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In-medium modification of ρ-mesons produced in heavy ion collisions.
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The mass shift ∆mρ and width broadening ∆Γρ of ρ mesons produced in heavy ion
collisions is estimated using a general formula which relates the in-medium mass shift of
a particle to the real part of the forward scattering amplitude Ref(E) of this particle on
constituents of the medium and ∆Γ to the corresponding cross section. It is found that
in high energy (E/A >∼ 100 GeV) heavy ion collisions the ρ width broadening is large and
ρ (or ω) peak could hardly be observed in e+e−(µ+µ−) effective mass distributions. In
low energy collisions (E/A ∼ a few GeV) a broad (a few hundred MeV) enhancement is
expected at the position of the ρ peak.

1. INTRODUCTION

The problem of how the properties of hadrons change in hadronic or nuclear matter
in comparison to their free values has attracted a lot of attention. Among these proper-
ties of immediate interest are the in-medium particle’s mass shift and width broadening.
Different models as well as ”model independent” approaches were used to calculate these
effects both at finite temperature and finite density (for a review, see e.g. [1]). It is clear
on physical grounds that the in-medium mass shift and width broadening of a particle
are only due to its interaction with the constituents of the medium. Thus one can use
phenomenological information on this interaction to calculate the mass shift and width
broadening. In a recent paper[2] two of us argued that the mass shift of a particle in
medium can be related to the forward scattering amplitude f(E) of this particle on the
constituents of the medium (in medium rest frame)

∆m(E) = −2π
ρ

m
Ref(E) . (1)

Here m is the vacuum mass of the particle, E is its energy in the rest frame of the con-
stituent particle, and ρ is the density of consituents. The normalization of the amplitude
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corresponds to the standard form of the optical theorem

kσ = 4πImf(E) , (2)

where k is the particle momentum. The width broadening is given by

∆Γ(E) =
ρ

m
kσ(E) . (3)

The applicability criteria of Eqs. (1) and (3) were discussed in [2]. In short, they are:
1) The particle wave length λ must be much less than the mean distance between

medium constituents d, λ = k−1 ≪ d. This means that the particle momentum k must
be larger than a few hundred MeV;
2) The particle formation length lf ∼ (E/m)/mchar (mchar ≈ mρ) must be less than

the nucleus radius R;
3) Ref(E) which enters Eq.(1) must satisfy the inequality | Ref |< d;
4) The scattering takes place mostly at small angles, θ ≪ 1. Only in this case the

optical analogy on which Eqs. (1) and (3) are based is correct.
Eqs. (1) and (3) are correct also in cases when the medium constituents have some

momentum distributions, e.g. the Fermi distributions for nucleons, or represent a gas at a
finite temperature. In such cases, in the right-hand sides of Eqs. (1) and (3) an averaging
over the momentum distribution of constituents must be performed. Eqs. (1) and (3) were
derived in [2] basing on simple quantum mechanical arguments and the optical analogy.
This approach allowes one to formulate explicitly the applicability conditions presented
above. When the medium is a gas in thermal equilibrium the equivalents of Eqs.(1) and
(3) can be derived basing on thermal field theory. References [3,4] give few examples and
the reference [5] gives a relativistic field-theoretic derivation.
In most of the papers on the in-medium hadron mass shifts the hadrons were considered

at rest. As seen from Eq. (1) this restriction is not necessary theoretically. It is desirable
to have theoretical predictions in a broad energy interval, since it extends possibilities of
experimental investigations. As discussed in [6] for the cases of ρ or π-mesons embedded
in nuclear matter the energy dependence of the mass shifts is rather significant at low
energies, i.e. in the resonance region.
We estimate the ρ meson mass shift and width broadening in the case of ρ-mesons

produced in heavy ion collisions. The most interesting case is the case of ρ0, which can be
observed through the decay ρ0 → e+e− (µ+µ−). We will assume that ρ-mesons are formed
at the latest stage of the evolution of hadronic matter created in the course of a heavy ion
collision when the matter can be considered as a noninteracting gas of pions and nucleons.
(We will neglect the admixture of kaons and hyperons, which is known to be small [7], as
well as heavy resonances.) This stage is formed when, during the evolution of the matter
after collision, the total density of nucleons and pions becomes of order of the normal
nucleon density in nuclei. The description of nuclear matter as a noninteracting gas of
nucleons and pions of course cannot be considered as a very good one. So, it is clear from
the beginning that our results may be only semiquantitative. The main ingredients of our
calculation are the ρπ and ρN forward scattering amplitudes and total cross sections as
well as the values of nucleon and pion densities.
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We consider here central heavy ion collisions and assume that the nucleon and pion
momentum distributions in the gas are just the momentum distributions measured exper-
imentally in such collisions. (Another model, in which nucleons and pions are assumed to
be in the state of ideal gas at fixed temperature and chemical potential, will be considered
in a subsequent publication [8].)

