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Abstract

In the context of the minimal supersymmetric standard model, nonzero neu-

trino masses and mixing can be generated through renormalizable lepton num-

ber (and thus R-parity) violating operators. It is examined whether neutrino

mass matrices from tree and one-loop contributions can account for two mass-

squared differences and mixing angles that explain current experimental data.

By accommodating, in particular, the solar and atmospheric neutrino data,

we find interesting restrictions not only on the free parameters of the theory,

such as lepton number violating couplings and soft-parameters, but also on

the oscillation parameters of atmospheric neutrinos.
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I. INTRODUCTION

There exists some evidence for nonzero neutrino masses and mixing. The observations
of the solar neutrino deficit have been indicating neutrino oscillation [1,2]. The resonant
conversion of νe inside the Sun [3] would provide the most favorable explanation for the
solar neutrino data. Several neutrino experiments have also observed deficit in the atmo-
spheric neutrino flux [4]. The evidence for atmospheric neutrino oscillations was recently
presented by the Super-Kamiokande group [5], which favors νµ–ντ (or νs) oscillation. The
νµ–νe oscillation interpretation can be ruled out by CHOOZ experiment [6]. The last one is
laboratory evidence for the neutrino oscillation ν̄µ → ν̄e coming from the LSND experiment
[7]. This evidence is recently being challenged by KARMEN experiment [8], and is to be
checked in the near future. The above neutrino data are known to require three distinct
mass-squared differences and mixing angles;

∆m2
sol ≃ (4− 10)× 10−6 eV2

sin2 2θsol ≃ (0.12− 1.2)× 10−2

}

[9] (1)

∆m2
atm ≃ (0.5− 6)× 10−3 eV2

sin2 2θatm ≃ (0.82− 1)

}

[5, 10] (2)

∆m2
LSND ≃ (0.3− 2.2) eV2

sin2 2θLSND ≃ (0.1− 4)× 10−2

}

[7] (3)

With ordinary three neutrinos, any two of the mass-squared differences in the above equa-
tions can be obtained: that is, those corresponding to (i) solar and atmospheric (S+A), (ii)
solar and LSND (S+L), or (iii) atmospheric and LSND (A+L) neutrino data. For (S+A), the
LSND result has to be disregarded. In the case of (S+L) or (A+L), the presence of a sterile
neutrino is necessary for the explanation of the atmospheric or solar neutrino experiment,
respectively.

One of the desirable features of the supersymmetric extension of the standard model
would be the generation of small neutrino masses within its context, as the supersymmetric
standard model with the minimal particle content (MSSM) allows for the lepton (L) and
baryon number (B) violating operators. In order to ensure the longevity of a proton, one
usually assumes the conservation of R-parity, forbidding both (renormalizable) B and L
violating operators. As a consequence, the lightest supersymmetric particle (LSP) is stable
and thus cold dark matter of the universe may consist of neutral LSP’s. However, there is
no obvious theoretical reason why R-parity needs to be conserved, or why both B and L
conservation have to be imposed. L-violation would be present in the MSSM and it may be
the origin of nonzero neutrino masses and mixing that explain current experimental data,
while proton stability is ensured by B conservation alone.

The L-violating operators in the MSSM are

µiLiH2 , λ′

ijkLiQjD
c
k , and λijkLiLjE

c
k . (4)

As is well-known [11], ordinary neutrinos can obtain nonzero masses in tree-level via nonzero
vacuum expectation values (VEVs) of sneutrinos, as well as at the one-loop level through
squark or slepton exchanges. Recently, there have been many works studying neutrino
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phenomenology in the context of R-parity breaking supersymmetric models [12]. Typically,
the tree mass is much larger than the loop mass. The key observation we wish to emphasize
is that it is, however, possible to find the soft supersymmetry breaking parameter space for
which the tree mass is rather close to the loop mass, and the solutions to the actual neutrino
problems can be provided. This was first recognized by Hempfling in Ref. [12] where a scatter
plot study of the supersymmetric grand unification model allowing only bilinear operators
shows that the solar and atmospheric neutrino data can be accounted for.

In this paper, assuming the presence of trilinear L-violating terms, we will examine how
the soft parameter space viable for neutrino physics is constrained depending on the choice
of the L-violating couplings and tanβ. Furthermore, we will find that there are certain
correlated patterns among soft parameters and predicted masses and mixing for given L-
violating couplings and tan β.

II. PATTERNS OF NEUTRINO MASS MATRICES

Before investigating neutrino masses arising in the L-violating MSSM, let us first discuss
the patterns of mass matrices required for each case (i), (ii) or (iii).

