hadroproduction processes. In
the rest of this section we limit ourselves to comment on few additional features of the resummed
contributions to the prompt-photon cross section.

The various factors in Eq. (31) contribute to the resummed prompt-photon cross section at
different level of logarithmic accuracy. If we simply consider the double-logarithmic (DL) approx-
imation, which consists in resumming only the terms αn

s ln
2n N , we can neglect the interference

factor ∆
(int)
N and the B(αs) function in Eq. (36) and we can expand the exponent in ∆a

N and Jd
N

to its first order in αs:

∆a
N (αs(µ

2), Q2/µ2;Q2/µ2
F ) ≃ exp

{

+2Ca
αs

2π
ln2N

}

, (42)

Jd
N(αs(µ

2), Q2/µ2) ≃ exp
{

−Cd
αs

2π
ln2N

}

. (43)

The complete set of LL terms is obtained by neglecting the functions B(αs), D(αs) in Eqs. (36,
39), by truncating Aa(αs) to their first order and using the LO running of the coupling αs(q

2). At

the NLL order, also the contribution of the coefficients A(2)
a , B(1)

a and D
(1)
ab→dγ has to be included.

Note that different scales, e.g. q2, (1 − z)2Q2, (1 − z)Q2, appear on the right-hand sides of
Eqs. (32, 36, 39). In particular, the scales in the q2-integration limits of Eq. (32) are different
from those of Eq. (36), and the B function in Eq. (36) depends on αs((1 − z)Q2) while the D
function in the interference contribution (39) depends on αs((1 − z)2Q2). These scales follows
from the hard-scattering kinematics, which affect in a different way initial- or final-state emission
and collinear or soft radiation.

Note, also, that the renormalization scale µ does not explicitly enter the right-hand side of
Eqs. (32, 36, 39). This is because the radiative factors are renormalization-group-invariant quan-
tities when evaluated to all order in perturbation theory. Only when the all-order expressions
are truncated to a certain degree of logarithmic accuracy, the renormalization-scale dependence
explicitly appears as a higher-order effect.

Since we know the radiative factors only to NLL order, we use the Eqs. (32, 36, 39) by replacing
αs(k

2) (with k2 = q2, (1− z)2Q2, (1− z)Q2) with its NLO expansion in terms of αs(µ
2) and k2 (cf.

Appendix A), and we explicitly carry out the z and q2 integrals by neglecting terms beyond NLL
accuracy. We thus write the prompt-photons radiative factors as follows:

∆ab→dγ
N

(

αs(µ
2),

Q2

µ2
;
Q2

µ2
F

)

= exp
{

lnN g
(1)
ab (b0αs(µ

2) lnN) + g
(2)
ab (b0αs(µ

2) lnN,Q2/µ2;Q2/µ2
F )
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+ O(αs(αs lnN)k)
}

. (44)

The functions g(1) and g(2) resum the LL and NLL terms, respectively. These functions are
different for the qq̄ and qg partonic channels of Eqs. (26) and (27), and are explicitly computed
in Appendix A. We find:

g
(1)
qq̄ (λ) = (2CF − CA) h

(1)(λ) + CA h(1)(λ/2) , g(1)qg (λ) = CA h(1)(λ) + CF h(1)(λ/2) , (45)

and

g
(2)
qq̄

(

λ,
Q2

µ2
;
Q2

µ2
F

)

= (2CF − CA) h
(2)(λ) + 2CA h(2)(λ/2) (46)

+
2CF − CA

2πb0
ln 2 ln(1− 2λ) +

CAγE − πb0
πb0

ln(1− λ)− 2CF

πb0
λ ln

Q2

µ2
F

+
{

CF

πb0

[

2λ+ ln(1− 2λ)
]

+
CA

2πb0

[

2 ln(1− λ)− ln(1− 2λ)
]

}

ln
Q2

µ2
,

g(2)qg

(

λ,
Q2

µ2
;
Q2

µ2
F

)

= CA h(2)(λ) + 2CF h(2)(λ/2) (47)

+
CA

2πb0
ln 2 ln(1− 2λ) +

4CF γE − 3CF

4πb0
ln(1− λ)− CF + CA

πb0
λ ln

Q2

µ2
F

+
{

CF + CA

2πb0

[

2λ+ ln(1− 2λ)
]

+
CF

2πb0

[

2 ln(1− λ)− ln(1− 2λ)
]

}

ln
Q2

µ2
,

where γE = 0.5772 . . . is the Euler number and b0, b1 are the first two coefficients of the QCD
β-function

b0 =
11CA − 4TRNf

12π
, b1 =

17C2
A − 10CATRNf − 6CFTRNf

24π2
. (48)

The auxiliary functions h(1) and h(2) in Eqs. (45) and (46, 47) are

h(1)(λ) =
1

2πb0λ

[

2λ+ (1− 2λ) ln(1− 2λ)
]

, (49)

h(2)(λ) =
b1

2πb30

[

2λ+ ln(1− 2λ) +
1

2
ln2(1− 2λ)

]

− γE
πb0

ln(1− 2λ)− K

4π2b20

[

2λ+ ln(1− 2λ)
]

, (50)

where K is the coefficient in Eq. (35).

The results in Eqs. (44–47) provide us with a theoretical description of soft-gluon resummation
in prompt-photon hadroproduction at the same level of accuracy as for other hadroproduction
processes, such as the production of Drell-Yan pairs [31, 32] or heavy quarks [36, 28]. These
results can be used for detailed quantitative studies along the lines of Refs. [41, 28]. In this paper
we do not present numerical analyses and we limit ourselves to discuss the expected sign and size
of the resummation effects.