2. CALCULATION OF ρπ AND ρN CROSS SECTIONS AND FORWARD

SCATTERING AMPLITUDES.

Let us first focus on the amplitudes and cross sections. To determine these quantities we
use the following procedure. In the low energy region we saturate the cross sections and
forward scattering amplitudes by resonance contributions. At high energies we determine
σρN and σρπ from σγN and σγπ using vector dominance model (VDM). σγN is well known
experimentally [9], RefγN is determined from dispersion relation; σγπ and Refγπ can be
obtained by the Regge approach. Since VDM allows one to find only the cross sections
of transversally polarized ρ-mesons, we restrict ourselves to this case. As was shown in
[2], at Eρ

>∼ 2 GeV ∆m and ∆Γ for longitudinal ρ-mesons in nuclear matter are much
smaller than for transverse ones. At zero ρ-meson energy ∆m and ∆Γ for transverse and
longitudinal ρ-mesons are evidently equal. In the case of scattering on low temperature
gas they are comparable [10]. Therefore, for unpolarized ρ-meson our results should be
multiplied by a factor ranging from 1 to 3/2.
To estimate Refρπ(s) at low energy we write in the center of mass (c.m.) frame

Refρπ(s) = −
∑

R

FsFi

1

2qcm

BRΓR(
√
s−mR)

(
√
s−mR)2 + Γ2

R/4
, (4)

where
√
s is the total c.m. energy, mR and ΓR are the mass and the total width of the

resonance, BR is the branching ratio of its decay into πρ and qcm is the center of mass
momentum,

qcm =
1

2
√
s

√

[s− (mρ +mπ)2][s− (mρ −mπ)2] . (5)

The factor Fs is the spin factor, Fi is the isospin factor. The latter is equal to 1/3 =
(1/2) × (2/3) for IR = 1. The first factor here reflects the fact that we are interested
in the ρ0π scattering and only one of the two decay channels of a IR = 1 resonance
can contribute here: R± → ρ0π±, but not ρ±π0. The second factor corresponds to the
assumption, that all three pion isospin states are equally populated in the gas. Similarly,
for IR = 0 the isospin factor is 1/9 = (1/3)× (1/3). We take into account the following
resonances [9]: a1(1260), π(1300), a2(1320) and ω(1420). The nearest resonance under
the threshold, ω(782), does not give a considerable contribution due to its narrow width.
For the spin factor we take Fs = 1, 1, 2, 1 correspondingly for the above mentioned
resonances. (These factors take into account that we consider only transvers ρ). The
amplitude in the pion rest frame is obtained from Eq. (4) multiplying it by the rescaling

factor kρ/qcm =
√
s/mπ, where kρ =

√

E2
ρ −m2

ρ is the ρ momentum in the pion rest frame.
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For σρπ we use the standard resonance formula

σρπ =
∑

R

FsFi

π

q2cm

BRΓ
2
R

(
√
s−m)2 + Γ2

R/4
. (6)

As is known, the pion scattering amplitude on any hadronic target vanishes at zero
pion energy in the target rest frame in the limit of massless pions (Adler theorem). In the
framework of effective Lagrangians this can be achieved if the pion field enters through
its derivative, ∂ϕ/∂xµ. We assume that in the interaction describing the ρπ scattering
through the a1 resonance, ∂ϕ/∂xµ is multiplied by the ρ-meson field strength tensor Fµν

and the field a1ν . This results in appearance of an additional factor in a1 contributions
to Refρπ and σρπ in Eqs. (4) and (6)

(

s−m2
ρ −m2

π

m2
a1
−m2

ρ −m2
π

)2

, (7)

which is normalized to 1 at s = m2
a1
. At s > m2

a1
this factor was not taken into account.