(i) (S+A)

(a) hierarchical neutrino structure: The R-parity violation may generate at least two nonzero
mass eigenvalues satisfying 0 < mν2 < mν3, and thus ∆m2

sol ≃ m2
ν2

and ∆m2
atm ≃ m2

ν3

required for the explanation of the solar and atmospheric neutrino data. Then, we need a
mass matrix in the νµ, ντ directions which yields a large mixing, sin2 2θµτ ∼ 1, and a rather
small ratio between two eigenvalues,

χ ≡ mν3/mν2 = (7− 40) (5)

as can be obtained from Eqs.(1) and (2). In this case, the components along the νe direction
should be able to explain the mixing of νe with νµ,τ reproducing sin2 2θsol given in Eq. (1).
(b) degenerate neutrino structure: Another way to accommodate the solar and atmospheric
neutrino data is to have almost degenerate three neutrinos. This could be achieved in our
scheme if the amount of L-violation along the e, µ and τ directions are the same. Then,
the solar neutrino data could be explained by a large mixing resonant conversion or vacuum
oscillation effect [9] which will be disregarded in this paper.

(ii) (S+L)

For the explanation of the atmospheric neutrino oscillation in addition to the solar neutrino
and LSND data, a sterile neutrino almost maximally mixed with νµ has to be invoked [14].
Let us denote the 4× 4 neutrino mass matrix by mij in (νe, νµ, ντ , νs) basis,











mee meµ meτ mes

meµ mµµ mµτ mµs

meτ mµτ mττ mτs

mes mµs mτs mss











(6)
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where the components mis come from a certain origin beyond the MSSM. A natural way to
obtain a large mixing required by the atmospheric neutrino experiment is to have the almost
Dirac structure with mµs ≫ mes, mτs. There exist two possibilities to realize this (S+L).
(a) mνe , mντ ≫ mνµ, mνs: This is the case where the largest mass scale for ∆m2

LSND is
determined by the (e, τ) block of mij which is larger than the (µ, s) block. As the νe–νµ
oscillation explains the LSND experiment, the solar neutrino data is explained by the νe–ντ
oscillation. Therefore, it is required that νe and ντ are almost degenerate: mνe ≃ mντ ∼ 1 eV,
and mντ −mνe ∼ 10−6(10−10) for the MSW (vacuum) solution [9]. This extreme degeneracy
is, however, hard to achieve in our scheme as will become clear in Section IV.
(b) mνµ, mνs ≫ mνe , mντ : This possibility is to have νe,τ lighter than νµ,s, for which the
solar neutrino data can be explained by small mixing in Eq. (1). Then, the mass-squared
differences for the atmospheric and LSND data are determined by

∆m2
LSND ≃ m2

µs , ∆m2
atm ≃ 2mµs(mµµ +mss) . (7)

The mass-squared difference ∆m2
atm for the νµ–νs oscillation can be different from that for

the νµ–ντ oscillation due to matter effects in the Earth. Recent analysis [13] based on the
Super-Kamiokande data shows that ∆m2

atm = (0.2− 1)× 10−2 eV2 for the νµ–νs oscillation
which is a bit shifted up compared with the value in Eq. (2). For this value of ∆m2

atm and
∆m2

LSND in Eq. (3), we get

mµs ≃ (0.55− 1.5) eV

mµµ +mss ≃ (1.3− 18)× 10−3 eV . (8)

Since the mixing angle required for the explanation of the LSND result is given by θLSND ≃
mes/mµs, one needs mes ≃ (2.4− 5.5)× 10−2 eV.

Let us now estimate the sizes of mij for active neutrinos coming from R-parity violation.
If the lepton number violation in the µ direction is suppressed so that mµµ, mµe, mµτ ≪
mss, one needs to generate only the νe–ντ oscillation for the solar neutrino for suitable
values of meτ and mττ which can be rather trivially obtained in terms of the lepton number
violations in the direction of e and τ . This case requires an explanation for the origin of
the mass scale mss ∼ 10−2 eV. It would be more natural to have mss ≈ 0 as in Ref. [14]
and thus mµµ ≫ mss. In this case, one needs mµµ ≃ (1.3 − 18) × 10−3 eV. Under the

assumption that mτs/mµs ≪ 1, the solar neutrino data can be explained if mττ =
√

∆m2
sol

and meτ/mττ −mµτmes/mττmµs = θsol. From this, the component mµτ has to be restricted

as mµτ
<
∼

√

∆m2
solθsol/θLSND. Therefore, as in the previous case (i), the L-violation in the

direction of µ and τ has to generate not so large ratios:

mµµ/mττ ≃ (0.41− 9) , mµτ/mττ
<
∼ 3.5 . (9)

For this calculation, we have used the value of mµs varying from 0.55 eV to 1.5 eV and the
largest value of mµτ .