In the near-threshold region, radiation in the final state is kinematically inhibited. On physical
basis, one thus expects that resummation of the ensuing logarithmically-enhanced corrections
produces suppression of the cross section. This argument applies to hadronic cross sections, but it
is not necessarely valid for partonic cross sections. The partonic cross section is what is left after

12



factorization of long-distance physics into the parton distributions. Since all-order resummation
is in part automatically implemented in the definition of the parton densities, the remaining
resummation effects can either enhance or deplete the partonic cross section.

Among the various terms on the right-hand side of Eq. (31), some factors are smaller and
some others are larger than unity. The exponent of the initial-state contribution ∆a

N in Eq.(32)
is positive definite and, hence, ∆a

N >> 1 when N → ∞. The presence of this ‘anti-Sudakov’
form factor is typical of partonic cross sections that are evaluated by factorizing parton densities
defined in the MS factorization scheme. In the case of the final-state contribution Jd

N , no additional
factorization has been performed. Therefore, when N → ∞ the exponent in Eq. (36) is negative
and Jd

N ≪ 1 is a ‘true’ Sudakov form factor, as naively expected. The sign of the exponent in

Eq. (39) is not definite (D
(1)
qq̄→gγ < 0, D(1)

qg→qγ = D
(1)
q̄g→q̄γ > 0) as expected for an interference term.

However, the contribution of ∆
(int) ab→dγ
N is subleading with respect to those of ∆a

N and Jd
N .

From the overall inspection of the effect of the radiative-factor contributions to Eq. (31), we

infer that, in the case of prompt-photon production, the resummed partonic cross sections σ̂
(res)
qq̄→γ, N

and σ̂
(res)
qg→γ, N in Eqs. (26) and (27) are both enhanced with respect to their LO approximations

σ̂
(0)
qq̄→gγ, N , σ̂

(0)
qg→qγ, N . Moreover, the enhancement in the qg partonic channel is larger than that in

the qq̄ channel.

This conclusion can also be argued by a simplified treatment within the DL approximation.
Inserting Eqs. (42, 43) into Eq. (31), we obtain

σ̂
(res)
qg→γ, N ≃ σ̂

(0)
qg→qγ, N exp

{

[

2CF + 2CA − CF

]αs

2π
ln2N

}

(51)

= σ̂
(0)
qg→qγ, N exp

{

(CF + 2CA)
αs

2π
ln2N

}

> σ̂
(0)
qg→qγ, N , (52)

σ̂
(res)
qq̄→γ, N ≃ σ̂

(0)
qq̄→qγ, N exp

{

[2CF + 2CF − CA]
αs

2π
ln2N

}

(53)

= σ̂
(0)
qq̄→qγ, N exp

{

(4CF − CA)
αs

2π
ln2N

}

> σ̂
(0)
qq̄→qγ, N , (54)

σ̂
(res)
qg→γ, N

σ̂
(res)
qq̄→γ, N

≃ σ̂
(0)
qg→qγ, N

σ̂
(0)
qq̄→qγ, N

exp
{

3(CA − CF )
αs

2π
ln2N

}

>
σ̂
(0)
qg→qγ, N

σ̂
(0)
qq̄→qγ, N

. (55)

The first, second and third terms in the square bracket on the right-hand side of Eqs. (51, 53) are
respectively due to the initial-state factors ∆a

N , ∆
b
N and to the final-state factor Jd

N . Note that, for
a definite parton a, the initial-state enhancement ∆a

N is larger than the final-state suppression Ja
N

(see the difference by a factor of two in the exponent of Eqs. (42, 43)). In the qg channel the final-
state contribution ln Jq

N is thus overcompensated by ln∆q
N and this leads to the enhancement in

Eq. (52). In the qq̄ channel, instead, it is the total initial-state contribution (ln∆q
N + ln∆q̄

N) that,
owing to the colour-charge relation CF ∼ CA/2, overcompensates ln Jg

N . Finally, the enhancement
in Eq. (55) is simply due the fact that the gluon colour charge CA is larger that the quark charge
CF and, thus, ∆g

N > ∆q
N and Jq

N > Jg
N .

Note that this conclusion directly applies only to the asymptotic limit N → ∞ or ET →√
S/2. In the case of kinematic configurations of experimental interest, subleading effects and

their dependence on the x-shape of the parton distributions and on the renormalization and
factorization scale have to be carefully estimated.
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4.3 The constant factors

Expanding the resummed expressions in Eqs.(44–47) to the first order in αs and using Eqs. (26,
27), we obtain

σ̂
(res)
qq̄→γ, N(αs(µ

2);E2
T , µ

2, µ2
F , µ

2
f) = α σ̂

(0)
qq̄→gγ, N αs(µ

2)

{

1 +
αs(µ

2)

π

[(

2CF − 1

2
CA

)

ln2N

+
(

γE(4CF − CA)− (2CF − CA) ln 2 + πb0 − 2CF ln
2E2

T

µ2
F

)

lnN

+ C
(1)
qq̄→γ(2E

2
T/µ

2; 2E2
T/µ

2
F )
]

+O(α2
s)
}

, (56)

σ̂
(res)
qg→γ, N (αs(µ

2);E2
T , µ

2, µ2
F , µ

2
f) = α σ̂

(0)
qg→qγ, N αs(µ

2)

{

1 +
αs(µ

2)

π

[(

1

2
CF + CA

)

ln2N

+
(

γE(CF + 2CA)− CA ln 2 +
3

4
CF − (CF + CA) ln

2E2
T

µ2
F

)

lnN

+ C(1)
qg→γ(2E

2
T/µ

2; 2E2
T/µ

2
F )
]

+O(α2
s)
}

. (57)

