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We explore analytically how does the Standard Model emerge as the quantum low energy effective theory of the Minimal Super-
symmetric Standard Model (MSSM) in the decoupling limit where the sparticles are much heavier than the electroweak scale. In
this work we integrate the sfermions to one-loop and compute their contributions to the effective action for standard electroweak
gauge bosons. A proof of decoupling of sfermions is performed by analyzing the resulting effective action in the asymptotic limit
m

f̃
≫ mz . A discussion on how the decoupling takes place in terms of both the sparticle physical masses and the non-physical

MSSM parameters is included.

1 Introduction

The Standard Model (SM) is a pillar of success as an
effective theory. Experimental measurements agree with
SM radiative corrections to a precision of greater than
0.1%. However, SM contains nagging theoretical prob-
lems which cannot be solved without the introduction of
some new physics. In this sense, supersymmetry (SUSY)
is the favorite of many theorists. The simplest model
of this type is called the Minimal Supersymmetric Stan-
dard Model (MSSM) 1, which is the one we have chosen
to work with in this paper.

One interesting aspect that arises in these softly bro-
ken SUSY theories, and in particular in the MSSM, is the
question of decoupling of heavy sparticles from the low
energy SM and how does it really occurs if it occurs at
all. We will concentrate our attention in this subject. In
general, perturbative considerations 2 lead us to believe
that heavy particles can be decoupled from low energy
degrees of freedom. We expect that the lagrangian des-
cribing the low energy degrees of freedom is affected by
heavy particles only through renormalization effects and
higher dimension operators which become negligible as
the particles are made infinitely massive.

At present, there are indications that when the spec-
trum of supersymmetric particles at the MSSM is con-
sidered much heavier than the low energy electroweak
scale they decouple from the low energy physics, even at
the quantum level, and the resulting low energy effective
theory is the SM itself. However, a rigorous proof of de-
coupling is still lacking. On one hand there are numerical
studies of observables that measure electroweak radiative
corrections, like ∆r and ∆ρ 3, or the S, T and U parame-

ters 4 as well as in the Z boson, top quark and Higgs
decays 5, which indicate that the one loop corrections
from supersymmetric particles decrease up to negligible
values in the limit of very heavy sparticle masses. Decou-
pling of SUSY particles is also found in some analytical
studies of these and related observables 3-7.

It has been known for some time that there are some
exceptions where the Decoupling Theorem2 does not ap-
ply. Particularly interesting are the cases of the Higgs
particle and the top quark in the SM which are known
not to decouple from low energy physics 8,9,10. The ques-
tion whether the Decoupling Theorem applies or not in
the case of heavy sparticles in MSSM is not obvious
at all, in our opinion. The MSSM is a gauge theory
which incorporates the spontaneous symmetry breaking
SU(2)L × U(1)Y → U(1)em and chiral fermions as the
SM and therefore, the direct application of this theorem
should, in the principle, be questioned 11.

In our opinion, a formal proof of decoupling must
involve the explicit computation of the effective action
by integrating out one by one all the sparticles in the
MSSM to all orders in perturbation theory, and by con-
sidering the heavy sparticle masses limit. The proof will
be conclusive if the remaining effective action, to be valid
at energies much lower than the supersymmetric particle
masses, turns out to be that of the SM with all the SUSY
effects being absorbed into a redefinition of the SM pa-
rameters or else they are suppressed by inverse powers
of the SUSY particle masses and vanish in the infinite
masses limit.

In this work we discuss part of the effective action
which results by integrating out the sfermions of the
MSSM at the one loop level. This is a reduced version of
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the more complete papers to which we refer the reader for
a more detailed discussion 12,13. Here, we have devoted
our attention on the derivation of the two, three and
four-point functions with external W±, Z and γ gauge
bosons. In order to keep our computation of the heavy
SUSY particle quantum effects in a general form we have
chosen to work with the masses themselves. Neverthe-
less, a discussion on how the decoupling takes places in
terms of both the physical sparticle masses and the non-
physical MSSM parameters, as the µ-parameter or the
soft-SUSY-breaking parameters, MQ̃,MŨ ,MD̃,ML̃,MẼ,
is included.

It is important to remark that we have considered
the physically plausible situation where all the sparticle
masses are large as compared to the electroweak scale but
they are allowed, in principle, to be different from each
other. We will explore the interesting question of to what
extent the usual hypothesis of SUSY masses being gene-
rated by soft-SUSY-breaking terms and the universality
of the mass parameters do or do not play a relevant role
in getting decoupling. In fact, we will show in this pa-
per, that the basic requirement of SU(2)L×U(1)Y gauge
invariance on the SUSY breaking terms is sufficient to
obtain decoupling in the MSSM.

Finally, we would like to point out that in order
to evaluate analytically the large SUSY masses limit of
the Green functions we have applied the so-called m-
Theorem 14, which provides a rigorous technique to com-
pute Feynman integrals with both large and small masses
in the asymptotic regime of the large masses being very
heavy. This theorem will enable us not only to disre-
gard integrals that do not contribute to the limit of large
masses without having to compute them, but also to eva-
luate exactly the non-decoupling contributions.

