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HADRONIC CHARMLESS B DECAYS AND

NONFACTORIZABLE EFFECTS

HAI-YANG CHENG

Institute of Physics, Academia Sinica, Taipei, Taiwan 115, ROC

Hadronic charmless B decays and their nonfactorizable effects are reviewed.

1 Introduction

A remarkable progress in the study of exclusive charmless B decays has been
made recently. Experimentally, CLEO 1 has discovered many new two-body
decay modes

B → η′K±, η′K0
S , π±K0

S, π±K∓, ωK±, (1)

and a possible evidence for B → φK∗. Moreover, CLEO has provided new
improved upper limits for many other decay modes. Some of the CLEO data
are surprising from the theoretical point of view: The measured branching
ratios for B± → η′K± and B± → ωK± are about several times larger than
the naive theoretical estimate.

2 Difficulties with naive factorization

The relevant effective weak Hamiltonian for hadronic weak B decay is of the
form

Heff =
GF√
2

[

λu(c1O
u
1 + c2O

u
2 ) + λc(c1O

c
1 + c2O

c
2)− λt

10
∑

i=3

ciOi

]

, (2)

where λi = VibV
∗
iq, O3−6 are the QCD penguin operators and O7−10 the elec-

troweak penguin operators. The Wilson coefficients ci(µ) in Eq. (2) have been
evaluated to the next-to-leading order (NLO) and they depend on the choice
of the renormalization scheme. The mesonic matrix elements are customarily
evaluated using the factorization hypothesis. Under this assumption, the 3-
body hadronic matrix element 〈M1M2|O|B〉 is approximated as the product
of two matrix elements 〈M1|J1µ|0〉 and 〈M2|Jµ

2 |B〉. Although this approach
for matrix elements is very simple, it encounters two major difficulties. First,
the hadronic matrix element under factorization is renormalization scale µ

1

http://arxiv.org/abs/hep-ph/9807323v1


independent as the vector or axial-vector current is partially conserved. Con-
sequently, the amplitude ci(µ)〈O〉fact is not truly physical as the scale de-
pendence of Wilson coefficients does not get compensated from the matrix
elements. Second, in the naive factorization approach, the relevant Wilson
coefficient functions for color-allowed external W -emission (or so-called “class-
I”) and color-suppressed (class-II) internal W -emission amplitudes are given
by a1 = c1 + c2/Nc, a2 = c2 + c1/Nc, respectively, with Nc the number of
colors. However, naive factorization fails to describe class-II decay modes. For

example, the ratio R = Γ(D0 → K
0
π0)/Γ(D0 → K−π+) is predicted to be

∼ 1
50 , while experimentally 2 R = 0.51± 0.07. This implies that it is necessary

to take into account nonfactorizable contributions to the decay amplitude in
order to render the color suppression of internal W -emission ineffective.

2.1 Scale and scheme independence of physical amplitudes

Under the factorization hypothesis, we would like to know if it is possible to
obtain physical amplitudes independent of the choice of the renormalization
scale and scheme. The answer is yes. The scale and scheme dependence of
the hadronic matrix elements can be calculated in perturbation theory at the
one-loop level 3,4,5. Schematically,

〈O(µ)〉 = g(µ)〈O〉tree, 〈Heff〉 = ceff〈O〉tree, (3)

with g(µ) being the perturbative corrections to the four-quark operators renor-
malized at the scale µ. Formally, one can show that ceff = g(µ)c(µ) is µ and
renormalization scheme independent. It is at this stage that the factorization
approximation is applied to the hadronic matrix elements of the operator O
at tree level. The physical amplitude obtained in this manner is guaranteed to
be renormalization scaheme and scale independent. a

The penguin-type corrections to g(µ) depend on k2, the gluon’s momentum
squared, so are the effective Wilson coefficient functions. To NLO, we obtain 7

ceff1 = 1.149, ceff2 = −0.325,

ceff3 = 0.0211 + i0.0045, ceff4 = −0.0450− i0.0136,

ceff5 = 0.0134 + i0.0045, ceff6 = −0.0560− i0.0136,

ceff7 = −(0.0276 + i0.0369)α, ceff8 = 0.054α,

ceff9 = −(1.318 + i0.0369)α, ceff10 = 0.263α, (4)

at k2 = m2
b/2.