One can easily check that the logarithmic terms in these perturbative expansions agree with
those that can be derived from the complete NLO analytic results of Refs. [1, 42, 3]. From this

comparison we can also extract the first-order constant coefficients C
(1)
qq̄→γ and C(1)

qg→γ. We find

C
(1)
qq̄→γ(Q

2/µ2;Q2/µ2
F ) = γ2

E

(

2CF − 1

2
CA

)

+ γE
[

πb0 − (2CF − CA) ln 2
]

− 1

2
(2CF − CA) ln 2

+
1

2
K −Kq +

π2

3

(

2CF − 1

2
CA

)

+
5

4
(2CF − CA) ln

2 2 (58)

−
(

2γECF − 3

2
CF

)

ln
Q2

µ2
F

− πb0 ln
Q2

µ2
,

C(1)
qg→γ(Q

2/µ2;Q2/µ2
F ) = γ2

E

(1

2
CF + CA

)

+ γE
[3

4
CF − CA ln 2

]

− 1

10
(CF − 2CA) ln 2

− 1

2
Kq +

π2

60

(

2CF + 19CA

)

+
1

2
CF ln2 2 (59)

−
(

γE(CF + CA)−
3

4
CF − πb0

)

ln
Q2

µ2
F

− πb0 ln
Q2

µ2
,

where

Kq =

(

7

2
− π2

6

)

CF , (60)

and the coefficient K is given in Eq. (35).

The first-order coefficient C
(1)
ab→γ and, indeed, all the perturbative coefficients of the constant

(N -independent) function Cab→γ(αs) in Eq. (30) are produced by hard virtual contributions and by
subdominant (non-logarithmic) soft corrections to the LO hard-scattering subprocesses. In both
cases the structure of the external hard partons is the same as at LO. This justifies the all-order
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factorization of Cab→γ(αs) with respect to σ̂
(0)
ab→dγ, N and to the radiative factor in the resummed

partonic cross sections (26, 27).

The inclusion of the N -independent function Cab→γ(αs) in the resummed formulae does not
affect the shape of the cross section near threshold, but improves the soft-gluon resummation by
fixing the overall (perturbative) normalization of the logarithmic radiative factor.

We can explicitly show [43, 28] the theoretical improvement that is obtained by combining the
NLL radiative factor with the first-order coefficient C(1). Expanding the resummation formulae
(26, 27) in towers of logarithmic contributions as in Eq. (1), we have

σ̂
(res)
N (αs;E

2
T , µ

2, µ2
F ) = ααs σ̂

(0)
N

{

1 +
∞
∑

n=1

αn
s

[

cn,2n ln2nN + cn,2n−1(E
2
T/µ

2
F ) ln2n−1N

+ cn,2n−2(E
2
T/µ

2
F , E

2
T/µ

2) ln2n−2N +O(ln2n−3N)
]}

, (61)

where αs = αs(µ
2). The dominant and next-to-dominant coefficients cn,2n and cn,2n−1 are con-

trolled by evaluating the radiative factor to NLL accuracy. When the NLL radiative factor is
supplemented with the coefficient C(1), we can correctly control also the coefficients cn,2n−2. In
particular, we can predict (see Appendix B) the large-N behaviour of the NNLO cross sections

σ̂
(2)
ab→γ in Eq. (11) up to O(lnN).

Note also that coefficients cn,2n are scale independent and the coefficients cn,2n−1 depend on the
sole factorization scale µF . In the tower expansion (61), the first terms that explicitly depend on
the renormalization scale µ (and on µF , as well) are those controlled by cn,2n−2. Their dependence
on µ is obtained by combining that of C(1)(E2

T/µ
2
F , E

2
T/µ

2) with that of the radiative factor at
NLL order. The inclusion of the first-order constant coefficient C(1) thus (theoretically) stabilizes
the resummed partonic cross section with respect to variations of the renormalization scale.

5 Comparison with other processes: soft-gluon interfer-

ences and QCD coherence

Further insight on the underlying physics mechanism that leads to the resummed expressions (26,
27) can be obtained by comparing prompt-photon production with other hard-scattering processes.

In the hadroproduction of a DY lepton pair (Fig. 1a) of high mass Q2, the vicinity to the
threshold region is measured by the inelasticity variable τ = Q2/S, where

√
S is the centre-of-

mass energy. The Born-level partonic process that controls the cross section is qq̄ annihilation. In
N -moment space, where the N -moments are defined with respect to τ , the Sudakov corrections to
the qq̄-annihilation cross section are taken into account by a resummation formula analogous to
Eq. (26, 27). Up to NLL accuracy, the corresponding radiative factor ∆DY,N(Q

2) has the following
explicit expression [31, 32]

∆DY,N(Q
2) = ∆q

N(Q
2) ∆q̄

N(Q
2) , (62)

where ∆q
N (Q

2) and ∆q̄
N (Q

2) are the single-parton contributions∗ given in Eq. (32). Each term
∆a

N embodies multiple initial-state radiation of soft gluons, i.e. gluons that carry a small fraction

∗To simplify the notation, we drop the explicit dependence on αs and on the renormalization and factorization
scale. Therefore, we use ∆a

N (Q2) ≡ ∆q
N (αs(µ

2), Q2/µ2;Q2/µ2

F ) and Ja
N (Q2) ≡ Ja

N (αs(µ
2), Q2/µ2) throughout this

Section.
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Figure 1: Schematic representation of the structure of the soft-radiation factors in: (a)
DY production, (b) DIS, (c) e+e− annihilation, (d) prompt-photon photoproduciton and
(e) prompt-photon hadroproduction.

