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Cherenkov radiation of magnon and phonon by the

slow magnetic monopole.
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The Cherenkov radiation of magnons at passage of the heavy

slow magnetic monopole through an ordered magnetic matter is

considered. Also the Cherenkov radiation of phonons at monopole

movement in medium is discussed.

1 Introduction

The concept of magnetic monopole has been entered into modern physics
in 1931 by Paul Dirac [1]. He supposed the existence of isolated magnetic

charge g — ge = n
2
h̄c, where e — electrical charge, h̄ — Planck constant,

c — the light speed , n = ±1, 2... — integer. Numerous and unsuccessful
attempts of experimental search for magnetic monopole on accelerators

[2, 3] and in cosmic rays [4, 5] were done since then.
The new interest to this problem has arised in 1974, when Polyakov [6]

and ’t Hooft [7] have shown, that such objects exist as solutions in a wide
class of models with spontaneously broken symmetry.

The registration of Dirac’s monopole or evaluation of their flux limit will
the essential contribution to construction of Grand Unified Theory, as well

as give a pulse to the decision of many problems in astrophysics. Therefore
the study of various mechanisms of the Dirac’s monopole interaction with
medium is important as from fundamental, as from applied point of view.

We consider here the Cherenkov radiation of magnons at passage of heavy
slow moving magnetic monopole through an ordered magnetic matter and

discuss also the Cherenkov radiation of phonons at monopole movement in
matter.
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2 Excitation of spin wave Cherenkov radiation by the

heavy magnetic monopole.

As well known, the slowly moving heavy monopole cannot emit usual

Cherenkov radiation in ferromagnetic media, because the phase speed of
electromagnetic waves is of the order c/10 and always much faster than
the monopole speed.

We shall consider the slow monopole passage through an ordered mag-
netic matter. In such case a main mechanism of kinetic energy loss is the

Cherenkov radiation of magnons. This is because the magnon phase ve-
locity reaches zero and the coupling of monopole to magnons is linear and

large [8].
For definiteness we shall consider a ferromagnet, but the evaluations

below are of more general character.

Magnon’s Hamiltonian in presence of magnetic field of a moving monopole
can be written in the form

H =
∑

k

h̄ωka
†
kak +

∑

k

(

fke
−iΩkta†k + c.c

)

, (1)

where a†k — operator of a magnon birth with a wave vector k, ωk—his
dispersion law, Ωk = kv, v—vector of a monopole speed and fk — coupling

factor of a monopole magnetic field B = g∇1
r with magnon.

The magnon energy, radiated in a unit of time, is

ǫ =
2π

h̄

∑

k

ωk|fk|2δ(Ωk − ωk) . (2)

Let the monopole speed v be directed along the direction of the sponta-

neous magnetization, along Z-axis. Z 1. Then

Fk =
4πgµB

a3/2
√
V

√

√

√

√

S

2

kx − iky
k2

, (3)

here a is the lattice constant, V is the sample volume, S is the spin size
on the node and µB is the Bohr magneton.

Taking into consideration (3) the equation for ǫ can be written as

ǫ =
2g2µ2

BS

a3h̄

∫

d3kωk

k2x + k2y
k4

δ(kzv − ωk) . (4)

1 the general case is investigated absolutely similarly and the result differs only by a factor close to 1.
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The integration in (4) is performed on the first Brillouin zone.
If v ≥ u, where u — magnon speed near a border of Brillouin zone, then

the magnons with large k are essential. Then

ǫ ≃ ω̄g2ωM

v
, (5)

where the frequency ωM = 4πµ2

B
S

h̄a3 characterizes magnetization of media [9],

ω̄ =
1

2π

∫ d2k⊥
k2⊥

ωk⊥ , (6)

here k⊥ = (kx,ky), and ω̄ has the value about maximal frequency of
magnons.

For g2 ≃ 4700 · e2 we obtain

ǫ ≃ 103 ·Ry · ωM(ω̄τ) , (7)

where τ = a/v is the characteristic time of interaction.
The typical values for magneto-ordered dielectrics are such: ω̄ ≃ 10−13s−1,

ωM ≃ 10−11s−1 and for v/c ≃ 10−4 — ǫ ≃ 1014eV/s, that corresponds to
losses per unit of length:

dE

dl
≃ 108 eV/cm

From (5) it is clear, that the losses ǫ and dE/dl grow with slowing
down of monopole. When the speed v becomes v < u, the main contribu-

tion to losses contribute the magnons ”from the bottom” of the spectrum.
For them, ωk = ωex(ak)

2, where ωex is the frequency, characterizing the

exchange interaction [9, 10] , and the expressions for losses acquire the
shape:

ǫ = g2
ωMv

4ωexa2
; (8)

dE

dl
=

ǫ

v
= g2

ωM

4ωexa2
. (9)

As one can see, the energy losses per unit of a length approach a constant
with reduction of the monopole speed. The characteristic values will be

ωM/ωex ≃ 10−2, and for v/c ≃ 10−4 have

a ≃ 10−8 cm ;
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dE

dl
≃ 108 eV/cm .