Similar factors were also introduced for contributions of other resonances.
In the high energy region we assume that the Regge approach is valid for γπ scattering

and apply VDM to relate ρπ and γπ amplitudes. As is well known, the Regge pole
contributions to the forward scattering amplitude normalized according to Eq. (2) have
the form

f(s) = − k

4πs

∑

i

1 + e−iπαi

sin παi

sαiri , (8)

where αi is the intercept of i-th Regge pole trajectory, ri is its residue, k is the projectile
momentum in the target rest frame. As follows from Eqs. (2) and (8),

σ(s) =
∑

i

ris
αi−1 , (9)

Ref(s) = − k

4πs

∑

i

1 + cosπαi

sin παi

ris
αi . (10)

For σγπ only the P (pomeron) and P ′ poles contribute [11,12]. The residues of P and
P ′ poles in γπ scattering were found by Boreskov, Kaidalov and Ponomarev (BKP) [12]
using the Regge pole factorization theorem and the data on γp, πp and pp scattering.
Taking the BKP values for the P and P ′ residues we have

σπγ(s) = 7.48α

[(

s

s0

)αP−1

+ 0.971

(

s

s0

)α
P ′−1]

, (11)

where αP = 1.0808, αP ′ = 0.5475, α = 1/137, s0 = 1 GeV2 and σ in Eq. (11) is given in
millibarns, if s is in GeV2. For the P and P ′ intercepts we take the Donnachie-Landshoff
values [13]. Since in their fit to the data BKP assumed αP = 1 and αP ′ = 1/2, the
values of residues in Eq. (11) are slightly changed in comparison with [12] in order to get
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the same σπγ at s = 9 GeV2. From Eqs. (10) and (11) the real part of the forward γπ
scattering amplitude can be found:

Refγπ(s)π rest frame = − k

4π
7.48α







−0.106

(

s

s0

)αP−1

+ 0.752

(

s

s0

)α
P ′−1







, (12)

where the momentum k is in GeV and Ref is in mb·GeV.
In VDM σρπ(s) is related to σγπ(s) by (see [2])

σρπ(s) =
g2ρ
4πα

(

1 +
g2ρ
g2ω

)−1

σγπ(s) , (13)

where g2ρ/4π = 2.54, g2ρ/g
2
ω = 1/8 and the ϕ-meson contribution is neglected. A similar

relation holds also for Refρπ. Unlike in [2], we prefer here to use direct Regge formulae
for Ref at high energies instead of finding it from σ through the dispersion relation, since
in the latter approach the results are sensitive to the low energy domain which is more
uncertain.
The results of the calculations of σρπ and Refρπ as functions of ρ-meson energy in the

pion rest frame are presented in Fig.1. As seen from Fig.1, the matching of low and high
energy curves is satisfactory.
For the amplitude RefρN at laboratory frame energies of ρ above 2 GeV we use the

results of Ref.[2] obtained using dispersion relation, VDM and experimental data on σγN .
At lower Eρ we again use the resonance approximation

RefρN(s) = −1

4

1

2qcm

∑

R

(2JR + 1)Fi

ΓρN
R (

√
s−mR)

(
√
s−mR)2 + Γ2

R/4
(14)

(the factor (1/4) appears because we consider only transverse ρ). The isospin factors Fi

are 1/3 and 2/3 correspondingly for N and ∆ resonances. We take 10 well established
N and ∆ resonances[9] with significant branchings into ρN and with masses above the
ρN threshold and below 2200 MeV. The set of baryonic resonances taken into account is
close to the set used in [14]. The main difference in comparison with [14] is that effective
widths ΓρN

eff = ΓρN
R (qcm/qcm,R)

2l+1 were introduced only for the resonances close to the ρN

threshold (qcm,R is the value of qcm at the resonance). At qcm > qcmR we put ΓρN
eff = ΓρN

R .
Apart from these resonances, in the calculation of RefρN two resonances with masses
below the ρN threshold were also accounted for: ∆(1238) and N(1500). It was assumed
that VDM relates ΓρN and ΓγN of these resonances in the following way. Since both
resonances are close to the ρN threshold, we can write for each of them: ΓρN = qcmγρN ,
ΓγN = kcmγγN , where qcm and kcm are the ρN and γN c.m. momenta, respectively. Then
we assume that γρN and γγN are related by the VDM formula

