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Abstract

The rare K+ → π+νν̄ decay is investigated in the context of type II two-

Higgs-doublet model (2HDM). By using the existing experimental data of the

branching ratio, restrictions on the free parameters of the model mH , and

tanβ are obtained: 0.7 ≤ tanβ ≤ 0.8, and 500GeV ≤ mH ≤ 700GeV .
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I. INTRODUCTION

The determination of the elements of the Cabibbo-Kobayashi -Maskawa matrix

(CKM) is still an important issue in the flavor physics. The precise determination of the

CKM parameters will be one of the most important progresses to understand the nature,

physics of violated symmetry.

In this sense the rare K+ → π+νν̄ decay has attached a special interest due its sensitivity

for the determination of CKM parameters, in particular the element Vtd, and considered

one of the cleanest decays from a theoretical standpoint. Moreover this decay occupies

a special place, since for this decay the short distance effects dominated over the long

distance effects. Over the years important refinements have been added in the theoretical

treatment of K+ → π+νν̄, long-distance contributions to the branching ratio were estimated

quantitatively and could be shown to be essentially negligible as expected, two to three orders

of magnitude smaller than the short distance contribution at the level of the branching

ratio [1]. On the other hand, the calculation [2] of next-to-leading QCD correction reduced

considerably the theoretical uncertainty due to the choice of the renormalization scales

present in the leading order expression. Since the relevant hadronic matrix element of the

operator s̄γµ(1 − γ5)dν̄γµ(1 − γ5)ν can be extracted in the leading decay K+ → π0e+ν.

Conventionally, the Br(K+ → π+νν̄) is related to the experimental well-known quantity

Br(K+ → π+e+ν)=0.0482, measured to 1% accuracy. The resulting theoretical expression

for Br(K+ → π+νν̄) is only a function of the CKM parameters, the QCD scale ΛM̄s and the

quark masses mt and mc.

Experiments in the K meson system have entered new period. That the branching

ratio of the flavor-changing neutral current (FCNC) process K+ → π+νν̄ has been recently

measured, and it has turned out to be Br(K+ → π+νν̄) = (4.2+9.7
−3.5).10

−10 [3]. The central
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value seems to be 4-6 times larger than the predictions of the Standard Model (SM) Br(0.6-

1.5)x10−10 [4]. Hence the rare K+ → π+νν̄ decay is very sensitive to a new physics beyond

the SM. Therefore, careful investigation of this decay can provide useful information about

new physics [5]. For this reason different new physics scenarios for this decay will become

very actual.

In this work the decay K+ → π+νν̄ is investigated in the framework of the two Higgs

doublet model (2HDM). We estimate the constraints of the 2HDM parameters namely,

tanβ and mH , using the result coming from the measurement of [3]. Subsequently, this

paper is organized as follows: In Section 2, the relevant effective Hamiltonian for the decay

K+ → π+νν̄ in 2HDM is presented. Section 3, being devoted to the numerical analysis of

our results; and finally a brief discussion of the results is given.

II. EFFECTIVE HAMILTONIAN

In the Standared Model (SM) the process K+ → π+νν̄ is described at quark level

by the s → dνν̄ transitions and received contributions from Z0-penguin and box diagrams.

The effective Hamiltonian relevant to s → dνν̄ transition is described by only one Wilson

coefficient, and its explicit form is:

Heff =
G√
2

α

2πsin2θw
V ∗

tsVtdC
SM
11 s̄γµ(1− γ5)dν̄γµ(1− γ5)ν, (1)

where G is the Fermi coupling constant, α is the fine structure constant, VtbV
∗

ts are products

of Cabibbo-Kabayashi-Maskawa matrix elements and xt =
m2

t

m2
w

. The resulting expression

of Wilson coefficient C11, which was derived in the context of the SM including O(αs)

corrections is [6,7]
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CSM
11 =

[

X0(x) +
αs

4π
X1(x)

]

, (2)

with

X0(x) = η
x

8

[

x+ 2

x− 1
+

3x− 6

(x− 1)2
lnx

]

, (3)

X1(x) =
4x3 − 5x2 − 23x

3(x− 1)2
− x4 + x3 − 11x2 + x

(x− 1)3
lnx+

x4 − x3 − 4x2 − 8x

2(x− 1)3
ln2x

+
x3 − 4x

(x− 1)2
Li2(1− x) + 8x

∂X0(x)

∂x
lnxµ. (4)

Here Li2(1− x) =
∫ x
1

lnt
1−t

dt and xµ = µ2

m2
w

with µ = O(mt).

At µ = mt, the QCD correction for X1(x) term is very small (around ∼ 3%), and

η = 0.985 is the next-to-leading order (NLO) QCD correction to the t- exchange calculated

in [2].

From the theoretical point of view, the transition s → dνν̄ is a very clean process

as pointed out, since it is practically free from the scale dependence, and free from any

long distance effects. In addition, the presence of a single operator governing the inclusive

s → dνν̄ transition is an appealing property. The theoretical uncertainty within the SM

is only related to the value of the Wilson coefficient C11 due to the uncertainty in the top

quark mass. In this work, we have considered possible new physics in s → dνν̄ only through

the value of that Wilson coefficient.