1 − z ∼ 1/N ∼ (1 − τ) of the energy of the initial-state parton a. The factorized structure on
the right-hand side of Eq. (62) implies that soft-gluon interferences between the two hard partons
cancel to this logarithmic accuracy [44].

Note that this cancellation does not depend on the type of annihilating partons. In fact, when
the DY pair is replaced by a colourless system, say, a Higgs boson, produced by gluon-gluon fusion,
the resummed partonic cross section is controlled by a NLL radiative factor [40, 45]

∆Higgs,N(Q
2) = ∆g

N (Q
2) ∆g

N (Q
2) , (63)

which is again factorized in single-parton contributions.

The presence of non-interfering Sudakov factors is typical of other processes dominated by
hard scattering of two QCD partons, such as lepton-hadron DIS, e+e− annihilation in two jets
and prompt-photon photoproduction.

In the case of inclusive DIS (Fig. 1b), the hard-scattering scale Q2 = −q2 is given by the square
of the space-like transferred momentum q and the relevant inelasticity variable is the Bjorken
variable xBj = Q2/2P1 · q. The Born-level partonic process is lepton-quark scattering and, when
the threshold region xBj → 1 is approched, the corresponding radiative factor ∆DIS,N(Q

2) in
N -moment space is [44, 46]

∆DIS,N(Q
2) = ∆q

N(Q
2) Jq

N(Q
2). (64)

The Sudakov factor ∆q
N (Q

2) is exactly the same as in the DY process. It embodies soft-gluon
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radiation from the initial-state quark. Unlike in the DY process, however, in DIS the scattered
initial-state quark fragments in the final state. Then the factor Jq

N(Q
2) takes into account the

fragmentation of the final-state quark into a jet of collinear and/or soft partons with a small
invariant mass k2 ∼ Q2/N ∼ (1 − xBj)Q

2. The NLL expression of the jet mass distribution
Ja
N(Q

2) is given in Eq. (36).

Hadronic final states with two back-to-back jets produced in e+e− annihilation at the centre-of-
mass energy Q (Fig. 1c) are also controlled by the jet mass distribution Ja

N(Q
2) [43]. For instance,

in the case of the distribution (1/σ) dσ/dT of the thrust T [47], the Sudakov region is T → 1. In
this limit we have 1 − T ≃ k2

1/Q
2 + k2

2/Q
2, where k2

1 and k2
2 are the hadronic invariant masses

in the two emispheres singled out by the plane orthogonal to the thrust axis. Considering the
N -moments ∆T (e+e−), N (Q

2) of the thrust distribution with respect to T , and taking the large-N
limit, one obtains [47]

∆T (e+e−), N(Q
2) = Jq

N(Q
2) J q̄

N(Q
2) . (65)

The factors Jq and J q̄ are the invariant-mass distributions of the two jets that originate from the
fragmentation of the qq̄-pair produced by the e+e−-annihilation process at the Born level.

The structure of the radiative factors in Eqs. (62–65) easily explains the high-ET behaviour of
the prompt-photon cross section in photoproduction collisions (Fig. 1d). This process, which can
be regarded as a simplified case of the hadroproduction process considered throughout the paper, is
discussed in Appendix C. In hadron-photon collisions the production of high-ET prompt photons is
dominated at the Born level by the Compton-scattering subprocess q(x1P1)+γ(p2) → q(p3)+γ(p).
The all-order resummation of Sudakov effects leads to the radiative factor ∆qγ→qγ

N in Eq. (96),
whose NLL expression is given in Eq. (100):

∆qγ→qγ
N (Q2) = ∆q

N (Q
2) Jq

N(Q
2) . (66)

The factor ∆q
N (Q

2) takes into account sof-gluon radiation from the initial-state quark, while
Jq
N(Q

2) is the mass distribution of the jet produced by the collinear and/or soft fragmentation of
the final-state quark.

Note that high-ET prompt-photon photoproduction can be regarded as a photon-hadron deep-
inelastic scattering, where the space-like momentum transferred by the scattered photon is qµ =
pµ2 − pµ. Since the high-ET cross section is dominated by the kinematics configurations in which
the prompt photon is produced in the central rapidity region, we have 2p2 · p ≃ 2E2

T and 2P1 · p ≃
P1 · p2 = S/2. Thus, the hard scale is Q2 = −q2 = 2p2 · p ≃ 2E2

T and the inelasticity variable
analogous to the Bjorken variable is Q2/2P1 · q = Q2/(2P1 · p2− 2P1 · p) ≃ 4E2

T/S = x2
T . Recalling

that in Eq. (66) we have Q2 = 2E2
T (see Eq. (98)) and that N is the moment index with respect to

x2
T (see Eq. (95)), we can thus straigtforwardly understand the complete analogy between Eq. (66)

and the expression (64) for the DIS radiative factor.

The Sudakov corrections to prompt-photon hadroproduction (Fig. 1e) are embodied in Eqs. (26,
27) through the radiative factor ∆ab→dγ

N (Q2). On the basis of the factorization of the right-hand
side of Eqs. (62–66) in terms of initial- and final-state single-parton contributions, one might expect
that ∆ab→dγ

N can be obtained from the photoproduction result in Eq. (66) by simply including an
additional initial-state factor ∆b

N . The NLL expression (31) for ∆ab→dγ
N (Q2) shows that this naive

expectation is not correct. In fact, we have

∆ab→dγ
N (Q2) = ∆a

N (Q
2) ∆b

N(Q
2) Jd

N(Q
2) ∆

(int) ab→dγ
N (Q2) . (67)
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The presence of the NLL contribution ∆
(int) ab→dγ
N on the right-hand side of Eq. (67) implies

that the physical picture of the Sudakov radiative factors in terms of independent single-parton
contributions is not valid, in general. As discussed in Sect. 2 and explicitly shown in Eqs. (62–66),
this picture applies to processes dominated by hard-scattering of two sole partons, but it breaks
down at NLL accuracy in the case of multiparton hard-scattering. The breakdown is due to
interferences and colour correlations produced by soft gluons that are radiated at large angle with
respect to the directions of the hard-parton momenta [29]. Soft-gluon interferences are present in
the hard-scattering of three QCD partons as shown by Eq. (67), while colour correlations affect
hard-scattering of more than three QCD partons [36].