(iii) (A+L)
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This is the most popular case with four neutrinos [15]. The solar neutrino problem is
solved by νe–νs mixing, and the atmospheric neutrino problem by maximally mixed νµ–µτ

oscillation. Typically, one would expect that νe,s are lighter than νµ,τ . Combined with
the LSND result, it is then required that the two mass eigenvalues satisfy mν2 ≃ mν3 ≃
(0.55−1.5) eV (therefore χ ≃ 1) and m2

ν3 −m2
ν2 = ∆m2

atm. The LSND mixing angle requires
also meµ/mµµ or meτ/mµτ ≃ (2.4 − 5.5) × 10−2. In the scheme of generating the neutrino
masses from the R-parity violating couplings, it is again difficult to produce a small number:
(mν3 − mν2)/(mν3 + mν2) = ∆m2

atm/4m
2
ν3 ∼ 10−3. Recall that it is also possible to have

almost degenerate νe,s with mass around 1 eV, and lighter νµ,τ . In this case, one would need
to fine-tune some parameters in the νe–νs mass matrix to achieve small mixing and a very
small mass difference, ∼ 10−6 or 10−10 eV.

III. MSSM WITH R-PARITY AND L VIOLATION

Our framework is the conventional MSSM [16] in which soft supersymmetry breaking
parameters arise from the gravitational coupling to the hidden sector and are assumed to
be universal at the grand unification (GUT) scale where the three gauge couplings meet. In
this framework, there are five independent parameters; the scalar mass m0, the trilinear soft
parameter A0, the gaugino mass m1/2, as well as tanβ and the sign of µ. Here µ represents
the mass parameter of the bilinear operator H1H2.

Without loss of generality, one can take only dimensionless L-violating couplings λ′, λ
at the GUT scale. Recall that, in models where all the L-violating terms appear generically,
the universality condition allows us to redefine the superfields Li and H1 in such a way that
µi = Di = 0 at the GUT scale. Here Di is a dimension-two soft parameter corresponding to
the bilinear operator LiH2. Even if µi and Di are zero at the GUT scale, upon renormalizing
the soft SUSY breaking parameters and the L-violating couplings down to the weak scale,
the universality condition breaks down and nonzero µi, Di and m2

LiH1
are generated. For

the calculation of the renormalization group equations (RGEs), it is convenient to use the
basis [17] where the µi terms are continuously rotated away in the following approximate
manner:

H1 +
µi

µ
Li −→ H1 (10)

Li −
µi

µ
H1 −→ Li .

This definition of new basis is valid up to the leading order of λ′ and λ, which can be
justified if they are small enough. The merit of this basis is that the RGEs of λ′ and λ do
not mix each other as shown in Appendix. Nonvanishing Di and m2

LiH1
at the weak scale

induce nonzero VEVs of sneutrinos [11]. Keeping only the leading terms of the L-violating
soft-parameters, one finds the sneutrino VEVs [17]:

〈ν̃i〉 ≃ −
Div2 +m2

LiH1
v1

m2
Li

+M2
Z cos 2β/2

. (11)

The tree-level neutrino mass matrix is then given by
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(

mtree
ν

)

ij
=

〈ν̃i〉〈ν̃j〉

m1/2/4παGUT + v2 sin β/µ
. (12)

Given the L-violating couplings λ′ and λ at the weak scale, the neutrinos acquire radiative
masses whose matrix elements are given by

(

mloop
ν

)

ij
≃

3

16π2

∆dkmdl

m̄2
dk

[

λ′

iklλ
′

jlk + (i ↔ j)
]

+
1

16π2

∆ekmel

m̄2
ek

[λiklλjlk + (i ↔ j)] , (13)

where md,e denote the down-type quark and charged lepton masses, respectively, ∆d,e denote
the mixing masses of the corresponding squarks or sleptons, and m̄2 are the functions of the
squark or slepton mass eigenvalues m̃1,2 given by m̄2 = (m̃2

1 − m̃2
2)/ ln(m̃

2
1/m̃

2
2) for each

generation. Here, i, j, k, l are generation indices. The full neutrino mass matrix is now given
by (mν) = (mtree

ν ) + (mloop
ν ), which will be computed with specifying the input values: the

L-violating couplings λ′, λ, the soft parameters m0, A0, m1/2 (fixed at the GUT scale), as well
as tanβ and the sign of µ. For the computation, we took the ranges of the soft parameters
as follows: m0 from 100 GeV to 1 TeV, the absolute value of A0 from 100 GeV to 3m0, and
the absolute value of m1/2 from 100 GeV to 1 TeV, fixing the sign of µ to be positive. Note
that changing the signs of µ, A0 and m1/2 simultaneously yields the same results. We also
fixed the top quark mass to be 175 GeV, and the strong coupling constant αs(MZ) to be
0.118.