aThis formulation is different from the one advocated in 6 in which the µ dependence of the
Wilson coefficients ci(µ) are canceled out by that of the nonfactorization parameters ε8(µ)
and ε1(µ) so that the effective parameters aeff

i
are µ independent.
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2.2 Generalized factorization

Because there is only one single form factor (or Lorentz scalar) involved in
the class-I or class II decay amplitude of B → PP, PV decays, the effects of
nonfactorization can be lumped into the effective parameters a1 and a2

8:

aeff1 = ceff1 + ceff2

(

1

Nc

+ χ1

)

, aeff2 = ceff2 + ceff1

(

1

Nc

+ χ2

)

, (5)

where χi are nonfactorizable terms and receive main contributions from the
color-octet current operators. Since |c1/c2| ≫ 1, it is evident from Eq. (5)
that even a small amount of nonfactorizable contributions will have a signifi-
cant effect on the color-suppressed class-II amplitude. If χ1,2 are universal (i.e.
process independent) in charm or bottom decays, then we still have a general-
ized factorization scheme in which the decay amplitude is expressed in terms
of factorizable contributions multiplied by the universal effective parameters
aeff1,2. For B → V V decays, this new factorization implies that nonfactorizable

terms contribute in equal weight to all partial wave amplitudes so that aeff1,2 can
be defined. It should be stressed that, contrary to the naive one, the improved
factorization does incorporate nonfactorizable effects in a process independent
form. Phenomenological analyses of two-body decay data of D and B mesons
indicate that while the generalized factorization hypothesis in general works
reasonably well, the effective parameters aeff1,2 do show some variation from
channel to channel, especially for the weak decays of charmed mesons 8,9,10.
An eminent feature emerged from the data analysis is that aeff2 is negative in
charm decay, whereas it becomes positive in the two-body decays of the B
meson 8,12,6:

aeff2 (D → Kπ) ∼ −0.50 , aeff2 (B → Dπ) ∼ 0.20− 0.28 . (6)

It follows that

χ2(D → Kπ) ∼ −0.36 , χ2(B → Dπ) ∼ 0.12− 0.19 . (7)

The observation |χ2(B)| ≪ |χ2(D)| is consistent with the intuitive picture
that nonperturbative soft gluon effects become stronger when the final-state
particles move slower, allowing more time for significant final-state interactions
after hadronization 8. Phenomenologically, it is often to treat the number of
colors Nc as a free parameter to model the nonfactorizable contribution to
hadronic matrix elements and its value can be extracted from the data of two-
body nonleptonic decays. Theoretically, this amounts to defining an effective
number of colors N eff

c , called 1/ξ in 11, by 1/N eff
c ≡ (1/Nc)+χ. It is clear from
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(7) that

N eff
c (D → Kπ) ≫ 3, N eff

c (B → Dπ) = 1.8− 2.2 ≈ 2 . (8)

3 Nonfactorizable effects in charmless B decays

We next study the nonfactorizabel effects in charmless rare B decays. We
note that the effective Wilson coefficients appear in the factorizable decay
amplitudes in the combinations a2i = ceff2i +

1
Nc

ceff2i−1 and a2i−1 = ceff2i−1+
1
Nc

ceff2i
(i = 1, · · · , 5). As discussed in Sec. 2.2, nonfactorizable effects in the decay
amplitudes of B → PP, V P can be absorbed into the parameters aeffi . This
amounts to replacing Nc in aeffi by (N eff

c )i. Explicitly,

aeff2i = ceff2i +
1

(N eff
c )2i

ceff2i−1, aeff2i−1 = ceff2i−1 +
1

(N eff
c )2i−1

ceff2i . (9)