γγN = 4πα
1

g2ρ

(

1 +
g2ρ
g2ω

)

γρN . (15)

The values of γγN can be found from the values of σγN at the resonance peaks. The
contributions of ∆(1238) and N(1500) to RefρN are essential at low energies of ρ mesons:
they comprise about (−1)− (−0.5) fm at Eρ = 1− 2 GeV in the nucleon rest frame.
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The results for σρN and RefρN in the rest frame of the nucleon together with the curve
obtained in Ref.[2] for high energies and the matching curve are shown in Fig.2. As can
be seen, the matching of low energy and high energy curves is good.

3. DETERMINATION OF THE MASS SHIFT AND WIDTH BROADEN-

INGOF THE ρ-MESON PRODUCED IN HEAVY ION COLLISION FROM

THE DATA ON NUCLEON AND PION DISTRIBUTIONS

As was mentioned above, in heavy ion collisions we will consider only nucleons and
pions as constituents of the medium. Therefore, in this case Eqs. (1) and (3) take the
form

∆mρ(E) = −2π

m
{ρNRefρN(E) + ρπRefρπ(E)} , (16)

∆Γρ(E) =
k

m
{ρN σρN (E) + ρπσρπ(E)} , (17)

where ρN and ρπ are the nucleon and pion densities in the medium formed at the latest
stage of evolution of hadronic matter produced in heavy ion collisions.
We will restrict ourselves to consideration of head-on (central) collision with small values

of impact parameter when the number of participants – the nucleons which experience
considerable momentum transfer – is close to the total number of colliding nucleons.
Experimental data shows that the nucleons and pions produced in heavy ion collisions

cannot be considered as thermal gas even at the final stage of evolution of hadronic matter
created in the collisions. In order to demonstate this let us discuss separately the cases of
high energy (E/A ∼ 100 GeV) and low energy (E/A ∼ a few GeV) heavy ion collisions.
In case of high energy collisions the longitudinal (relative to the beam) and transverse
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momenta of nucleons and pions are very different. In the experiment on S + S collisions
at E/A = 200 GeV [15] it was found (in the centre of mass frame) that 〈pcmLN〉 = 3.3 GeV,
〈pTN〉 = 0.61 GeV and 〈pcmLπ〉 ≈ 0.70 GeV, 〈pTπ〉 ≈ 0.36 GeV. In other experiments on high
energy heavy ion collisions (see e.g. [16,17]) the situation is qualitatively similar. This
means that in this case one can by no means speak about thermal gas of final particles
and their momentum distributions must be taken from experiment.
The data on low energy heavy ion collisions also indicate that pions and nucleons cannot

be described as gases in thermal equilibrium. The angular distributions of pions produced
in Ni + Ni collisions at E/A = (1 − 2) GeV show a considerable anisotropy[18]. If the
pion angular distribution in the centre of mass frame is approximated by 1+a cos2 θ, then
it follows from the data that a ≈ 1.3. Unfortunately, there is not enough information
in the data about the nucleon angular and momentum distributions. We have checked
the hypothesis of thermal equilibrium by assuming that the probability of production
of a given number of particles is proportional to the statistical weight of the final state
(Fermi-Pomeranchuk approach [19,20]). It is evident that this hypothesis is even more
general than the hypothesis of thermal equilibrium. In this approach the pion/nucleon
ratio Rπ = nπ/N in central collisions can be predicted in terms of the main ingredient
of the method – the volume per particle at the final stage of evolution (and, of course,
the initial energy). The calculations show that the data [18] on the energy dependence of
the ratio Rπ are well described by the statistical model, but in order to get the absolute
values of Rπ in Ni + Ni as well as in Au + Au [21] collisions, it is necessary to put the
volume per nucleon very small, about 5 times smaller, than the one in a normal nucleus,
which is unacceptable.
Therefore, the only way to perform the averaging over momentum distributions of pions

and nucleons seems to take the latter from experimental data on heavy ion collisions.
In calculation of the ρ-meson mass shift and width broadening the averaging must

be performed over the ρ-meson direction of flight relative to nucleons and pions. Such
calculation can be done only for real experimental conditions. For this reason we restrict
ourselves to crude estimates.
Consider first the case of high energies and take as an example the experiment [15]