Let us now specify more on the required L-violation. Since there are too many L-violating
couplings, it would be impossible to draw sensible conclusions allowing such arbitrariness in
explaining the neutrino oscillation parameters in Eqs. (1)–(3). Our basic assumption in this
regard is to take the couplings with a “natural” hierarchy: the L-violating Yukawa couplings
have a hierarchical structure similar to the corresponding quark or lepton mass matrix. In
other words, e.g., λ′

ijk ∝ hd
jk where h

d
jk is the Yukawa matrix for the down-type quarks before

diagonalization. This will be a consequence of models that explain the fermion hierarchies
in terms of flavor symmetry [18]. In such a scheme, one expects that λ′

i33 and λi33 are the
largest components and thus give the leading contribution to the neutrino masses. The
subleading contribution comes from the couplings, e.g., λ′

i32 or λ′

i23. Their contribution to
the component (mν)ij = mij would be suppressed by the factor of (λ′

i32λ
′

j23/λ
′

i33λ
′

j33)(ms/mb)
compared with the leading contribution. It is to be understood that this expression is taken
after diagonalization of the quark mass matrices. It was realized recently by Drees et.al.
[19] that the ratio ms/mb could account for the ratio χ−1 if λ′

i32λ
′

j23 ∼ λ′

i33λ
′

j33. But, for
the couplings with the natural hierarchy, it is expected that λ′

i32λ
′

j23/λ
′

i33λ
′

j33
<
∼ ms/mb, and

thus the contribution of the smaller couplings is suppressed by a factor (ms/mb)
2. This

is too small to account for the size of various components of the neutrino mass matrices
leading to the case (i), (ii) or (iii). Therefore, the couplings other than the (33)-components,
λ′

i33 (or λi33), can be neglected in our discussion. Now, the question one may ask first
is whether the phenomenologically desirable neutrino mass matrices can be obtained by
taking a minimal set of the L-violating couplings, that is, the trilinear couplings other than
λ′

i ≡ λ′

i33 are negligibly small. After answering this, we will examine the effect of the
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couplings λi33 ≡ λi(i 6= 3). We concentrate on the couplings of λ′

2,3 or λ2 since the coupling
λ′

1 or λ1 (smaller than others) can be adjusted to reproduce the desirable mixing of νe to
other neutrinos as already discussed.

IV. NEUTRINO MASSES FROM R-PARITY VIOLATION

Our task is now to examine whether the neutrino masses coming from the R-parity
violation in the MSSM can reproduce the mass matrix patterns studied in Section II. Before
presenting our main results, it is useful to look into some qualitative features of the neutrino
masses coming from R-parity violation. First thing to note is that typically the tree mass
is much larger than the loop mass. This can be seen by taking a crude approximation
to integrate the RGEs in the Appendix. That is, taking the constant coefficients in the
RGEs for Di and m2

LiH1
, one can easily obtain their values at the weak scale which yield the

sneutrino VEVs

〈ν̃i〉 ≈ v1
ln MGUT

MZ

8π2
ai(λ

′

ihb + biλihτ ) (14)

where ai, bi are the parameters encoding the RGE effects for the soft masses and couplings.
Therefore, the tree and loop mass can be written as

(

mtree
ν

)

ij
≈ κ0aiaj(λ

′

ihb + biλihτ )(λ
′

jhb + bjλjhτ )
(

mloop
ν

)

ij
≈ κ1(λ

′

iλ
′

jh
2
b + bijλiλjh

2
τ ) (15)

where κ0 ∼ (3 ln(MGUT /MZ)/8π
2)2(M2

Z cos2 β/m1/2) and κ1 ∼ 3v21/8π
2m̃. Generically, one

would find mtree/mloop ∼ κ0/κ1
>
∼ 102 for m̃/m1/2

>
∼ 0.1. The second observation is that,

for λ′

i ≫ λi, the tree mass can be aligned with the loop mass; that is, ai ≈ aj for i 6= j.
The alignment can be weakened as tanβ and λi become larger. For a large tan β, the
misalignment of, e.g., A′

3/λ
′

3 −A′

2/λ
′

2 can be amplified by the RGE effect (and thus a3 − a2
also) since

8π2 d

dt

(

A′

3

λ′

3

−
A′

2

λ′

2

)

≈ hτAτ . (16)

For large λi, it is obvious to have a large misalignment since λ3 = 0 due to the antisymmetry
of λijk.