We’d like to specially note, that the square-law of magnon dispersion
leads to non-trivial spatial structure of Cherenkov radiation field of spin

waves. As it is, usually, the structure of a radiation field is similar to a
shock wave and advancing the charge radiation is away. For the square-law

dispersion of the radiation field advances charge and is not equally to zero
before charge. It is due to that for the square-law dispersion the group

velocity of a wave is more then phase (and more than velocity of a charge
movement).

From these evaluations it is clear, that a level of energy losses of a

slow magnetic monopole in magneto-ordered matter could be compared
to ionization losses of a fast monopole. This opens new opportunities

for construction of detectors of monopoles in the range of v/c < 10−4.
The conversion of spin waves to electromagnetic [10] permits to detect a

monopole passing through a magnetic layer by traditional means.

3 Excitation of Cherenkov acoustic (phonon) radia-

tion by heavy magnetic monopole.

For valuation of energy losses by radiation of sound waves (excitation of

phonons) by the monopole moving in the isotropic matter, we shall write
the Hamiltonian of an elastic system in an external field as follows

H =
∑

n

p2
n

2M
+

a

2

∑

n,∆

(xn − xn+∆)
2 +

∑

n
Fn(t)xn . (10)

Here n+∆ are the numbers the closest neighbors to the node n,

Fn(t) = F(rn − vt) . (11)

We shall estimate the strength of the force F(rn), acting from the
monopole to the given node, as follows. First, we shall assume that this

force is located on one node (it’s short-range nature allows this):

F(rn) = Fδn0 . (12)

Secondly, at rest this force causes deformation, and the affected node is
shifted by

δa ∼ F

A
, (13)
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and, assuming the deformation energy to be ǫdef ∼ Aδa2, we have the force
as

F ∼ A

√

ǫdef
A

∼
√

ǫdefA . (14)

The Hamiltonian in (10) can be expressed completely similar to (1):

H =
∑

k

h̄ωka
†
kak +

∑

k

(

fke
−iΩkta†k + c.c

)

, (15)

but now: a†k is the operator of phonon creation with the wave vector k,

ωk is it’s dispersion, Ωk = kv, v is the vector of monopole speed, and fk
is the coupling factor of the magnetic monopole field B = g∇1

r
with the

phonon. We shall write the following expressions for them:

Fk =
1

2i
h̄1/2 1√

N

F

(DkM)1/4
, (16)

ωk =

√

√

√

√

2Dk

M
(17)

Dk =
A

2

∑

∆

∣

∣

∣1− eik∆
∣

∣

∣ . (18)

Accordingly, the energy of phonons, radiated in a unit of time, is equal
to

ǫ =
a3

4(2π)2

∫

d3k
F 2

(DkM)1/2
ωkδ(kzv − ωk) , (19)

where a is the constant of the lattice a3 = V/N , V is the sample volume.
For the essentially supersound monopoles, integration over dkz gives the

factor 1/v, and the integral (19) results to:

ǫ =
a3

4(2π)2
1

v

∫

d2k⊥
F 2

(Dk⊥
M)1/2

ωk⊥
=

a

2
√
2v

F 2

M
. (20)

Using the evaluation from Eq.(14), for F we shall obtain:

ǫ ≃ ǫdef
a

v

A

M
. (21)

Now from decomposition (18) at small k and using Eq. (17) it is possible

to express A/M through speed of sound. As a result (21 ) acquires the
shape

ǫ ≃ ǫdef
1

Z

cs
v

cs
a

≃ ǫdef
cs
v
ω̄a , (22)
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where ω̄a is the cut-off frequency for phonons, Z is the number of nearest
neighbors.

If ǫdef ∼ Ry, cs/v ∼ 0.1 and ω̄a ∼ 1013 s−1 (ω̄a is about the Debye

temperature in energy units), then:

ǫ ≃ 1013eV/s,

dE

dl
≃ 107eV/cm,

which is a little less than loss by radiation of magnons.

We would like to thank L.M. Barkov, V.V. Ianovski and I.B. Khriplovich
for a number of useful discussions.
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