The paper is organized as follows: In section 2 we
present a brief discussion about the large mass limit for
all the sfermions at the MSSM. The third section is de-
voted to present the effective action for the electroweak
gauge bosons W±, Z and γ in the MSSM that results by
integrating out, in the path integral, sfermions to one-
loop. The asymptotic results in the large SUSY masses
limit for the two, three and four-points functions are in-
cluded and analyzed in section 3. Finally, the conclusions
are summarized in section 4.

2 The large supersymmetric masses limit.

As we point out before, in the present work we are in-
terested in the Green functions with external electroweak
gauge bosons and in the large mass limit of the SUSY
particles, which means the situation where all the sparti-
cle masses are much larger than the electroweak scale and
the external momenta. In particular this could be the

case if the sparticle masses are well above mZ,mW and
mt but still below the few TeV upper bound that is im-
posed by the standard solution of the hierarchy problem.
Furthermore, unless we are in a particular model, the
masses of the various sparticles are, in general, different
and independent. Therefore, we must take these masses
to be large as compared to the external gauge boson
masses and external momenta, but we must specify, in
addition, how they compare to each other. More specifi-
cally, we assume here the most plausible situation where
all the sparticle masses are large but close to each other;
namely m̃2

i
, m̃2

j
≫ M2

EW
, k2 and |m̃2

i
− m̃2

j
| ≪ |m̃2

i
+ m̃2

j
|,

where MEW denotes any of the electroweak masses in-
volved (mZ,mW ,mt, . . .) and k denotes any external mo-
mentum. Notice that this includes the case that has been
the most studied in the literature where universality of
sparticle masses is assumed.

In principle, our asymptotic limit is on the phys-
ical masses, which implies, of course, some conditions
over the parameters of the model. In other words, our
masses hypothesis, together with the requirement that all
the sparticles must be heavier than their corresponding
partners, imply some constraints on the SUSY param-
eters. In particular, in the squarks sector, if we ignore
mixing between different generations to avoid unaccept-
able large flavor changing neutral currents and if we use
the notation of the third family for the mass eigenstates
t̃1, t̃2, b̃1, b̃2 and the corresponding mass squared eigenval-
ues by m̃2

t1,2
, m̃2

b1,2
, it can be shown the following con-

straints on the soft SUSY breaking and µ parameters
hold12:

M2
Q̃
,M2

Ũ
≫ m2

t ,m
2
Z

, |M2
Q̃
−M2

Ũ
| ≪ |M2

Q̃
+ M2

Ũ
|

m2
t
(At − µ cotβ)2 < M2

Q̃
M2

Ũ
. (1)

Here At is the trilinear coupling and cotβ ≡ v1/v2.
The first condition implies, in turn, the limiting be-
haviour m̃2

t1
→ M2

Q̃
, m̃2

t2
→ M2

Ũ
. The second condition

means that MQ̃ and MŨ must be close to each other and
the third one means that the mixing can never be arbi-
trarily large. Similar conclusions can be obtained for the
sbottoms.

In summary, in other to get large stop and sbot-
tom masses one needs large values of the SUSY breaking
masses MQ̃,MŨ and MD̃ as compared to the electroweak
scale and, in order not to get a too large mixing, the tri-
linear couplings At, Ab and the µ parameter must be con-
strained from above by the previous inequalities. Notice
that an arbitrarily large µ or At, Ab with MQ̃,MŨ ,MD̃

fixed is not allowed.

We would like to mention that the asymptotic limit
considered here is not the unique possibility to study de-
coupling. Other possibilities are now under study 12.
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3 Effective action for the electroweak gauge

bosons to one-loop.

This section is devoted to present the computa-
tion of the part of the effective action that contains the
two, three and four-point Green’s functions with external
gauge bosons, A,Z,W±, which results by integrating out
all the sfermions particles of the MSSM at the one loop
level. Details of the computation, including the integra-
tion of neutralinos χ̃o and charginos χ̃+ can be found
in 12,13. The computation has been performed using di-
mensional regularization.

We start by writing, in a general and compact form,
the effective action for the standard particles, Γeff [φ],
that is defined through functional integration of all the
sparticles of the MSSM,

eiΓeff [φ] =

∫
[dφ̃] eiΓMSSM [φ,φ̃] ,

ΓMSSM[φ, φ̃] ≡
∫

dxLMSSM(φ, φ̃) ; dx ≡ d4x , (2)

where φ = l, q, A,W±, Z, g,H are the SM particles, φ̃ =
l̃, q̃, Ã, W̃±, Z̃, g̃, H̃ their supersymmetric partners, and
LMSSM is the lagrangian of the MSSM12. In the following
we will use the notation of ref. 12.

As we have already said, in the present work we are
interested only in the sfermions contribution. The corre-
sponding part of the effective action can be written as:

eiΓ
f̃

eff
[V ] =

∫
[df̃ ][df̃∗]eiΓf̃ [V ,f̃ ] , (3)

where f̃ = q̃, l̃ ;V = W±, Z,A and Γf̃ [V, f̃ ] is the action
for the sfermions.

Notice that the effective action as a function of the
n-point Green functions, ΓV1V2...Vn

µ ν... ρ , can be written in the
following form:

Γf̃
eff [V ] =

∑

n

1

m!