Owing to their large-angle origin, soft-gluon interferences are process dependent. In the case
of prompt-photon hadroproduction they are taken into account by the factor ∆

(int) ab→dγ
N , whose

explicit NLL expression is given in Eqs. (39–41).

Note that the coefficient D
(1)
ab→dγ in Eq. (41) depends linearly on the colour charges of the hard

partons, and the colour-charge dependence of ∆
(int) ab→dγ
N is thus factorized at NLL accuracy. This

suggests that the effect of the interference factor can be absorbed by a proper rescaling of the
independent-emission factors ∆a,∆b and Jd. As a matter of fact, neglecting corrections beyond
NLL order, one can check that the right-hand side of Eq. (67) can be rewritten as follows

∆ab→dγ
N (Q2) = ∆a

N/2(Q
2/2) ∆b

N/2(Q
2/2) Jd

N/2(Q
2/2) . (68)

This equation has to be regarded as a manifestation of the colour-coherence properties of QCD
emission [35]. Soft gluons radiated at large angle destructively interfere. Their effect can thus be
taken into account by Sudakov factors of independent emission in a restricted (angular) region of
the phase space.

6 Conclusion

In this paper we presented the explicit expressions for the resummation of threshold-enhanced log-
arithms in hadronic prompt-photon production, to next-to-leading accuracy. The simple colour
structure of the diagrams contributing to prompt-photon production reflects itself in the simplic-
ity of the resummed formulae. Fragmentation processes, furthermore, do not contribute to the
Sudakov resummation at NLL level. In Mellin space, the resummed radiative factor factorizes in
the product of three independent contributions for the initial and final coloured partons appearing
in the Born process, times a simple factor describing the soft-gluon interferences between initial
and final states. General coherence properties of large-angle soft-gluon radiation allow to further
simplify the result: the interference contributions can be described, to the same degree of accuracy,
by constraining the phase-space for independent emission from the coloured partons. The result-
ing radiation factor can thus be written as the product of the three independent single-parton
contributions, with a properly rescaled dependence on the Mellin-moment variable N .

The formulae are given in terms of Mellin moments, and can be used for phenomenological
applications by inverse-Mellin transforming to xT space. The problems related to this inversion
are the same as those encountered in the resummation of the Drell-Yan or heavy-quark produc-
tion cross-sections, and can therefore be solved with the same techniques [41]. All ingredients
are therefore available for a phenomenological study of prompt-photon production including the
evaluation of Sudakov effects with NLL accuracy. Such a study is in progress, and will be reported
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soon. The calculations presented in this work, together with previous work on Drell-Yan and DIS,
make it now possible to carry out global fits of parton densities with a uniform NLL accuracy in
the large-x region. All of the processes that are used for these global fits, among which prompt-
photon production plays a critical role, are now known theoretically at this level of accuracy.

Acknowledgements We thank W. Vogelsang for useful discussions.

Appendix A: NLL formulae for the radiative factors

The logarithmic expansion of the radiative factors in Eqs. (32, 36, 39) can be computed as described
in Refs. [32, 43]. The running coupling αs(k

2) with k2 = q2, (1−z)2Q2, (1−z)Q2 has to be expressed
in terms of αs(µ

2) according to the NLO solution of the renormalization group equation:

αs(k
2) =

αs(µ
2)

1 + b0αs(µ2) ln(k2/µ2)

[

1− b1
b0

αs(µ
2)

1 + b0αs(µ2) ln(k2/µ2)
ln(1 + b0αs(µ

2) ln(k2/µ2))

+ O(α2
s(µ

2)(αs(µ
2) ln(k2/µ2))n)

]

, (69)

where b0, b1 are the first two coefficients of the QCD β-function, which are explicitly reported in
Eq. (48). Then the z integration can be performed with NLL accuracy by setting

zN−1 − 1 ≃ −Θ(1− z − e−γE/N) . (70)

Defining
λ = b0αs(µ

2) lnN , (71)

we find

ln∆a
N (αs(µ

2), Q2/µ2;Q2/µ2
F ) = lnN h(1)

a (λ) + h(2)
a (λ,Q2/µ2;Q2/µ2

F ) +O
(

αs(αs lnN)k
)

,(72)

ln Ja
N(αs(µ

2), Q2/µ2) = lnN f (1)
a (λ) + f (2)

a (λ,Q2/µ2) +O
(

αs(αs lnN)k
)

, (73)

ln∆
(int) ab→dγ
N (αs(µ

2), Q2/µ2) =
D

(1)
ab→dγ

2πb0
ln(1− 2λ) +O

(

αs(αs lnN)k
)

, (74)

where the LL and NLL functions h(1)
a , f (1)

a and h(2)
a , f (2)

a are given in terms of the perturbative
coefficients A(1)

a , A(2)
a , B(1)

a in Eqs. (33, 37):

h(1)
a (λ) = +

A(1)
a

2πb0λ

[

2λ+ (1− 2λ) ln(1− 2λ)
]

, (75)

h(2)
a (λ,Q2/µ2;Q2/µ2

F ) = +
A(1)

a b1
2πb30

[

2λ+ ln(1− 2λ) +
1

2
ln2(1− 2λ)