The above properties play important roles in the case (S+A), for which one needs two
distinctive nonzero mass eigenvalues. Since the tree mass is much larger than the loop mass,
the loop mass can fit better the solar neutrino mass scale with vacuum oscillation (requiring
∆m2

sol ≃ 10−10eV2) while the tree mass gives rise to the atmospheric neutrino mass scale.
This is basically why one finds more soft parameter space for the vacuum oscillation solution
to the solar neutrino problem than for the MSW solution in the scatter plot study by
Hempfling [12]. The vacuum oscillation of solar neutrinos requires a large mixing between
νe and ντ in our scheme since the large mixing for vacuum oscillation implies λ′

1 ≈ λ′

2,3.
This might be in conflict with the Superkamiokande data as well as the CHOOZ result
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[5,6]. Therefore, we prefer the small mixing MSW solution to the solar neutrino problem as
mentioned before. It is now clear that, in order to get the neutrino mass hierarchy viable for
the atmospheric neutrino oscillation and the MSW solar neutrino conversion, the tree mass
has to be suppressed requiring ai ≪ 1. This can occur for certain soft parameters which
admit a cancellation in 〈ν̃i〉, that is, m

2
LiH1

/Di ≃ − tan β. Then, it could be that the ratio
of the tree and loop mass is responsible for the two distinctive neutrino masses differing by
the factor χ = (7− 40).

With the minimal number of L-violating couplings (or, λi ≪ λ′

i), the mere suppression
of the tree mass is not enough because the tree and loop masses are almost aligned as
discussed above (that is, 〈ν̃i〉 ∝ λ′

i), which renders the second eigenvalue mν2 close to zero.
However, it turns out that a partial cancellation between the tree and loop mass can result
in the breakdown of the alignment and the production of the desirable value of χ. In other
words, it is required that |mtree

ν | ≃ |mloop
ν | and they have opposite sign. In order to quantify

these statements, let us give some examples and calculate the amount of the misalignment

measured by ξ ≡ |λ′

2〈ν̃3〉 − λ′

3〈ν̃2〉|/|λ
′||〈ν̃〉| where |λ′| =

√

λ′

2
2 + λ′

3
2, etc. For tan β = 5,

m0 = 201 GeV, m1/2 = −109 GeV, and A0 = −550 GeV, the muon and tau neutrino mass
matrix is found to be

mν/eV ≈ −
(

0.67 0.68
0.68 0.69

)

+
(

0.65 0.65
0.65 0.65

)

(17)

where the first (second) one is tree (loop) contribution. As is obvious from Eq. (17), the tree
and loop masses are aligned very closely (ξ = 7 × 10−3) and the cancellation of the largest
digit results in χ ≈ 38 and sin2 2θ ≈ 0.9. For tan β = 40, taking m0 = 20 GeV, m1/2 = −110
GeV, A0 = −250 GeV, one finds the mass matrix with χ ≈ 16 and sin2 2θ ≈ 0.9;

mν/eV ≈ −
(

0.69 1.22
1.22 2.14

)

+
(

4.01 3.87
3.87 3.73

)

(18)

which shows that the alignment is badly broken (ξ = 0.1). Still, one needs a cancellation
to get the right value for the mass ratio, in particular. It turns out that negative values
of m1/2 and A0 are necessary to yield opposite signs for the tree and loop masses. Now
that the alignment becomes severer for smaller tan β, the soft parameters have to be tuned
more precisely for smaller tan β. In the numerical computation, we calculated the ratio χ
of two mass eigenvalues and the atmospheric neutrino mixing sin2 2θ for some sample set
of tanβ and the ratios between the couplings λ′

2,3, scanning the soft parameters up to the
smallest digit above point. The results of the computations are presented in TABLE I and
II. Notice that the neutrino mass matrix is proportional to the overall scale of λ′2

2,3, and
thus the ratio χ and the mixing sin2 2θ depend only on the ratio of two couplings λ′

3/λ
′

2. As
expected, the number of the desirable soft parameters gets smaller for smaller tanβ, and
we find no parameter space for tan β <

∼ 4. Furthermore, the values of χ and sin2 2θ depend
very sensitively on the soft parameters, and the acceptable soft parameters are scattered for
a small tan β. For a large tanβ, χ becomes a slowly varying function of the soft parameters,
and one can isolate some finite region for given values of χ and sin2 2θ.