∫
d4x1...d

4xn

ΓV1V2...Vn
µν... ρ (x1 x2... xn)V µ

1 V ν
2 ...V ρ

n , (4)

with Vi (i = 1...n) being the external gauge bosons and m
denotes the number of these bosons which are identical.

In order to perform the functional integration, it is
convenient to write the classical action in terms of oper-

ators. We have computed Γf̃
eff [V ] by using the standard

path integral techniques. The details of the computation
can be found in 12. It is also worth mentioning that we
have worked in the momentum space, which simplify the
calculation considerably.

The total resulting effective action for two, three and
four-point functions, which are generated from sfermions

can be summarized in the following expression:

Γf̃
eff [V ] = iTr(A

(0)

f̃

−1
A

(2)

f̃
) − i

2
Tr(A

(0)

f̃

−1
A

(1)

f̃
)2

− iTr(A
(0)

f̃

−1
A

(1)

f̃
A

(0)

f̃

−1
A

(2)

f̃
)

+
i

3
Tr(A

(0)

f̃

−1
A

(1)

f̃
)3 − i

2
Tr(A

(0)

f̃

−1
A

(2)

f̃
)2

+ iTr(A
(0)

f̃

−1
A

(1)

f̃
A

(0)

f̃

−1
A

(1)

f̃
A

(0)

f̃

−1
A

(2)

f̃
)

− i

4
Tr(A

(0)

f̃

−1
A

(1)

f̃
)4 + O(V 5) , (5)

where the operators are,

A
(0)

f̃kp
≡ (2π)4δ(p + k) (k2 − M̃2

f ) ,

A
(1)

f̃kp
≡ −(2π)4

∫
dq̃ δ(p + k + q)(qµ + 2pµ)

{
eAµ

q Q̂f +
g

cw
Zµ
q Ĝf +

g√
2
W+µ

q Σtb
f + h.c.

}
,

A
(2)

f̃kp
≡ (2π)4

∫
dq̃ dr̃ δ(p + k + q + r)

{
e2Q̂2

fAµ qA
µ
r

+
2 g e

cw
Aµ qZ

µ
r Q̂fĜf +

g2

c2w
Ĝ2

fZµ qZ
µ
r

+
g2

2
ΣfW

+
µ qW

µ−
r +

eg√
2
Yf̃Aµ q

(
W+

µ rΣtb
f + W−

µ rΣbt
f

)

− g2√
2
Yf̃

s2w
cw

Zµ q

(
W+

µ rΣtb
f + W−

µ rΣbt
f

)}
. (6)

In the above expressions and in the following, f̃ is a
four-entries column vector including the four mass eigen-
states per generation, i.e (t̃1, t̃2, b̃1, b̃2) for squarks and
(ν̃, 0, τ̃1, τ̃2) for sleptons. The sum

∑
f̃ is over the three

generations and, in the case of squarks, it runs also over
the Nc color indexes. The coupling matrices Q̂f , Ĝf ,Σ

tb
f

and Σf can be found in 12. The parameter Yf̃ and the
corresponding mass matrices are given by:

Yf̃ =
1

3
if f̃ = q̃ or Yf̃ = −1 if f̃ = l̃ ,

M̃2
f = diag(m̃2

t1
, m̃2

t2
, m̃2

b1
, m̃2

b2
) if f̃ = q̃ ,

M̃2
f = diag(m̃2

ν , 0, m̃
2
τ1
, m̃2

τ2
) if f̃ = l̃ . (7)

Clearly, we can identify the first and second terms in
eq. (5) with the one-loop contributions to the two-point
functions, the third and fourth terms with the contri-
butions to the three-point function and the last three
terms are the corresponding contributions to the four-
point functions.

In order to get the explicit expressions for the two-
point functions one must work out the traces in the above
formulae. Basically one must substitute all the operators
and compute all the appearing Dirac traces. The traces
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also involve to perform the sum in the corresponding ma-
trix indexes, the sum over the various types of sfermions
and the sum in color indexes in the case of squarks. We
have done this computation, in addition, by diagramma-
tical methods and we have found the same results.

In the following we will present the results of the
two, three and four-point functions with external gauge
bosons at one loop.

3.1 Effective action for the two-point functions.

We present here the contributions to the two-point
function in momentum space, ΓV1 V2

µ ν . They are given in
terms of the coupling matrices and the one-loop integrals:

ΓAA
µν (k) = Γ0

AA
µν (k) + ie2

∑

f̃

{
2
∑

a

(Q̂2
f )aaI0 gµν

−
∑

ab

(Q̂f )ab(Q̂f )baI
ab
fµν

}
(8)

ΓZ Z
µν (k) = Γ0

Z Z
µ ν (k) + i

g2

c2
W

∑

f̃

{
2
∑

a

(Ĝ2
f )aaI0 gµν

−
∑

ab

(Ĝf )ab(Ĝf )baI
ab
fµν

}
(9)

ΓAZ
µ ν (k) = ΓZ A

µ ν (k) =
ige

cW

∑

f̃

{
2
∑

a

(Q̂fĜf )a aI0 gµν

−
∑

ab

(Q̂f )a b(Ĝf )b aI
a b
fµ ν

}
(10)