]

− A(1)
a γE
πb0

ln(1− 2λ) (76)

− A(2)
a

2π2b20

[

2λ+ ln(1− 2λ)
]

+
A(1)

a

2πb0

[

2λ+ ln(1− 2λ)
]

ln
Q2

µ2
− A(1)

a

πb0
λ ln

Q2

µ2
F

,
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f (1)
a (λ) = − A(1)

a

2πb0λ

[

(1− 2λ) ln(1− 2λ)− 2(1− λ) ln(1− λ)
]

, (77)

f (2)
a (λ,Q2/µ2) = − A(1)

a b1
2πb30

[

ln(1− 2λ)− 2 ln(1− λ) +
1

2
ln2(1− 2λ)− ln2(1− λ)

]

+
B(1)

a

2πb0
ln(1− λ)− A(1)

a γE
πb0

[

ln(1− λ)− ln(1− 2λ)
]

(78)

− A(2)
a

2π2b20

[

2 ln(1− λ)− ln(1− 2λ)
]

+
A(1)

a

2πb0

[

2 ln(1− λ)− ln(1− 2λ)
]

ln
Q2

µ2
.

Note that the functions f (1)
a (λ) and f (2)

a (λ,Q2/µ2) can also be written in terms of h(1)
a and h(2)

a

as follows

f (1)
a (λ) = h(1)

a (λ/2)− h(1)
a (λ) , (79)

f (2)
a (λ,Q2/µ2) = 2 h(2)

a (λ/2, Q2/µ2; 1)− h(2)
a (λ,Q2/µ2; 1) +

B(1)
a + 2A(1)

a γE
2πb0

ln(1− λ) . (80)

Inserting the expressions (72, 73, 74) into Eq. (31), and using the explicit form of the pertur-

bative coefficients A(1)
a , A(2)

a , B(1)
a , D

(1)
ab→dγ in Eqs. (34, 38, 41) we obtain the results in Eqs. (44–47).

Appendix B: NNLO partonic cross sections at large N

According to the notation in Eq. (61), the large-N behaviour of the NLO cross section σ̂
(1)
ab→γ in

Eq. (11) is written as

σ̂
(1)
ab→γ,N(E

2
T , µ

2, µ2
F , µ

2
f) = σ̂

(0)
ab→dγ, N

[

c
(ab)
1,2 ln2N + c

(ab)
1,1 (E2

T /µ
2
F ) lnN + c

(ab)
1,0 (E2

T/µ
2
F , E

2
T/µ

2)

+ O(1/N)
]

, (81)

where the various coefficients can be read from Eqs. (56, 57)

c
(qq̄)
1,2 =

1

π

(

2CF − 1

2
CA

)

, c
(qg)
1,2 =

1

π

(

1

2
CF + CA

)

, (82)

c
(qq̄)
1,1 (E2

T/µ
2
F ) =

1

π

[

γE(4CF − CA)− (2CF − CA) ln 2 + πb0 − 2CF ln
2E2

T

µ2
F

]

,

c
(qg)
1,1 (E2

T/µ
2
F ) =

1

π

[

γE(CF + 2CA)− CA ln 2 +
3

4
CF − (CF + CA) ln

2E2
T

µ2
F

]

, (83)

c
(qq̄)
1,0 (E2

T/µ
2
F , E

2
T/µ

2) =
1

π
C

(1)
qq̄→γ(2E

2
T/µ

2; 2E2
T/µ

2
F ) ,

c
(qg)
1,0 (E2

T/µ
2
F , E

2
T/µ

2) =
1

π
C(1)

qg→γ(2E
2
T/µ

2; 2E2
T/µ

2
F ) , (84)

and C
(1)
qq̄→γ, C

(1)
qg→γ are given in Eqs. (58, 59).
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Analogously, we can write the NNLO cross section σ̂
(2)
ab→γ as follows:

σ̂
(2)
ab→γ,N (E

2
T , µ

2, µ2
F , µ

2
f) = σ̂

(0)
ab→dγ, N

[

c
(ab)
2,4 ln4N + c

(ab)
2,3 (E2

T/µ
2
F ) ln

3N

+ c
(ab)
2,2 (E2

T/µ
2
F , E

2
T/µ

2) ln2N +O(lnN)
]

. (85)

The coefficients c2,4, c2,3, c2,2 can be calculated by expanding the resummation formulae (26, 27)
to the second order in αs. We find

c
(ab)
2,4 =

1

2

[

c
(ab)
1,2

]2
, (86)

c
(qq̄)
2,3 (E2

T/µ
2
F ) = c

(qq̄)
1,2 c

(qq̄)
1,1 (E2

T /µ
2
F ) +

2

3π
b0

(

2CF − 3

4
CA

)

,

c
(qg)
2,3 (E2

T/µ
2
F ) = c

(qg)
1,2 c

(qg)
1,1 (E2

T/µ
2
F ) +

2

3π
b0

(

1

4
CF + CA

)

, (87)

c
(qq̄)
2,2 (E2

T/µ
2
F , E

2
T/µ

2) =
1

2

[

c
(qq̄)
1,1 (E2

T/µ
2
F )
]2

+ c
(qq̄)
1,2 c

(qq̄)
1,0 (E2

T/µ
2
F , E

2
T/µ

2)

+
1

π
b0

[

γE
(

4CF − 3

2
CA

)

− (2CF − CA) ln 2 +
1

2
πb0 +

(

2CF − 1

2
CA

)

(

K

2πb0
− ln

2E2
T

µ2

)]

,

c
(qg)
2,2 (E2

T/µ
2
F , E

2
T/µ

2) =
1

2

[

c
(qg)
1,1 (E2

T/µ
2
F )
]2

+ c
(qg)
1,2 c

(qg)
1,0 (E2

T /µ
2
F , E

2
T/µ

2)

+
1

π
b0

[

γE
(1

2
CF + 2CA

)

− CA ln 2 +
3

8
CF +

(1

2
CF + CA

)

(

K

2πb0
− ln

2E2
T

µ2

)]

, (88)

where the coefficients c1,2, c1,1, c1,0 and K are given in Eqs. (82, 83, 84) and (35).