It is customary to assume in the literature that (N eff
c )1 ≈ (N eff

c )2 · · · ≈ (N eff
c )10;

that is, the nonfactorizable term is usually assumed to behavor in the same way
in penguin and non-penguin decay amplitudes. A closer investigation shows
that this is not the case. We have argued in7 that nonfactorizable effects in the
matrix elements of (V −A)(V +A) operators are a priori different from that of
(V −A)(V −A) operators. One reason is that the Fierz transformation of the
(V −A)(V +A) operators O5,6,7,8 is quite different from that of (V −A)(V −A)
operators O1,2,3,4 and O9,10. As a result, contrary to the common assumption,
N eff

c (LR) induced by the (V −A)(V +A) operators are theoretically different
from N eff

c (LL) generated by the (V − A)(V − A) operators 7. Hence, it is
plausible to assume that

N eff
c (LL) ≡

(

N eff
c

)

1
≈

(

N eff
c

)

2
≈

(

N eff
c

)

3
≈

(

N eff
c

)

4
≈

(

N eff
c

)

9
≈

(

N eff
c

)

10
,

N eff
c (LR) ≡

(

N eff
c

)

5
≈

(

N eff
c

)

6
≈

(

N eff
c

)

7
≈

(

N eff
c

)

8
, (10)

and that N eff
c (LR) 6= N eff

c (LL). In principle, N eff
c can vary from channel to

channel, as in the case of charm decay. However, in the energetic two-body B
decays, N eff

c is expected to be process insensitive as supported by data 6.

3.1 Classification of charmless B decays

By studying the N eff
c -dependence of the effective parameters ai’s (for simplic-

ity, we will drop the superscript “eff” henceforth), we learn that (i) the domi-
nant coefficients are a1, a2 for current-current amplitudes, a4 and a6 for QCD
penguin-induced amplitudes, and a9 for electroweak penguin-induced ampli-
tudes, and (ii) a1, a4, a6 and a9 are N eff

c -stable, while the other coefficients
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depend strongly on N eff
c . Therefore, for those charmless B decays whose decay

amplitudes depend dominantly onN eff
c -stable coefficients, their decay rates can

be reliably predicted within the factorization approach even in the absence of
information of nonfactorizable effects. By contrast, the decay modes involving
the coefficients a2, a3 and a5 are sensitive to N

eff
c and hence the nonfactorizable

effects.
In order to study hadronic charmless B decays, it is useful to classify

the decay modes into several different categories. Besides the widely used
three classes I, II, III for tree-dominated decay modes, the penguin-dominated
charmless rare B decays also can be classified into three classes:

• Class-IV for those decays whose amplitudes are governed by the param-
eters a4 and a6 in the combination a4 + Ra6, where the coefficient R
arises from the (S − P )(S + P ) part of the operator O6. In general,
R = 2m2

Pb
/[(m1 +m2)(mb −m3)] for B → PaPb with the meson Pb be-

ing factored out in the factorizable approximation, R = −2m2
Pb
/[(m1 +

m2)(mb +m3)] for B → VaPb, and R = 0 for B → PaVb and B → VaVb

with Vb being factorizable. Note that a4 is always accompanied by a10,

and a6 by a8. Examples are Bd → K−π+, K
0
π0, B− → K−π0, Bs →

K+K−, K0K
0
, · · ·.

• Class-V modes for those decays whose amplitudes are governed by the
effective coefficients a3, a5, a7 and a9 in the combinations a3 ± a5 and/or
a7 ± a9. Examples are Bd → φπ0, B− → φπ−, Bs → φπ0.

• Class-VI involving the interference of class-IV and class-V decays, e.g.
B → Kη′, Kω, Kφ (B = Bu, Bd, Bs).

Sometimes the tree and penguin contributions are comparable. For exam-
ple, decays Bs → K0ω,K∗0ω fall into the classes of II and VI.