ΓW W
µν (k) = Γ0

W W
µν (k) +

ig2

2

∑

f̃

{
∑

a

(Σf )a aI0 gµν

−
∑

a,b

(Σt b
f )a b(Σ

t b
f )a bI

a b
fµ ν



 (11)

In the above formulae the indexes a and b run from one
to four, corresponding to the four entries of the column
vector f̃ . Γ0

V V
µ ν (V = Z,W ) and Γ0

AA
µν are the two-point

functions at tree level, which are defined by:

Γ0
V V
µ ν (k) = (MV − k2)gµν +

(
1 − 1

ξV

)
kµkν ;

Γ0
AA
µν = −k2gµν +

(
1 − 1

ξA

)
kµkν , (12)

The one-loop integrals I0(m̃2
fa

) , Ia b
fµ ν

(k, m̃fa , m̃fb)
are defined in Appendix A.

3.2 Three and four-point functions.

For simplicity, we will show here the results for the
three and four-point functions in the more general and
compact form. The corresponding effective action for the

three and four-point functions, Γf̃
eff [V ]

[3]
and Γf̃

eff [V ]
[4]

can be expressed as,

Γf̃
eff [V ]

[3]
= i(2π)4

∫
dp̃ dq̃ dk̃ δ(p + k + q)

∑

f̃



∑

a,b

(Ô1µ
p )ab(Ô

2 νσ
qk )baT

a b
µ gνσ

−1

3

∑

a,b,c

(Ô1µ
p )ab(Ô

1 ν
q )bc(Ô

1 σ
k )ca T a b c

µ ν σ


 ,

(13)

Γf̃
eff [V ]

[4]
= −i(2π)4

∫
dp̃ dq̃ dk̃ dr̃ δ(p + k + q + r)

∑

f̃


1

2

∑

a,b

(Ô
′2µν
pq )ab(Ô

′2 σλ
qk )ba gµ νgσλ J

a b

−
∑

a,b,c

(Ô1 µ
p )ab(Ô

1 ν
q )bc(Ô

′2 σλ
qk )ca gσλ Ja b c

µ ν

+
1

4

∑

a,b,c,d

(Ô1µ
p )ab(Ô

1 ν
q )bc(Ô

1 σ
k )cd(Ô1 λ

r )da Ja b c d
µ ν σ λ


 ,

(14)

where, similarly to the two-point functions, the indexes
a, b, c and d run from one to four and the ”operators”
Ô1µ

p , Ô2µν
pq and Ô

′2µν
pq can be summarized by,

Ô1µ
p =

{
eAµ

pQ̂f +
g

cw
Zµ
p Ĝf +

g√
2
W+µ

p Σtb
f + h.c.

}
,

Ô2µν
pq =

{
e2Q̂2

fAµ pA
ν
q +

2 g e

cw
Aµ pZ

ν
q Q̂f Ĝf

+
g2

c2w
Ĝ2

fZµpZ
ν
q +

g2

2
ΣfW

+
µ pW

ν−
q

}
,

Ô
′2µν
pq =

{
Ô2µν

pq +
eg√

2
Yf̃Aµ p

(
W+

ν qΣ
tb
f + W−

ν qΣbt
f

)

− g2√
2
Yf̃

s2w
cw

Zµp

(
W+

ν qΣtb
f + W−

ν qΣ
bt
f

)}
. (15)

T a b
µ , T a b c

µ ν σ, J
a b, Ja b c

µ ν and Ja b c d
µ ν σ λ are the one-loop

integrals, which are given in Appendix A.

It is important to emphasize that all these formulae
are exact to one loop.
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4 The Green’s functions in the large mass limit.

Since we are interested in the large mass limit of the
SUSY particles we need to have at hand not just the ex-
act results of the above mentioned integrals but their
asymptotic expressions to be valid in that limit. We
have analyzed the integrals by means of the so-called m-
Theorem 14. This theorem provides a powerful technique
to study the asymptotic behaviour of Feynman integrals
in the limit where some of the masses are large. Notice
that this is not trivial since some of these integrals are
divergent and the interchange of the integral with the
limit is not allowed. Thus, one should first compute the
integrals in dimensional regularization and at the end
take the large mass limit. Instead of this direct way it
is also possible to proceed as follows: First, in order to
decrease the ultraviolet divergent degree, one rearranges
the integrand through algebraic manipulations up to se-
parate the Feynman integral into a divergent part, which
can be evaluated exactly using the standard techniques
of dimensional regularization, and a convergent part that
satisfies the requirements demanded by the m-Theorem
and therefore, goes to zero in the infinite mass limit. By
means of this procedure the correct asymptotic behaviour
of the integrals is guaranteed. Some examples of the
computation of the Feynman integrals by means of the
m-Theorem as well as details of this theorem are given
in 12. The results for the above one loop integrals in the
large masses limit are presented also in the Appendix A
of this paper.

We now proceed to present the asymptotic expres-
sions for the Green’s functions in the large sfermions
masses limit. Making use of the results of the one-loop
integrals given in eqs.(A.9-A.10) and by using the for-
mulae of eqs.(8-11), (13) and (14), we find the results
summarized in the next subsections.