Our prediction for the coefficients in Eq. (85) can be used to check future NNLO calculations
of the prompt-photon production cross section. Alternatively, when these calculations become
available, they can provide a highly non-trivial check of our NNL resummation.
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Appendix C: photoproduction of prompt photons

In hadron-photon collisions the inclusive production of a single prompt photon is due to the process

H1(P1) + γ(P2) → γ(p) +X . (89)

We use the same kinematics notation as in the hadroproduction case (cf. Sect. 3) and we write
the prompt-photon photoproduction cross section integrated over η at fixed ET as follows:

dσ(ph)
γ (xT , ET )

dET
=

(

dσ(ph)
γ (xT , ET )

dET

)

hadronic

+

(

dσ(ph)
γ (xT , ET )

dET

)

pointlike

. (90)

The hadronic contribution to the cross section is completely analogous to the right-hand side of
Eq. (10) apart from replacing fb/H2

(x2, µ
2
F ) with the parton distribution fb/γ(x2, µ

2
F ) of incoming

photon.

The second contribution on the right-hand side of Eq. (90) is due to point-like interactions of
the incoming photon with high-momentum partons. The point-like cross section can in turn be
decomposed in direct and fragmentation components

(

dσ(ph)
γ (xT , ET )

dET

)

pointlike

=
1

E3
T

∑

a

∫ 1

0
dx1 fa/H1

(x1, µ
2
F )

·
∫ 1

0
dx

{

δ

(

x− xT√
x1

)

σ̂aγ→γ(x, αs(µ
2);E2

T , µ
2, µ2

F , µ
2
f) (91)

+
∑

c

∫ 1

0
dz z2 dc/γ(z, µ

2
f) δ

(

x− xT

z
√
x1

)

σ̂aγ→c(x, αs(µ
2);E2

T , µ
2, µ2

F , µ
2
f)

}

.

The rescaled partonic cross sections σ̂aγ→γ and σ̂aγ→c have perturbative QCD expansions similar
to Eqs. (11) and (12). In particular, for the point-like direct component we have

σ̂aγ→γ(x, αs(µ
2);E2

T , µ
2, µ2

F , µ
2
f) = α2

[

σ̂
(0)
aγ→dγ(x) +

∞
∑

n=1

αn
s (µ

2) σ̂(n)
aγ→γ(x;E

2
T , µ

2, µ2
F , µ

2
f)

]

, (92)

where the only non-vanishing terms at LO are those due to the Compton scattering subprocesses

q + γ → q + γ , q̄ + γ → q̄ + γ , (93)

whose contribution to the cross section is

σ̂(0)
qγ→qγ(x) = σ̂

(0)
q̄γ→q̄γ(x) = π e4q

x2

√
1− x2

(

1 +
x2

4

)

. (94)

To perform soft-gluon resummation at high ET , we work as usual in N -moment space by
defining

σ
(ph)
γ,N (ET ) ≡

∫ 1

0
dx2

T (x2
T )

N−1 E3
T

dσ(ph)
γ (xT , ET )

dET
. (95)

The resummation of the large-N corrections to the N -moments of the hadronic contribution
in Eq. (90) is exactly the same as for the hadroproduction case discussed in Sect. 4. Moreover, in

22



the large-N limit, the point-like contribution turns out to be dominant: the hadronic contribution
involves the additional convolution with the photon parton density fb/γ and this implies its sup-
pression by a relative factor of O(1/N). We can thus limit ourselves to considering the point-like
cross section.

In the case of the point-like contribution, one can repeat the argument in Sect. 4.1 on the
relative size of the fragmentation component and of the various direct subprocesses. Up to NLL
accuracy, we then conclude that soft-gluon resummation in the photoproduction cross section (95)
is controlled by the point-like direct channels qγ → γ and q̄γ → γ. The all-order resummation
formulae for the corresponding partonic cross sections are

σ̂
(res)
qγ→γ, N(αs(µ

2);E2
T , µ

2, µ2
F , µ

2
f) = α2 σ̂

(0)
qγ→qγ, N Cqγ→γ(αs(µ

2), Q2/µ2;Q2/µ2
F )

· ∆qγ→qγ
N+1 (αs(µ

2), Q2/µ2;Q2/µ2
F ) , (96)

σ̂
(res)
q̄γ→γ, N(αs(µ

2);E2
T , µ

2, µ2
F , µ

2
f) = σ̂

(res)
qγ→γ, N(αs(µ

2);E2
T , µ

2, µ2
F , µ

2
f) , (97)

where
Q2 = 2E2

T , (98)

and σ̂
(0)
qγ→qγ, N are the N -moments with respect to x2 of Eq. (94)

σ̂
(0)
qγ→qγ, N = π e2q

1

4

Γ(1/2) Γ(N + 1)

Γ(N + 5/2)
(7 + 5N) . (99)

The radiative factor ∆qγ→qγ
N and the N -independent function Cqγ→γ in Eq. (27) can directly be

related to the analogous contributions ∆qg→qγ
N and Cqg→γ to the qg channel in the hadroproduction

process.