In this spirit, the process s → dνν̄ in the context of the 2HDM has additional con-

tributions from Z0-penguin and box diagrams through H boson exchanges. The relevant

Feynman diagrams correspond to the transition s → dνν̄ has been given in [8,9]. The first

three diagrams describe the effective Hamiltonian in the SM, while the last three diagrams

represent the 2HDM contributions to the s → dνν̄ transition, due to the charged Higgs
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boson exchanges. The interaction lagrangian between the charged Higgs bosons fields and

fermions are then given by:

L = (2
√
2GF )

1/2
[

tanβŪLVCKMMDDR + ctgβŪRMUVCKMDL + tanβN̄LMEER

]

H+ + h.c. (5)

Here, H+ represents the charged physical Higgs field. UL and DR represent left-handed up

and right-handed down quark fields. NL and ER are left-handed neutral and right-handed

charged leptons. MD, MU , and ME are the mass matrices for the down quarks, up quarks,

and charged leptons respectively. VCKM is the Cabibbo-Kobayashi- Maskawa matrix. tanβ-

is the ratio of the vacuum expectation values of the two Higgs doublets in 2HDM, and it is

a free parameter of the model.

From eq.(5), it follows that the box diagrams contribution to the process s → dνν̄

in 2HDM are proportional to the charged lepton masses; and therefore, they are giving

a negligible contribution. So in this model, the transition s → dνν̄ in eq.(1) can only

include extra contribution due to the charged Higgs interactions. Hence, the charged Higgs

contribution modify only the value of the Wilson coefficient C11 (see eq.(1)), and it does not

induce any new operators (see also [8,9]):

C2HDM
11 = −1

8
xyctg2β

{

1

y − 1
− lny

(y − 1)2

}

, (6)

where x =
m2

t

m2
W

and y =
m2

t

m2
H

.

As we noted earlier the QCD corrections practically do not change the value of C11. If

so, eq. (2) and eq.(6), are plugged in eq.(1), to obtain a modified effective Hamiltonian,

which represents s → dνν̄ decay in 2HDM:

Heff =
G√
2

α

2πsin2θw
VtdV

∗

ts[Xtot]s̄γµ(1− γ5)dν̄γµ(1− γ5)ν, (7)

where Xtot = CSM
11 + C2HDM

11 .
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However, in spite of such theoretical advantages, it would be a very difficult task to detect

the inclusive s → dνν̄ decay experimentally, because the final state contains two missing

neutrinos and many hadrons. Therefore, only the exclusive channels are expected, namely

K+ → π+νν̄, are well suited to search for and constrain for possible ”new physics” effects.

In order to compute K+ → π+νν̄ decay, we need the matrix elements of the effective

Hamiltonian eq.(7) between the final and initial meson states. This problem is related

to the non-perturbative sector of QCD and can be solved only by using non-perturbative

methods. The matrix element < π+ | Heff | K+ > has been investigated in a framework

of different approaches, such as chiral perturbation theory [10], three point QCD sum rules

[11], relativistic quark model by the light front formalism [12], effective heavy quark theory

[13], and light cone QCD sum rules [14,15]. As a result, the hadronic matrix element for the

K+ → π+νν̄ can be parameterized in terms of form factors:

< π | s̄γµ(1− γ5)d | K > = fπ+

+ (q2)(pK + pπ)µ + f−qµ, (8)

where qµ = pK − pπ, is the momentum transfer. In our calculations the form factor f−

part do not give any contributions since its contribution ∼ mν=0. After performing the

mathematics and taking into account the number of light neutrinos Nν = 3 the differential

decay width is expressed as:

dΓ(K+ → π+νν̄)

dq
=

G2α2η2

28π5sin4θw
m3

K+ | VtbV
∗

ts |2 λ3/2(1, r+, s) | Xtot |2| fπ+

+ (q2) |2, (9)

where r+ =
m2

π+

m2

K+

and s = q2

m2

K+

.

Similar calculations for K+ → π0e0ν̄ lead to the following result:

dΓ(K+ → π0e+ν̄)

dq
=

G2

192π3
| Vus |2 λ3/2(1, r−, s)m

3
K+ | fπ0

+ (q2) |2, (10)
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where r− =
m2

π0

m2

K+

, and λ(1, r±, s) = 1 + r2
±
+ s2 − 2r±s − 2r± − 2s is the usual triangle

function. In derivation of eq.(10) we neglect the electron mass, and we use the form factors

fπ+

+ =
√
2fπ0

+ which follows from isotopic symmetry. Using eq.(9) and eq.(10) one can

relate the branching ratio of K+ → π+νν̄ to the well known measured decay K+ → π0e0ν̄

branching ratio:

B(B+ → K+νν̄) = k





(

Imλt

λ5
Xtot

)2

+

(

Reλc

λ
P0(K

+) +
Reλt

λ5
Xtot

)2


 , (11)

where k = rK+
3α2B(K+→π0e+ν)

2π2sin4θw
λ8 = 4.11. 10−11.