All the results presented in the following are valid
for:

m̃2
t1
, m̃2

t2
, m̃2

b1
, m̃2

b2
≫ k2

|m̃2
t1
− m̃2

t2
| ≪ |m̃2

t1
+ m̃2

t2
|

|m̃2
b1

− m̃2
b2
| ≪ |m̃2

b1
+ m̃2

b2
| and

|m̃2
ti
− m̃2

bj
| ≪ |m̃2

ti
+ m̃2

bj
| (i, j = 1, 2).

(16)

4.1 Two-points functions in the asymptotic limit:

In order to present our results we write the functions
ΓV1 V2
µ ν (k) as,

ΓV1 V2
µ ν = Γ0

V1 V2
µ ν + ∆ΓV1 V2

µ ν , (17)

where the tree level functions Γ0
V1 V2
µν are given in eq.(12)

and the contributions from sfermions ∆ΓV1 V2
µν are defined

by,

∆ΓV1 V2
µ ν (k) = ΣV1 V2(k)gµ ν + RV1 V2(k)kµkν . (18)

We omit to write the explicit formulae for the ΣXY (k)
and RXY (k) functions for brevity. The complete results
can be found in 12. The results for the RXY (k) functions
can, generically, be written as:

RXY (k) = −
[
k2 term of ΣXY (k)

]
/k2 (19)

As can be seen from our work in ref.12, the asymptotic
results in the large SUSY masses limit are of the generic
form:

ΣV1V2(k) = ΣV1V2

(0) + ΣV1V2

(1) k2 + H

[
O

(
k2

m̃2
i

,
m̃2

i − m̃2
j

m̃2
i + m̃2

j

)]
,

RV1V2(k) = RV1V2

(0) + J

[
O

(
k2

m̃2
i

,
m̃2

i − m̃2
j

m̃2
i + m̃2

j

)]
, (20)

where ΣV1 V2

(1) and RV1 V2

(0) contain the divergent O(1/ǫ)

contribution of dimensional regularization and are func-
tions of the large SUSY masses but are k independent.
ΣV1 V2

(0) is also a finite and k independent function, but

not contains divergent contribution. It goes to zero in
our asymptotic behaviour. H and J are finite functions
which vanish in the large masses limit.

In order to clarify the before comments, we present
here the results for ΣV1V2

(1) ,

ΣAA
(1) q̃

(k) = − e2

16π2

Nc

27

∑

q̃

{
10∆ǫ − 4 log

m̃2
t1

µ2
o

−4 log
m̃2

t2

µ2
o

− log
m̃2

b1

µ2
o

− log
m̃2

b2

µ2
o

}
, (21)

ΣAZ
(1) q̃

(k) = − e2

16π2

Nc

9sW cW

∑

q̃

{(
3

2
− 10

3
s2
W

)
∆ǫ

−
(
c2t −

4

3
s2
W

)
log

m̃2
t1

µ2
o

−
(
s2t −

4

3
s2
W

)
log

m̃2
t2

µ2
o

−
(

1

2
c2b −

1

3
s2
W

)
log

m̃2
b1

µ2
o

−
(

1

2
s2b −

1

3
s2
W

)
log

m̃2
b2

µ2
o

}
,

(22)

ΣZZ
(1) q̃

(k) = − e2

16π2

Nc

3s2
W
c2
W

∑

q̃

{
1

18
(32s4

W
− 24s2

W
+ 9)∆ǫ

−
(
c2t
2

− 2s2
W

3

)2

log
m̃2

t1

µ2
o

−
(
s2t
2

− 2s2
W

3

)2

log
m̃2

t2

µ2
o

−
(
−c2b

2
+

s2
W

3

)2

log
m̃2

b1

µ2
o

−
(
−s2b

2
+

s2
W

3

)2

log
m̃2

b2

µ2
o

−1

2
s2t c

2
t log

m̃2
t1

+ m̃2
t2

2µ2
o

− 1

2
s2bc

2
b log

m̃2
b1

+ m̃2
b2

2µ2
o

}
, (23)
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ΣWW
(1) q̃

(k) = − e2

16π2

Nc

6s2
W

∑

q̃

{
∆ǫ − c2t c

2
b log

m̃2
t1

+ m̃2
b1

2µ2
o

− c2t s
2
b log

m̃2
t1

+ m̃2
b2

2µ2
o

− s2t c
2
b log

m̃2
t2

+ m̃2
b1

2µ2
o

− s2t s
2
b log

m̃2
t2

+ m̃2
b2

2µ2
o

}
, (24)

where s2
W

= sin2θW and cf = cosθf , sf = sinθf , with θf
being the mixing angle in the f -sector.

Here and from now on,

∆ǫ =
2

ǫ
− γǫ + log(4π) , ǫ = 4 −D , (25)

and µo is the usual mass scale of dimensional regulariza-
tion.

As can be easily shown, it implies that all non-
decoupling effects in the two-point functions are con-
tained in ΣV1 V2

(1) and RV1 V2

(0) and, therefore, they can be

absorbed into a redefinition of the SM relevant para-
meters, mW ,mZ and e and the gauge bosons wave func-
tions. In consequence, the decoupling of squarks in the
two point functions does indeed occur.