3.2 Some general features for penguin-dominated proceses

For penguin-dominated decay modes, some observations can be made:

• For class-IV modes, the decay rates obey the pattern:

Γ(B → PaPb) > Γ(B → PaVb) ∼ Γ(B → VaVb) > Γ(B → VaPb), (11)

where M = Pb or Vb is factorizable under the factorization assumption.

For example, the branching ratios forB
0 → K−π+,K∗−π+,K∗−ρ+,K−ρ+

are predicted to be ∼ 1.5× 10−5, 0.7× 10−5, 0.6× 10−5 and 0.5× 10−6
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respectively. This hierarchy follows from various interference between
the penguin terms characterized by the effective coefficients a4 and a6.
On the contrary, in general Γ(B → PaVb) > Γ(B → PaPb) for tree-
dominated decays because the vector meson has three different polariza-
tion states.

• Among the two-body charmless B decays, the class-III decay modes
B− → η′K−, Bd → η′K0 and Bs → ηη′, η′η′ have the largest branching
ratios. Theoretically, B(B− → η′K−) ≈ B(Bd → η′K0) ∼ 4 × 10−5

and B(Bs → ηη′, η′η′) ∼ 2 × 10−5. These decay modes receive two
different sets of penguin terms proportional to a4 + Ra6 with R > 0.
By contrast, V P, V V modes in charm decays or bottm decays involving
charmed mesons usually have larger branching ratios than the PP mode.

• The decay amplitudes of B → Mπ0,Mρ0 with π0(ρ0) being factored out
contain the electroweak penguin contributions proportional to 3

2 (−a7 +

a9)X
(BM,π0)
u and 3

2 (a7 + a9)X
(BM,ρ0)
u , respectively, 13 with

X(BM,π0)
u = 〈π0|(ūu)

V −A
|0〉〈M |(q̄b)

V −A
|B〉. (12)

For Bs → η′π, η′ρ, φπ, φρ, QCD penguin contributions are canceled out
so that these decays are dominated by electroweak penguins. Hence, a
measurement of them can be used to determine the effective coefficient
a9.

b

3.3 Nonfactorizable effects in spectator amplitudes

We focus on class-III decay modes dominated by the spectator diagrams in-
duced by the current-current operators O1 and O2 and are sensitive to the
interference between external and internal W -emission amplitudes. Good ex-
amples are the class-III modes: B± → ωπ±, π0π±, ηπ±, π0ρ±, · · ·, etc. Con-
sidering B± → ωπ±, we find that the branching ratio is sensitive to 1/N eff

c

and has the lowest value of order 2 × 10−6 at N eff
c = ∞ and then increases

with 1/N eff
c . The 1997 CLEO measurement yields 15

B(B± → ωπ±) =
(

1.1+0.6
−0.5 ± 0.2

)

× 10−5. (13)

bIt has been suggetsed in 14 that Bd → K
0
ρ0 can be utilized to extract a9. However, this

method relies on the cancellation between the QCD penguin terms characterized by a4 and
a6. In general, this cancellation is not complete and this makes this decay mode less clean
than Bs → (η′, φ)(π, ρ) for determining a9.
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Consequently, 1/N eff
c > 0.35 is preferred by the data 7. Because this decay is

dominated by tree amplitudes, this in turn implies that N eff
c (V −A) < 2.9. If

the value of N eff
c (V − A) is fixed to be 2, the branching ratio for positive ρ,

which is preferred by the current analysis 16, will be of order (0.9−1.0)×10−5,
which is very close to the central value of the measured one. Unfortunately,
the significance of B± → ωπ± is reduced in the recent CLEO analysis and
only an upper limit is quoted 17: B(B± → π±ω) < 2.3× 10−5. Since B(B± →
K±ω) = (1.5+0.7