on central collisions, where the ratio of pion to nucleon multiplicities was found to be
Rπ = 5.3 . Suppose that in this experiment the ρ-meson is produced with longitudinal
and transverse momenta in the lab. frame kLρ = 3 GeV, kTρ = 0.5 GeV. We choose these
values as typical for such experiment. At such values of ρ momenta the formation time of
ρ-meson is close to the mean formation time of pions produced in heavy ion collisions. So,
a necessary condition of our approach is fulfilled. Since the mean momenta of nucleons
and pions in the experiment [15] are known (they were presented above), it is possible
using the curves of Figs. 1 and 2 to calculate the mean values of RefρN , Refρπ, σρN and
σρπ in ρN and ρπ scattering. The results are (in the lab. frame):

〈RefρN 〉 ≈ −1.1 fm , 〈Refρπ〉 ≈ 0.03 fm , (18)

〈σρN 〉 ≈ 43 mb , 〈σρπ〉 ≈ 20 mb . (19)

The small value of 〈Refρπ〉 comes from the compensation of positive and negative Refρπ
at low and high energies (Fig. 1), i.e. from the scattering of ρ on pions moving in the same
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direction as ρ (comovers), or in the opposite one. Because of this compensation 〈Refρπ〉
is badly determined, but since it is small this does not affect the final result. Using Eqs.
(16) and (17) we can now find the mass shift and width broadening of ρ-meson. For the
nucleon and pion densities we take

ρN =
N

V
=

N

NvN + nvπ
=

1

vN (1 +Rπ
vπ
vN

)
, (20)

ρπ =
n

V
=

n

NvN + nvπ
= Rπ

1

vN(1 +Rπ
vπ
vN

)
, (21)

where N and n are the numbers of nucleons and pions at the final stage of evolution,
Rπ = n/N , V is the volume of system at this stage. It is assumed that at this stage any
participant (nucleon or pion) occupies a definite volume vN or vπ. We can write

ρN = ρ0N
1

1 +Rπβ
, ρπ = ρ0NRπ

1

1 +Rπβ
, (22)

where ρ0N = 1/vN and β = vπ/vN . For numerical estimates we take ρ0N = 0.3 fm−3,
almost two times the standard nucleous density. This number is probably one of the most
uncertain ingredients of our calculations. Substitution of Eqs. (18),(19) and (22) into
Eqs. (16) and (17) gives (for the experimental value of Rπ = 5.3 and β = 1)

∆mρ = 18− 2 = 16 MeV , (23)

∆Γρ ≈ 150 + 400 = 550 MeV . (24)

The first numbers in Eqs. (23) and (24) refer to the contributions from ρN and second
ones from ρπ scattering. Because ρ-meson width broadening appears to be very large,
the basic condition of our approach, ∆Γρ ≪ mρ is fullfilled badly. The other applicability
condition of the method, | Ref |< d, is also not well satisfied, since in this case d = 0.9
fm. For these reasons the values of ∆mρ in Eq. (23) and of ∆Γρ in Eq. (24) may be
considered only as estimates.
The main conclusion from Eqs. (23) and (24) is that in the case of ρ-mesons produced

in high energy heavy ion collisions with the longitudinal and transverse momenta chosen
above, the mass shift is small, but the width broadening is large and hardly a ρ (or ω)
peak would be observed in e+e− or µ+µ− effective mass distributions. Let us estimate
how sensitive are the results to a variation of kL and kT . It can be easily seen that the
mass shift will be small in all cases (say, ∆mρ

<∼ 50 MeV). If we put kTρ = 0 instead of
kTρ = 0.5 GeV, this will only weakly affect the mean value of σρN and decrease σρπ by
20%. The latter results in decrease of ∆Γρ in Eq. (24) by 80 MeV, i.e. within the limits
of accuracy. The variation of kρL between 1 GeV and 10 GeV also results in variation of
the same order (10-20%) in ∆Γρ in Eq. (24).
As was mentioned above, the main uncertainty in our approach comes from the value

of the nucleon density at the final stage of evolution which we put to be ρ0N = 0.3 fm−3. If
this density at the time of the ρ-meson formation would be, say, two times smaller, then
we would have ∆Γρ ∼ 250 MeV and the ρ-meson could be observed as a broad peak in
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e+e− or µ+µ− mass spectrum. It should be mentioned, however, that the chosen above
value of β = vπ/vN = 1 is not the only possible, or even the most plausible. If we assume
that β = (rπ/rN)