4.2 Three-points functions in the asymptotic limit:

The result for the effective action under the mass condi-
tions given in section 4 can be written as,

Γf̃
eff [V ]

[3]
=

1

9π2

∫
dp̃ dq̃ dk̃ δ(p + k + q)

∑

f̃




∑

a,b,c

(Ô1 µ
p )ab(Ô

1 ν
q )bc(Ô

1 σ
k )ca

(
∆ǫ − log

m̃2
fa

+ m̃2
fb

+ m̃2
fc

3µ2
o

)
 Lµ ν σ

}
,

(26)

where  Lµ ν σ denotes the tree level operator defined by,

 Lµν σ ≡ [(p− q)σgµν + (k − p)νgµσ + (q − k)µgν σ] .
(27)

Notice that this asymptotic result is proportional to
the tree level operator  Lµν σ and therefore, we can at
this point already conclude that the sfermions decouple
in the three-point functions. We find interesting anyway
to give explicitly also each contribution different from
zero to the three-point Green’s functions with specific
external gauge bosons, ΓV1V2V3

µν σ . We present the results
in the following form:

ΓV1 V2 V3
µ ν σ = Γ0

V1 V2 V3
µ ν σ + ∆ΓV1 V2 V3

µ ν σ , (28)

where the contributions at tree level are:

Γ0
AW+W−

µ ν σ = −e  Lµνσ , Γ0
ZW+W−

µ ν σ = −gcW  Lµνσ .
(29)

In order to get the sfermions contributions, one must
substitute all the ”operators” that appear in eq.(26), per-
form the corresponding sums and after rather lengthy
calculation, the following results, written in a compact
form, are obtained:

∆ΓAW+W−

µ ν σ q̃ =
eg2

16π2

Nc

9
 Lµ ν σ

∑

q̃

1

2

{(
∆ǫ + logµ2

o

)

+ f1(m̃2
t1
, m̃2

t2
, m̃2

b1
, m̃2

b2
)
}

+ F1µ ν σ

[
O

(
p2

m̃2
,
m̃2

i − m̃2
j

m̃2
i + m̃2

j

)]
, (30)

∆ΓZW+W−

µ ν σ q̃ = − g3

16π2

Nc

6cW
 Lµ ν σ

∑

q̃

1

3
s2
W

{(
∆ǫ + logµ2

o

)

+ f2(m̃
2
t1
, m̃2

t2
, m̃2

b1
, m̃2

b2
)
}

+ F2µ ν σ

[
O

(
p2

m̃2
,
m̃2

i − m̃2
j

m̃2
i + m̃2

j

)]
, (31)

where the functions Fiµ ν σ (i = 1, 2) are finite and we
have proved explicitly that they go to zero in the limit of
m̃ → ∞ with |m̃2

i − m̃2
j | ≪ |m̃2

i + m̃2
j |.

In the above two expressions, the functions
fi(m̃

2
t1
, m̃2

t2
, m̃2

b1
, m̃2

b2
) (i = 1, 2) are finite and different

from zero in the large masses limit. Therefore, they
contain all the potentially non-decoupling effects of the
three-point functions. Their explicit expressions can be
found in 13. In principle, the dependence on the vari-
ous sfermions masses of each of these functions are diffe-
rent from each other. However, in order to implement
the large supersymmetric masses limit one must choose
a proper combination of masses such that there is just
one large mass parameter. We choose here, suitably, a
sum of three masses as the large parameter. The re-
maining mass parameters can be expressed in terms of
the differences of masses which in our approximation are
small as compared to the sum. In terms of these mass
combination, we get:

f1(m̃
2
t1
, m̃2

t2
, m̃2

b1
, m̃2

b2
) = − log M̂2

1 + O

(
m̃2

i − m̃2
j

M̂2

)
,

f2(m̃
2
t1
, m̃2

t2
, m̃2

b1
, m̃2

b2
) = − log M̂2

2 + O

(
m̃2

i − m̃2
j

M̂2

)
,

(32)

being M̂2
1 = 1

3

(
m̃2

t2
+ 2m̃2

b1

)
and M̂2

2 = 1
3

(
2m̃2

t2
+ m̃2

b1

)
.
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As we have mentioned above, the corrections ∆Γ are
proportional to the tree level,  Lµν σ, and therefore the po-
tentially non-decoupling effects in the three-point func-
tions can be absorbed into redefinitions of the coupling
constants and wave functions.

4.3 Four-points functions in the asymptotic limit:

Analogously to the previous section, we write the results
for the four-point functions as,

ΓV1 V2 V3 V4

µν σ λ = Γ0
V1 V2 V3 V4

µ ν σ λ + ∆ΓV1 V2 V3 V4

µ ν σ λ , (33)

where the different contributions to the effective action
at tree level are defined by,

ΓAAW+W−

0 µν σ λ = −e2ßµνσλ , ΓAZW+W−

0 µ ν σ λ = −g2swcwßµνσλ,

ΓZZW+W−

0 µν σ λ = −g2cW ßµνσλ , ΓW+W−W+W−

0 µ ν σ λ = g2ßµνσλ ,

(34)

with,

ßµν σ λ ≡ [2gµνgσ λ − gµσgν λ − gµλgν σ] . (35)

Similar expressions to the eqs.(30) and (31) are ob-
tained for the squarks contributions to the four-point
functions,