−0.6 ± 0.2) × 10−5 and B(B± → h±ω) = (2.5+0.8
−0.7 ± 0.3) × 10−5

with h = π, K, the central value of B(B± → π±ω) remains about the same
as (11). The fact that N eff

c (LL) ∼ 2 is preferred in charmless two-body decays
of the B meson is consistent with the nonfactorizable term extracted from
B → (D,D∗)π, Dρ decays, namely N eff

c (B → Dπ) ≈ 2. Since the energy
release in the energetic two-body decays B → ωπ, B → Dπ is of the same
order of magnitude, it is thus expected that N eff

c (LL)|B→ωπ ≈ 2.
Just like the decay B− → π−ω, the branching ratio of B− → π−π0 also

increases with 1/N eff
c . The CLEO measurement is 18

B(B± → π±π0) =
(

0.9+0.6
−0.5

)

× 10−5 < 2.0× 10−5. (14)

However, the errors are so large that it is meaningless to put a sensible con-
straint on N eff

c (LL). Nevertheless, we see that in the range 5 0 ≤ 1/N eff
c ≤ 0.5,

N eff
c (LL) ≈ 2 is most favored.
In analogue to the decays B → D(∗)π(ρ), the interference effect of specta-

tor amplitudes in class-III charmless B decay can be tested by measuring the
ratios:

R1 ≡ 2
B(B− → π−π0)

B(B̄0 → π−π+)
, R2 ≡ 2

B(B− → ρ−π0)

B(B̄0 → ρ−π+)
, R3 ≡ 2

B(B− → π−ρ0)

B(B̄0 → π−ρ+)
. (15)

Evidently, the ratios Ri are greater (less) than unity when the interference is
constructive (destructive). Numerically we find

R1 =

{

1.74,
0.58,

R2 =

{

1.40,
0.80,

R3 =

{

2.50 for N eff
c = 2,

0.26 for N eff
c = ∞.

(16)

Hence, a measurement of Ri (in particular R3), which has the advantage of
being independent of the Wolfenstein parameters ρ and η, will constitute a
very useful test on the effective number of colors N eff

c (LL). The present ex-

perimental information on B
0 → π+π− is 18

B(B0 → π±π∓) = (0.7± 0.4)× 10−5 < 1.5× 10−5. (17)

As far as the experimental central value of R1 is concerned, it appears that
1/N eff

c ∼ 0.5 is more favored than any other small values of 1/N eff
c .
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3.4 Nonfactorizable effects in penguin amplitudes

The penguin amplitude of the class-VI mode B → φK is proportional to
(a3 + a4 + a5) and hence sensitive to the variation of N eff

c . Neglecting W -
annihilation and space-like penguin diagrams, we find 7 that N eff

c (LR) = 2 is
evidently excluded from the present CLEO upper limit 17

B(B± → φK±) < 0.5× 10−5, (18)

and that 1/N eff
c (LR) < 0.23 or N eff

c (LR) > 4.3 . A similar observation was
also made in 19. The branching ratio of B → φK∗, the average of φK∗− and
φK∗0 modes, is also measured recently by CLEO with the result 17

B(B → φK∗) =
(

1.1+0.6
−0.5 ± 0.2

)

× 10−5. (19)

We find that the allowed region for N eff
c (LR) is 4 >∼ N eff

c (LR) >∼ 1.4. This is

in contradiction to the constraint N eff
c (LR) > 4.3 derived from B± → φK±.

In fact, the factorization approach predicts that Γ(B → φK∗) ≈ Γ(B → φK)
when theW -annihilation type of contributions is neglected. The current CLEO
measurements (18) and (19) are obviously not consistent with the prediction
based on factorization. One possibility is that generalized factorization is not
applicable to B → V V . Therefore, the discrepancy between B(B → φK)
and B(B → φK∗) will measure the degree of deviation from the generalized
factorization that has been applied to B → φK∗. It is also possible that the
absence of B → φK events is a downward fluctuation of the experimental
signal. At any rate, in order to clarify this issue and to pin down the effective
number of colors N eff

c (LR), we urgently need measurements of B → φK and
B → φK∗, especially the neutral modes, with sufficient accuracy.