Unexpectedly, some patterns have emerged for values of the ratio χ and the mixing
angle that are realized in our scheme depending on tanβ and the L-violating couplings, as
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presented in TABLE I. For illustration, we took some variations of λ′

3 larger than λ′

2. Similar
results can be obtained also in the cases with λ′

2 larger than λ′

3. For given tanβ and λ′

2,3, χ
and sin2 2θ are found to lie inside some restricted ranges, and to be correlated in the way that
larger mass ratio corresponds to larger mixing for λ′

2 = λ′

3, or to smaller mixing for λ′

2 < λ′

3.
The correlation becomes weaker for larger tanβ. From TABLE I, one sees that the maximal
mixing is easily realized with λ′

3/λ
′

2 ≃ 2. We found practically no desirable parameter space
for λ′

3/λ
′

2
>
∼ 5 which appears inconsistent with large sin2 2θ. The eigenvalue mν2 depends

on m0 in the way that larger m0 produces smaller neutrino mass as implied by the formulae
(11)–(13). The right values of the L-violating couplings can be obtained by the rescaling:
λ′

2,3 = 10−4(∆m2
sol/m

2
ν2
) where mν2 is a value given in TABLE I. For instances, the actual

values one needs are λ′

2 = λ′

3 = (10−3 − 10−4) for tanβ = 5, λ′

2 = λ′

3 = (10−4 − 10−5) for
tan β = 20 and λ′

2 = λ′

3 = (3× 10−5 − 3× 10−6) for tan β = 40. As a consequence of partial
cancellation between the tree and loop mass, the size of the L-violating couplings yielding
the phenomenologically viable neutrino masses becomes slightly larger than the values for
which the loop mass yields the atmospheric neutrino mass scale, say 5× 10−2 eV.

It is also amusing to find that there are preferable ranges of the acceptable soft parame-
ters: larger |A0| and smaller |m1/2| are preferred. To be specific, we show in TABLE II the
ranges of soft parameters within which viable neutrino masses and mixing can be realized
with λ′

2 = λ′

3 = 10−4. For a given m0, the values of A0 and m1/2 should reside in between
two end values shown in the table. There is a correlation between A0 and m1/2: larger |A0|
corresponds to larger |m1/2|. A similar pattern follows even with a slight variation of two
couplings λ′

2,3 such as given in TABLE I.

If the coupling λ2 is comparable to λ′

2,3, then the above mentioned properties are signif-
icantly modified as anticipated in the beginning of this section. We find that χ and sin2 2θ
become very slowly varying functions of the soft parameters even for a small tan β, as a
consequence of a large misalignment between λ′

i and 〈ν̃i〉. But one still needs mtree
ν ∼ mloop

ν

requiring a cancellation in the sneutrino VEVs, which essentially restricts the soft parameter
space. To show this explicitly, let us take two examples for tan β = 5. Taking m0 = 500
GeV, m1/2 = −100 GeV and A0 = −780 GeV, one finds the mass matrix in which the tree
mass is larger than the loop mass as in the above minimal cases:

mν/eV ≈ −
(

0.581 0.527
0.527 0.479

)

+
(

0.394 0.390
0.390 0.390

)

(19)

giving χ ≈ 38 and sin2 2θ ≈ 0.89. There is a small contribution (0.003 eV) to the mloop
νµνµ

from the λ2 coupling. The other one is of different type with dominant loop contribution:
for m0 = 500 GeV, m1/2 = 400 GeV and A0 = 100 GeV, one gets

mν/eV ≈ −
(

0.071 0.023
0.023 0.0077

)

+
(

0.136 0.127
0.127 0.127

)

(20)

which gives χ ≈ 20 and sin2 2θ ≈ 0.95. In this case, the λ2 contribution (0.009 eV) is more
significant than before. In both examples, any of the tree and loop contributions cannot be
neglected in order to produce the right values of χ and sin2 2θ. In TABLE III, we illustrate
some set of soft parameter ranges yielding the right values of the ratio χ and the mixing
angle, taking λ′

2 = λ′

3 = λ2. The ranges of A0 and m1/2 for given m0 are shown. In TABLE

9



IV, we take some variations of λ2/λ
′

2,3. Compared to the previous case, one finds more
parameter space open up for larger λ2. To have the right value of mν2 , we need a bit smaller
values for the couplings λ′ than before: that is, λ′

2,3 = λ2 ≃ (10−4 − 3× 10−5) for tan β = 5
and λ′

2,3 = λ2 ≃ (10−5 − 2 × 10−6) for tanβ = 40. From TABLE III and IV, one can also
see that larger tan β are still needed to destroy the alignment in a sufficient amount even
with sizable λ2. It can be found that a large soft parameter space opens up for tanβ <

∼ 2
only when λ2

>
∼ 4λ′

2. Contrary to the case with negligible λ2, almost all ranges of χ, sin2 2θ
can be realized as shown in TABLE III.

Now let us turn to the other cases. For the case (S+L), it is important to realize
that one needs not to generate two nonzero eigenvalues in the neutrino mass matrix along
the νµ, ντ directions. Furthermore, the ratios mµτ/mττ and mµµ/mττ (9) are determined
roughly by the input values λ′