∆ΓAAW+W−

µ ν σ λ q̃ = −Nc

6

e2g2

16π2
ßµνσλ

∑

q̃

{(
∆ǫ + logµ2

o

)

+ g1(m̃
2
t1
, m̃2

t2
, m̃2

b1
, m̃2

b2
)
}

+ G1µ ν σ λ

[
O

(
p2

m̃2
,
m̃2

i − m̃2
j

m̃2
i + m̃2

j

)]
,

(36)

∆ΓAZW+W−

µ ν σ λ q̃ = −Nc

6

eg3

16π2
cW ßµνσλ

∑

q̃

{(
∆ǫ + logµ2

o

)

+ g2(m̃2
t1
, m̃2

t2
, m̃2

b1
, m̃2

b2
)
}

+ G2µ ν σ λ

[
O

(
p2

m̃2
,
m̃2

i − m̃2
j

m̃2
i + m̃2

j

)]
,

(37)

∆ΓZZW+W−

µ ν σ λ q̃ = −Nc

6

g4

16π2
c2
W

ßµνσλ
∑

q̃

{(
∆ǫ + logµ2

o

)

+ g3(m̃
2
t1
, m̃2

t2
, m̃2

b1
, m̃2

b2
)
}

+ G3µ ν σ λ

[
O

(
p2

m̃2
,
m̃2

i − m̃2
j

m̃2
i + m̃2

j

)]
,

(38)

∆ΓW+W−W+W−

µ ν σ λ q̃ = −Nc

3

g4

16π2
ßµνσλ

∑

q̃

{(
∆ǫ + logµ2

o

)

+ g4(m̃2
t1
, m̃2

t2
, m̃2

b1
, m̃2

b2
)
}

+ G4µ ν σ λ

[
O

(
p2

m̃2
,
m̃2

i − m̃2
j

m̃2
i + m̃2

j

)]
,

(39)

It is important to point out that the functions
Gkµ ν σ λ and gk(m̃2

t1
, m̃2

t2
, m̃2

b1
, m̃2

b2
) (k = 1, . . . 4) are

both finite, but the first ones go to zero in our asymptotic
limit whereas the second ones are different from zero in
this limit, and therefore these latter contain all the poten-
tially non-decoupling effects of the four-point functions.
For brevity, we will not present here the explicit formulae
of gk functions. However, we would like to have noticed
that if one takes the sum of all the masses as the large
parameter in the expansion of the logarithm’s coefficients
one get,

gk(m̃2
t1
, m̃2

t2
, m̃2

b1
, m̃2

b2
) = − log M̂2 + O

(
m̃2

i − m̃2
j

M̂2

)
,

(40)
where M̂2 = 1

4 (m̃2
t1

+ m̃2
t2

+ m̃2
b1

+ m̃2
b2

).

From eqs.(36) through (39), it can be seen that all
the corrections ∆Γ are proportional to the tree level,
ßµνσλ, and therefore the potentially non-decoupling ef-
fects in the four-point functions can be also absorbed into
redefinitions of the coupling constants and wave func-
tions.

Similar results are obtained for the sleptons sector
for Green’s functions doing the corresponding replace-
ments: q̃ → l̃, Nc → 1, m̃t1 → m̃ν , m̃b1 → m̃τ1 , m̃b2 →
m̃τ2 , ct → 1, st → 0, cb → cτ and sb → sτ .

In summary, from our results it is clear that there is
indeed decoupling in the two, three and four-point elec-
troweak gauge boson functions:
All SUSY effects can be absorbed into redefinitions of
mZ,mW , e and the wave functions of the gauge bosons
W±, Z,A, or else they are suppressed by inverse powers
of the heavy SUSY particles masses.

5 Conclusions

The computation of the effective action for the stan-
dard particles which results by integrating out all the
heavy supersymmetric particles will provide the answer
to the question whether the decoupling of heavy supersy-
mmetric particles in the MSSM occurs leading to the SM
as the remaining low energy effective theory. In this work
we have shown that all the contributions from the heavy
sfermions to the two, three and four-point functions of
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the electroweak gauge bosons can be absorbed into re-
definitions of the SM parameters or they are suppressed
by inverse powers of the heavy sparticles masses. There-
fore we have proved analytically that the decoupling of
heavy sfermions at one loop level does occur.

We have considered the asymptotic limit where the
sfermion masses are all large as compared to the W±

and Z masses and the external momenta and we have
always worked under the assumption that the differences
of their squared masses are much smaller than their sums.
Notice that we have not assumed exact universality of the
masses.

Our results for these Green functions in the large
SUSY masses limit have been presented analytically and
given in terms of the sparticle masses. They do not de-
pend on the particular choice for the soft-breaking terms
and therefore they are general results. In our opinion, it
is more convenient for the analysis of the phenomenon of
decoupling to use the physical sparticle masses as, being
the proper parameters, rather than some other possible
mass parameters of the MSSM as, for instance, the µ-
parameter or the soft-SUSY breaking parameters.

Finally, we have explored to what extent the
hypothesis of generation of SUSY masses by soft-SUSY
breaking terms is relevant for decoupling and we have
found instead that the requirement of SU(3)c×SU(2)L×
U(1)Y gauge invariance of the explicit mass terms by it-
self is sufficient to get it.