The decay mode B → η′K also provides another useful information on
N eff

c (LR). The discrepancy between the experimental measurements

B(B± → η′K±) =
(

6.5+1.5
−1.4 ± 0.9

)

× 10−5,

B(B0 → η′K0) =
(

4.7+2.7
−2.0 ± 0.9

)

× 10−5 (20)

and the theoretical estimates 20,4,21 of order 1 × 10−5 seems to call for some
new mechanisms unique to the η′ production or even some new physics beyond
the Standard Model.

In the conventional way of treating N eff
c (LR) and N eff

c (LL) in the same
manner, the branching ratio of B± → η′K± can be enhanced to the order of
(2 − 3) × 10−5 due to the small running strange quark mass at µ = mb and
SU(3) breaking in the decay constants f8 and f0 (corresponding to the dashed

8
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Figure 1: The branching ratio of B± → η′K± as a function of 1/Neff
c (LR) with

Neff
c (LL) being fixed at the value of 2 and η = 0.34 and ρ = 0.16. The charm content

of the η′ with fc
η′ = −6MeV contributes to the solid curve, but not to the dotted

curve. The anomaly contribution to 〈η′|s̄γ5s|0〉 is included. For comparison, the

prediction for the case that Neff
c (LL) = Neff

c (LR) as depicted by the dashed curve is
also shown. The solid thick lines are the CLEO measurements with one sigma errors.

curve in Fig. 1). It should be emphasized that this prediction has taken into
account the anomaly effect in the matrix element 〈η′|s̄γ5s|0〉. Specifically,

〈η′|s̄γ5s|0〉 = −i
m2

η′

2ms

(

f s
η′ − fu

η′

)

, (21)

where the QCD anomaly effect is manifested by the decay constant fu
η′ . Since

fu
η′ ∼ 1

2f
s
η′ and the decay amplitude is dominated by (S − P )(S + P ) matrix

elements, it is obvious that the decay rate of B → η′K would be (wrongly)
enhanced considerably in the absence of the anomaly term in 〈η′|s̄γ5s|0〉.

It has been advocated that the new internal W -emission contribution com-
ing from the Cabibbo-allowed process b → cc̄s followed by a conversion of the
cc̄ pair into the η′ via two gluon exchanges may play an important role since
its mixing angle VcbV

∗
cs is as large as that of the penguin amplitude and yet

its Wilson coefficient a2 is larger than that of penguin operators. The de-
cay constant f c

η′ , defined by 〈0|c̄γµγ5c|η′〉 = if c
η′qµ, has been estimated to be

f c
η′ = (50 − 180) MeV, based on the OPE, large-Nc approach and QCD low

energy theorems 22. Recent refined estimates 23,24 give f c
η′ = −(2 ∼ 15) MeV,

which is in strong contradiction in magnitude and sign to the estimate of 22.
It turns out that if N eff

c (LL) is treated to be the same as N eff
c (LR), this new

mechanism is not welcome for explaining B(B → η′K) at small 1/N eff
c due to

9



the fact that its contribution is proportional to a2, which is negative at small
1/N eff

c .
We have shown in 7 that if N eff

c (LL) ∼ 2 and N eff
c (LR) > N eff

c (LL),
B(B± → η′K±) at 1/N eff

c (LR) ≤ 0.2 will be enhanced considerably from (2.5−
3)×10−5 to (3.7−5)×10−5 (see Fig. 1). First, the η′ charm content contribution
now contributes in the right direction to the decay rate irrespective of the value
of N eff

c (LR) as a2 now is always positive. Second, the interference between
the spectator amplitudes of B± → η′K± is constructive. Third, the term

proportional to 2(a3 − a5)X
(BK,η′)
u +(a3 + a4 − a5)X

(BK,η′)
s is enhanced when

(N eff
c )3 = (N eff

c )4 = 2. The agreement with experiment for B± → η′K±

thus provides another strong support for N eff
c (LL) ∼ 2 and for the relation

N eff
c (LR) > N eff

c (LL).