3, where rπ and rN are pion and nucleon electromagnetic radii, rπ = 0.66
fm, rN = 0.81 fm, then β ≈ 0.55. This choice of β increases ∆Γρ by a factor of 1.6.
Our qualitative conclusion is the following. In the central heavy ion collisions at high

energies, E/A ∼ 100 GeV, where a large number of pions per participating nucleon is
produced, the ρ- (or ω) peak will be (if at all) observed in e+e− or µ+µ− effective mass
distributions only as a very broad enhancement. Inspite of the fact that in our approach
we used a few assumptions, which may raise some doubts (hypothesis of noninteracting
nucleon and pion matter at the final stage of evolution, the numerical value of nucleon
density, etc.), we believe that this qualitative conclusion is still intact.
This conclusion is in qualitative agreement with the measurement of e+e− pair produc-

tion in heavy ion collisions [22], where no ρ peak was found and only a smooth e+e− mass
spectrum between 0 and 1 GeV was observed. If, however, such a peak will be observed in
future experiments, this would indicate that the hadronic (nucleon and pion) density at
the final stage of evolution, where ρ-meson is formed, is low, lower even than the normal
nuclear density.
Recently preliminary data have been presented [22], where in studying the e+e− mass

spectrum in Pb - Au collisions at E/A = 160 GeV it was found that the ρ-peak is absent
for kT (e

+e−) < 400 MeV, but reappears as a broad enhancement for kT (e
+e−) > 400

MeV. We do not see a possibility for this in the framework of our approach in the case of
central heavy ion collisions. Moreover, we believe that for central collisions the absence
of ρ-peak at low kT and its reappearance at higher kT will be hard to explain in any
reasonable model. The only explanation we see for this effect (if it will be confirmed), is
that in this experiment the peripheral ρ-meson production plays an essential role. In this
case the ρ-mesons with higher kT have a larger probability to escape the collision region
and decay as free ones.
Let us turn now to the case of low energy heavy ion collisions, E/A ∼ a few GeV.

Consider as an example the case of heavy ion collisions at Ekin/A = 3 GeV and production
of ρ-meson with the energy Etot

ρ = 1.2 GeV in the forward direction. (This energy of ρ-
meson was chosen, because our approach works better at higher Eρ, and ρ of this energy
can be kinematically produced at such heavy ion energy). The number of pions, produced
in Ekin/A = 3 GeV collisions can be found by extrapolation of the data [18] on Ni + Ni
collisions. The data shows that Rπ is with a good accuracy linear in

√
s/2 − m. We

find Rπ = 0.48. As follows from the analysis of the data [18] at Ekin/A = 1.93 GeV,
the energies of produced pions are rather small, Eπ ∼ 200 − 300 MeV . At such low
energies it is reasonable to suppose for pions < pLπ >=< p⊥π >≈ 0.2 GeV . Assuming
(this assumption does not influence essentially the final results) that the mean transverse
momentum of nucleon participants produced in the collision is the same as at high energy,
< pTN >= 0.61 GeV [15] (see above), we can construct the momentum distributions of
nucleons. Then we are in a position to calculate the mean values of RefρN , Refρπ, σρN

and σρπ for this case. The results are:

〈RefρN 〉 = −0.54 fm , 〈Refρπ〉 = 0.30 fm , (25)

〈σρN 〉 = 46 mb , 〈σρπ〉 = 13 mb . (26)
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For the ρ mass shift and width broadening we have (at the same value of ρ0N as before
and β = 1):

∆mρ = 37− 10 = 27 MeV , (27)

∆Γρ = 250 + 35 = 285 MeV . (28)

(The first numbers in Eqs. (28) and (29) refer to ρN scattering, the second ones to ρπ).
The conclusion is that at low energy heavy ion collisions ρ-peak may be observed in e+e−

or µ+µ− effective mass distribution as a broad enhancement approximately at the position
of ρ-mass.
We are indebted to K. Boreskov, A. Kaidalov, G. Brown and A. Sibirtsev for illumi-

nating discussions. B.I. thanks A. Smirnitsky and V. Smolyankin for the help in getting
information about experimental data.
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