A complete proof of decoupling of supersymmetric
particles will include the integration of all the heavy
supersymmetric spectrum. Here we only discuss the
squarks and sleptons sectors. The analysis of charginos
and neutralinos have been done in 12,13. The integration
of the Higgs sector will be considered in a forthcoming
work.15 The complete proof would lead eventually to the
conclusion that the SM is indeed the low energy effective
of the MSSM in the large SUSY masses limit.
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Appendix A.

In this appendix we give the definition of the one-loop in-
tegrals I0 , I

a b
fµ ν

, T a b
µ , T a b c

µ ν σ , J
a b , Ja b c

µ ν and Ja b c d
µ ν σ λ that

have been used in the computation of the two, three and
four-point functions and their results in the large masses
limit. We start by giving the definition of the integrals
in dimensional regularization.

• One loop integrals.

I0 =

∫
dq̂

1[
q2 − m̃2

fa

] , (A.1)

Ia b
fµ ν

=

∫
dq̂

(2q + k)µ(2q + k)ν[
(k + q)2 − m̃2

fa

] [
q2 − m̃2

fb

] , (A.2)

T a b
µ =

∫
dp̂

(2p + q)µ[
p2 − m̃2

fa

] [
(p + q)2 − m̃2

fb

] , (A.3)

T a b c
µ ν σ = 8Ia b c

µ ν σ + 4[kσI
a b c
µ ν + (k − p)νI

a b c
µ σ + pµI

a b c
ν σ ]

+2[kσ(k − p)νI
a b c
µ + kσpµI

a b c
ν − (k − p)νpµI

a b c
σ ]

+pµkσ(k − p)νI
a b c , (A.4)

where,

Ia b c =

∫
dp̂

1

D
, Ia b c

µ =

∫
dp̂

pµ
D

,

Ia b c
µ ν =

∫
dp̂

pµ pν
D

, Ia b c
µ ν σ =

∫
dp̂

pµ pνpσ
D

,

(A.5)

defining D as,

D =
[
p2 − m̃2

fa

] [
(p + q)2 − m̃2

fb

] [
(p + q + k)2 − m̃2

fc

]
.

And,

Ja b =

∫
dp̂

1[
p2 − m̃2

fa

] [
(p + q + k)2 − m̃2

fb

] , (A.6)

Ja b c
µ ν =

∫
dp̂

Pµν

E
, (A.7)

Ja b c d
µ ν σ λ =

∫
dp̂

Pµν(2p + 2q + 2k + r)σ(2p + q + k + r)λ

E
[
(p + q + k + r)2 − m̃2

fd

] ,

(A.8)

where,

E =
[
p2 − m̃2

fa

] [
(p + q)2 − m̃2

fb

] [
(p + q + k)2 − m̃2

fc

]

Pµν = (2p + q)µ (2p + 2q + k)ν
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• Results in the asymptotic limit.

The results in the large masses limit have been ob-
tained using the m-Theorem 14.

I0 =
i

16π2

(
∆ǫ + 1 − log

m̃2
fa

µ2
o

)
m̃2

fa

Iab
f

=
i

16π2

{
(m̃2

fa
+ m̃2

fb
)

(
∆ǫ + 1 − log

m̃2
fa

+ m̃2
fb

2µ2
o

)
gµν

−1

3
k2
(

∆ǫ − log
m̃2

fa
+ m̃2

fb

2µ2
o

)
gµν

+
1

3
kµkν

(
∆ǫ − log

m̃2
fa

+ m̃2
fb

2µ2
o

)}

T a b
µ = 0 , Ia b c = Ia b c

µ = 0 ,

Ia b c
µ ν =

i

16π2

1

4

(
∆ǫ − log

m̃2
fa

+ m̃2
fb

+ m̃2
fc

3µ2
o

)
gµ ν ,

Ia b c
µ ν σ = − i

16π2

1

12
(2q + k)ρ

(
∆ǫ − log

m̃2
fa

+ m̃2
fb

+ m̃2
fc

3µ2
o

)
∗

[gµσgν ρ + gµρgν σ] ,

T a b c
µ ν σ =

i

16π2

1

3

(
∆ǫ − log

m̃2
fa

+ m̃2
fb

+ m̃2
fc

3µ2
o

)
∗

[(p− q)σgµ ν + (k − p)νgµσ + (q − k)µgν σ]

Ja b c =
i

16π2

(
∆ǫ − log

m̃2
fa

+ m̃2
fb

2µ2
o

)
,

Ja b c
µ ν =

i

16π2

(
∆ǫ − log

m̃2
fa

+ m̃2
fb

+ m̃2
fc

3µ2
o

)
gµν , (A.9)

and finally,

Ja b c d
µ ν σ λ =

i

16π2

2

3

(
∆ǫ − log

m̃2
fa

+ m̃2
fb

+ m̃2
fc

+ m̃2
fd

4µ2
o

)
∗

[gµ νgσ λ + gµσgν λ + gµλgν σ] . (A.10)

The corrections to these formulae are suppressed by in-
verse powers of the sums of the sfermion masses and van-
ish in the large masses limit.
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