2/λ
′

3 and (λ′

2/λ
′

3)
2, respectively. Therefore, it is required from

the previous discussion, λ′

2/λ
′

3 ≃ (0.64 − 3), and the value of λ′

3 to be determined by the

condition mν
ττ =

√

∆m2
sol ∼ 10−3eV. Generically, the tree mass is much larger than the loop

mass. Taking λ′

i33 = 10−4, the tree mass can be as large as 100 eV for a small tan β [12].
Therefore, for a small tanβ, one needs λ′

3
>
∼ 10−7. This value can be as large as 10−4 when

the tree mass is suppressed as we discuss above. Since λi cannot give rise to the nonzero
component mν

ττ , taking the largest components being λ′

2 ∼ λ′

3 as above is the best way to
explain mν

µµ ∼ mν
µτ ∼ mν

ττ .
Let us finally comment on the case (A+L). In order to achieve (mν3−mν2)/(mν3+mν2) ∼

10−3, much finer tuning of the soft parameters is required and thus it is very difficult to be
realized in our scheme.

V. CONCLUSIONS

In conclusion, we have examined the possibility of obtaining the realistic neutrino masses
and mixing in the context of the R-parity violating minimal supersymmetric standard model.
We have assumed an ultraviolet theory which has generic L-violating Yukawa couplings in
the basis where the L-violating bilinear terms are rotated away. The L-violating Yukawa
couplings induce the L-violating bilinear soft terms through the renormalization group evo-
lution which takes a simple form in the basis (valid for small L-violating couplings) as shown
in Appendix. Analyzing the neutrino masses arising both from the sneutrino vacuum expec-
tation values generated by the L-violating soft terms and from the loop corrections through
squark or slepton exchange, we found restrictions on the soft parameters, the L-violating
couplings and tan β, under which realistic neutrino mass matrices can be obtained.

With three ordinary neutrinos, one can account for any two of the three distinct mass-
squared differences required by the solar, atmospheric and LSND neutrino data. First, we
have discussed the phenomenological mass matrices along the νµ, ντ directions which are
required by the data. If the solar neutrino and LSND data are due to the active neutrinos,
and a sterile neutrino is introduced to explain the atmospheric data, then it is not necessary
to have two distinct mass eigenvalues for the mass matrix in the νµ, ντ directions but its
components should not differ by a factor of more than a few. This can be easily achieved
if λ′

i33 are the largest L-violating couplings and λ′

233 ∼ λ′

333. In the case of solving the

10



atmospheric neutrino and LSND data, one needs to generate two almost degenerate mass
eigenvalues for νµ, ντ with a very small mass difference. This case can hardly be realizable
in our scheme.

Most nontrivial and realistic case is to accommodate the solar and atmospheric data
within the ordinary context of three active neutrinos (disregarding the LSND data). In this
case, one needs to generate two distinct mass eigenvalues for νµ, ντ whose ratio, χ, should
reside roughly between 7 and 40, and the mixing angle sin2 2θatm >

∼ 0.82.
Under the assumption of the natural Yukawa hierarchy in the L-violating couplings, we

have argued that the relevant contribution to the phenomenological neutrino mass matrices
comes from the components λ′

i33 and λi33. With the minimal choice of the L-violating
couplings (namely, other than λ′

i33 are negligible), we needed not only the suppression of
tree mass (that is, tanβ ≃ −m2

LiH1
/Di), but also some partial cancellation between the tree

and loop mass. This basically strongly constrains the soft parameter space. Our study have
shown that the realistic neutrino masses and mixing prefer a large trilinear soft parameter A0

and a small gaugino mass m1/2. The desirable soft parameter space becomes more restricted
and finer tuned for smaller tanβ, and thus a reasonable parameter space can be found
only for fairly large tanβ, say, tan β >

∼ 40. We have found indeed no parameter space for
tan β <

∼ 4. The large mixing explaining the atmospheric neutrino data requires that λ′

233 and
λ′

333 should not differ by more than a factor of 5. Interestingly, the mass ratio χ = mν3/mν2

and the atmospheric neutrino mixing sin2 2θ are found to be restricted in a certain range
and correlated in the way that smaller ratio χ has smaller or larger mixing depending on the
values of λ′

2,3. This tendency becomes also weaker for larger tan β and larger λ233. It appears
more reasonable to have a sizable λ233, for which the experimental quantities of neutrino
oscillations become very stable under the variation of the soft parameters, and thus there
exist fairly extended regions of parameters fitting into the experimental data. Still, there
exist significant constraints on the soft parameters coming from the fact that the tree mass
has to be suppressed as above. More soft parameter space can be found for larger tanβ and
λ233.