Here rK+ = 0.901 summaries the isospin-breaking corrections which come from phase

space factors due to the difference of masses of π+ and π0.

In derivation eq.(11) we have used the wolfenstein parametrization of the CKM matrix,

in which each element is expanded as a power series in the small parameter

λ =| Vus |=0.22, λi = V ∗

isVid and P (K+) represent the sum of charm contributions to the

two diagrams including the (NLO) QCD corrections [2]. At mc = 1.3 GeV, ΛM̄s = 0.325

GeV and at renormalization scale µc = mc in [16] it is found that P0(K
+) = 0.4± 0.06.

III. NUMERICAL ANALYSIS

In the numerical analysis, the following values have been used as input parameters:

GF = 1.17 .10−5 GeV −2, α = 1/137, and λ = 0.22 As we noted early we used the wolfeustein

parametrization of CKM matrix elements. In this parametrization

Imλt = A2λ5η, Reλc = −λ(1 − λ2/2), and Reλt = −A2λ5(1− ρ).

The parameter A determines from b → c transition and its A = 0.80 ± 0.075 [17]. The
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other two CKM parameters ρ and η are constrained by the measurements of | Vub/Vcb |,

xd(B
0
d − B̄0

d) mixing, and | ǫ | (the CP violation parameter in the kaon system). For typical

values of the necessary input parameters of ρ and η we have adopt the following two sets :

set I :















ρ = 0.06

η = 0.35
set II :















ρ = −0.25

η = 0.3
. (12)

The free parameters of the 2HDM model which we have used namely tanβ and mH are

not arbitrary, but there are some constraints on them by using the existing experimental

data. These constraints are usually obtained from B0− B̄0, K0− K̄0 mixings, b → sγ decay

width, Rb =
Γ(z→bb̄)

Γ(z→hadrons)
, and semileptonic b → cν̄ττ decay which are given by [18] as

0.7 ≤ tanβ ≤ 0.6(
m+

H

1GeV
), (13)

where as a lower bound for the charged Higgs mass mH ≥ 300 GeV at µ = 5 scale has been

estimated in 2HDM [19]. If these constraints are respected, an upper and lower bound for

ctgβ is extracted:

0.004 ≤ ctgβ ≈ 2. (14)

In Figures 1 and 2, we represent the branching ratio of K+ → π+νν̄ as a function of ctgβ

for various values of mH , and as a function of mH for various values of ctgβ. For illustrative

purposes we consider three values of ctgβ, namely ctgβ =1, 1.5 and 2 and we allow mH to

range between 300 GeV and 1000 GeV, and then we consider three values of mH , namely

mH=300, 500, 1000 GeV and we allow ctgβ to range between 0 to 2. It can be seen that

for ctgβ = 1, the branching ratio (BR) for K+ → π+νν̄ decay increases slowly with the

increasing of mH ; whereas, for larger values of ctgβ, the BR decreases at all values of mH .
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Furthermore, when the ctgβ is increased the BR rapidly grows up. Therefore, it can be

concluded that the main contribution to the decay width comes from the charged Higgs

exchange diagrams (see [8,9]).

The question now is; what kind of restrictions on tanβ and mH can be obtained if the

recent experimental result of Br(K+ → π+νν̄) = (4.2+9.7
−3.5). 10

−10 [3] is respected that is:

(0.7 ≤ BRexp. ≤ 13.9). 10−10, (15)

and whether or not it coincide with the restrictions given in [18]. For this aim, in Figure 3

we present the dependence of tanβ on mH using both sets of values of ρ and η. We see that

when 300GeV ≤ mH ≤ 1TeV it gives:

0.18 ≤ tanβ ≤ 0.5± 0.2 (setI), (16)

0.18 ≤ tanβ ≤ 0.8± 0.3 (setII). (17)

If we use the lowest bound for tanβ = 0.7 (see eq.(13)) we see that the set I predictions is

ruled out and for set II we have small room for tanβ, namely from eq.(16) and from eq.(17)

we have:

0.7 ≤ tanβ ≤ 0.8. (18)

If we increase a little bit the upper bound and if we put a lower value for mH=500 GeV we

can see that in this case

0.7 ≤ tanβ ≤ 0.9. (19)

Using these results we can conclude that the mass of the charged Higgs boson must be

lie in the interval
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500GeV ≤ mH ≤ 700GeV. (20)

In conclusion, using the experimental result of the branching ratio for K+ → π+νν̄ and

the CLEO measurements on b → sγ [20] we find new restrictions on the free parameters

tanβ and mH of the 2HDM model. In summay it is found that the contribution of type

II two-Higgs-doublet model to the branching ratio is exceed at most by ∼ 20% from the

standard model ones.
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Figure Captions

Figure 1 : The dependence of the Br(K+ → π+νν̄) on ctgβ at fixed values of mH .

Figure 2 : The dependence of the Br(K+ → π+νν̄) on mH at fixed values of ctgβ.

Figure 3 : The dependence of tanβ on the charged Higgs boson massmH . Curves (A, B), and

(C, D) describes upper and lower bound of the experimental values of the Br(K+ → π+νν̄)

for Set I and Set II values of ρ and η respectively.
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