4 Final-state interactions and B → ωK

The CLEO observation 17 of a large branching ratio for B± → ωK±

B(B± → ωK±) =
(

1.5+0.7
−0.6 ± 0.2

)

× 10−5, (22)

is difficult to explain at first sight. Its factorizable amplitude is of the form

A(B− → ωK−) ∝ (a4 +Ra6)X
(Bω,K) + (2a3 + 2a5 +

1

2
a9)X

(BK,ω) + · · · , (23)

with R = −2m2
K/(mbms), where ellipses represent for contributions from W -

annihilation and space-like penguin diagrams. It is instructive to compare this
decay mode closely with B− → ρK−

A(B− → ρ0K−) ∝ (a4 +Ra6)X
(Bρ,K) +

3

2
a9X

(BK,ρ) + · · · . (24)

Due to the destructive interference between a4 and a6 penguin terms, the
branching ratio of B± → ρ0K± is estimated to be of order 5 × 10−7. The
question is then why is the observed rate of the ωK mode much larger than
the ρK mode ? By comparing (23) with (24), it is natural to contemplate that
the penguin contribution proportional to (2a3+2a5+

1
2a9) accounts for the large

enhancement of B± → ωK±. However, this is not the case: The coefficients
a3 and a5, whose magnitudes are smaller than a4 and a6, are not large enough
to accommodate the data unless N eff

c (LR) < 1.1 or N eff
c (LR) > 20 (see Fig. 9

of 7).
So far we have neglected three effects in the consideration of B± → ωK±:

W -annihilation, space-like penguin diagrams and final-state interactions (FSI).
It turns out that FSI may play the dominant role for B± → ωK±. The weak
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decays B− → K∗−π0 via the penguin process b → suū and B− → K∗0π−

via b → sdd̄ followed by the quark rescattering reactions {K∗−π0, K∗0π−} →
ωK− contribute constructively to B− → ωK−, but destructively to B− →
ρK−. Since the branching ratios for B− → K∗−π0 and K∗0π− are large,
of order (0.5 − 0.8) × 10−5, it is conceivable that a large branching ratio for
B± → ωK± can be achieved from FSI via inelastic scattering. Moreover, if
FSI dominate, it is expected that B(B± → ωK±) ≈ (1 +

√
2)2B(B0 → ωK0).

5 Conclusions

To summarize, the CLEO data ofB± → ωπ± available last year clearly indicate
that N eff

c (LL) is favored to be small, N eff
c (LL) < 2.9 . This is consistent with

the observation that N eff
c (LL) ≈ 2 in B → Dπ decays. Unfortunately, the

significance of B± → ωπ± is reduced in the recent CLEO analysis and only
an upper limit is quoted. Therefore, a measurement of its branching ratio is
urgently needed. In analogue to the class-III B → Dπ decays, the interference
effect of spectator amplitudes in charged B decays B− → π−π0, ρ−π0, π−ρ0

is sensitive to N eff
c (LL); measurements of them [see (15)] will be very useful

to pin down the value of N eff
c (LL).

As for N eff
c (LR), we found that the constraints on N eff

c (LR) derived from
B± → φK± and B → φK∗ are no consistent. Under the factorization hy-
pothesis, the decays B → φK and B → φK∗ should have almost the same
branching ratios, a prediction not borne out by current data. Therefore, it is
crucial to measure the charged and neutral decay modes of B → φ(K,K∗) in
order to see if the generalized factorization approach is applicbale to B → φK∗

decay. Nevertheless, our analysis of B → η′K indicates that N eff
c (LL) ≈ 2 is

favored and N eff
c (LR) is preferred to be larger. Since the energy release in

the energetic two-body charmless B decays is not less than that in B → Dπ
decays, it is thus expected that

|χ(2− body rare B decay)| <∼ |χ(B → Dπ)|. (25)

It follows from Eq. (7) that N eff
c (LL) ≈ N eff

c (B → Dπ) ∼ 2 and N eff
c (LR) ∼

2 − 5, depending on the sign of χ. Therefore, we conjecture that N eff
c (LR) ∼

5 > N eff
c (LL) ∼ 2.
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