The radiative factor ∆qγ→qγ
N is obtained from the factorized expression (31) for ∆qg→qγ

N , namely

from ∆qg→qγ
N = ∆q

N∆
g
NJ

q
N∆

(int) qg→qγ
N , by switching off soft-gluon radiation from the incoming

gluon. This amounts to set CA = 0 in ∆g
N and ∆

(int) qg→qγ
N . Using the explicit formulae in

Eqs. (32, 34) and (39, 41), this implies that up to NLL accuracy we can neglect both ∆g
N and

∆
(int) qg→qγ
N and we have the simple result:

∆qγ→qγ
N (αs(µ

2), Q2/µ2;Q2/µ2
F ) = ∆q

N (αs(µ
2), Q2/µ2;Q2/µ2

F ) J
q
N(αs(µ

2), Q2/µ2) . (100)

Note that no soft-gluon interference factor ∆
(int)
N appears in Eq. (100). Prompt-photon pho-

toproduction at threshold is dominated by an underlying hard-scattering that involves only two
hard partons and then, in agreement with the general discussion in Sect. 2, soft-gluon interferences
have to cancel.

The explicit NLL expansion of Eq. (100) gives

∆qγ→qγ
N

(

αs(µ
2),

Q2

µ2
;
Q2

µ2
F

)

= exp
{

lnN g(1)qγ (b0αs(µ
2) lnN) + g(2)qγ (b0αs(µ

2) lnN,Q2/µ2;Q2/µ2
F )

+ O(αs(αs lnN)k)
}

; (101)

where the LL and NLL terms g(1) and g(2) are expressed in terms of the auxiliary functions h(1)

and h(2) of Eqs. (49) and (50):
g(1)qγ (λ) = CF h(1)(λ/2) , (102)
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g(2)qγ

(

λ,
Q2

µ2
;
Q2

µ2
F

)

= 2CF h(2)(λ/2) +
4CF γE − 3CF

4πb0
ln(1− λ)

− CF

πb0
λ ln

Q2

µ2
F

+
CF

πb0

[

λ+ ln(1− λ)
]

ln
Q2

µ2
. (103)

The N -independent function Cqγ→γ(αs) has the following perturbative expansion

Cqγ→γ(αs(µ
2), Q2/µ2;Q2/µ2

F ) = 1+
αs(µ

2)

π
C(1)

qγ→γ(Q
2/µ2

F )+
+∞
∑

n=2

(

αs(µ
2)

π

)n

C(n)
qγ→γ(Q

2/µ2;Q2/µ2
F ) .

(104)
Note that the first-order coefficient C(1)

qγ→γ does not depend on the renormalization scale. Its

explicit expression is obtained from that of C(1)
qg→γ by setting CA = 0 and b0 = 0 in Eq. (59):

C(1)
qγ→γ(Q

2/µ2
F ) = CF

{

1

2
γ2
E +

3

4
γE − 1

10
ln 2− 1

2

Kq

CF
+

π2

30
+

1

2
ln2 2−

(

γE − 3

4

)

ln
Q2

µ2
F

}

. (105)

Expanding the resummation formula (96) in powers of αs we can derive the large-N behaviour
of the NLO and NNLO cross sections σ̂(1)

qγ→γ and σ̂(2)
qγ→γ of Eq. (92).

At NLO we find

σ̂
(1)
qγ→γ,N(E

2
T , µ

2, µ2
F , µ

2
f) = σ̂

(0)
qγ→qγ,N

[

c
(qγ)
1,2 ln2N + c

(qγ)
1,1 (E2

T /µ
2
F ) lnN + c

(qγ)
1,0 (E2

T/µ
2
F ) +O(1/N)

]

,

(106)
where

c
(qγ)
1,2 =

1

2π
CF , c

(qγ)
1,1 (E2

T/µ
2
F ) =

1

π
CF

(

γE +
3

4
− ln

2E2
T

µ2
F

)

, c
(qγ)
1,0 (E2

T/µ
2
F ) =

1

π
C(1)

qγ→γ(2E
2
T/µ

2
F ) .

(107)
This result agrees with the large-N limit of the NLO analytic expressions computed in Ref. [48].

At NNLO we predict

σ̂
(2)
qγ→γ,N(E

2
T , µ

2, µ2
F , µ

2
f) = σ̂

(0)
qγ→qγ,N

[

c
(qγ)
2,4 ln4N + c

(qγ)
2,3 (E2

T /µ
2
F ) ln

3N

+ c
(qγ)
2,2 (E2

T/µ
2
F , E

2
T/µ

2) ln2N +O(lnN)
]

, (108)

where

c
(qγ)
2,4 =

1

2

[

c
(qγ)
1,2

]2
=

1

8π2
CF , (109)

c
(qγ)
2,3 (E2

T/µ
2
F ) = c

(qγ)
1,2 c

(qγ)
1,1 (E2

T/µ
2
F ) +

1

6π
CF b0 =

1

2π2
CF

[

CF

(

γE +
3

4
− ln

2E2
T

µ2
F

)

+
π

3
b0

]

, (110)

c
(qγ)
2,2

(

E2
T

µ2
F

,
E2

T

µ2

)

=
1

2

[

c
(qγ)
1,1 (E2

T /µ
2
F )
]2

+ c
(qγ)
1,2 c

(qγ)
1,0 (E2

T /µ
2
F ) +

CF b0
2π

(

γE +
3

4
+

K

2πb0
− ln

2E2
T

µ2

)

=
CF

2π2

[

C(1)
qγ→γ(2E

2
T/µ

2
F ) +

(

CF + πb0
)

(

γE +
3

4
− ln

2E2
T

µ2

)

+
1

2
K

]

, (111)

and the coefficient K is given in Eqs. (35).
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