APPENDIX

Renormalization group equations for the lepton number violating parameters in the basis
where LiH1 terms are rotated away in the superpotential.

16π2dλ
′

i

dt
= λ′

i(δi3h
2
τ + h2

t + 3h2
b −

7

9
g21 − 3g22 −

16

3
g23) (21)

16π2dλi

dt
= λi(3h

2
τ − 3g21 − 3g22) (22)

16π2dA
′

i

dt
= A′

i(δi3h
2
τ + h2

t + 9h2
b −

7

9
g21 − 3g22 −

16

3
g23) + Ai(2hbhτ ) (23)

+ 2λ′

i(δi3hτAτ + htAt + 2hbAb +
7

9
g21M1 + 3g22M2 +

16

3
g23M3)

16π2dAi

dt
= Ai(5h

2
τ − 3g21 − 3g22) + A′

i(6hbhτ ) + λi(6hτAτ + 6g21M1 + 6g22M2) (24)
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16π2
dm2

LiH1

dt
= m2

LiH1
(3δi3h

2
τ + h2

τ + 3h2
b)− 6A′

iAb − 2AiAτ (25)

− 6λ′

ihb(m
2
Li

+m2
Q3

+m2
D3
)− 2λihτ (m

2
Li

+m2
L3

+m2
E3
)

16π2dDi

dt
= Di(3h

2
t − g21 − 3g22)− µ(6A′

ihb + 2Aihτ ) (26)
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TABLES

TABLE I. Ranges of the atmospheric neutrino mixing angle, the ratio of two mass eigenvalues

corresponding to
√

∆m2
atm/∆m2

sol, and the smallest mass eigenvalue (for solar neutrino) which can

be realized in the soft parameter space for given tan β and L-violating couplings λ′

2,3. λ′

2 = 10−4

is taken.

tan β 5 20 40

sin2 2θ 0.82 ∼ 0.91 0.82 ∼ 0.95 0.82 ∼ 1.0

λ′

3/λ
′

2 = 1 mν3/mν2 19 ∼ 40 14 ∼ 40 7 ∼ 40

mν2 (eV) 3× 10−5 − 3× 10−3 10−3 ∼ 0.1 0.03 ∼ 2

sin2 2θ 0.89 ∼ 1.0 0.86 ∼ 1.0 0.82 ∼ 1.0

λ′

3/λ
′

2 = 2 mν3/mν2 40 ∼ 7 40 ∼ 7 7 ∼ 40

mν2 (eV) 3× 10−3 ∼ 10−2 0.01 ∼ 0.4 0.05 ∼ 4

sin2 2θ 0.82 ∼ 0.96 0.82 ∼ 0.97 0.82 ∼ 0.99

λ′

3/λ
′

2 = 3 mν3/mν2 16 ∼ 7 16 ∼ 7 28 ∼ 7

mν2 (eV) 2× 10−4 ∼ 2× 10−2 5× 10−3 ∼ 0.8 0.1 ∼ 5

sin2 2θ 0.82 ∼ 0.88 0.82 ∼ 0.89 0.82 ∼ 0.94

λ′

3/λ
′

2 = 4 mν3/mν2 9 ∼ 7 9 ∼ 7 9 ∼ 7

mν2 (eV) 4× 10−4 ∼ 2× 10−2 8× 10−3 ∼ 1 0.4 ∼ 2

TABLE II. Illustrated ranges of soft parameters in units of GeV within which the solar and

atmospheric neutrino data can be accommodated by suitable choices of soft parameters in the case

of λ′

2 = λ′

3 = 10−4. The sign of µ is fixed to be positive.

tan β m0 A0 m1/2

5 200 −590 ∼ −500 −150 ∼ −100

400 −1000 ∼ −730 −270 ∼ −100

600 −950 ∼ −900 −150 ∼ −100

20 200 −600 ∼ −230 −270 ∼ −100

500 −1000 ∼ −300 −430 ∼ −150

800 −1000 ∼ −370 −430 ∼ −100

40 200 −600 ∼ −200 −300 ∼ −100

500 −1000 ∼ −500 −500 ∼ −100

800 −1000 ∼ −240 −480 ∼ −100

TABLE III. Illustrated set of soft parameter ranges yielding realistic values of the mixing and

the mass ratio in the case of λ′

2 = λ′

3 = λ2 = 10−4. The sign of µ is again taken to be positive.

Soft parameters are in units of GeV and neutrino masses are in units of eV.

tan β m0 A0 m1/2 mν2 sin2 2θ mν3/mν2

100 −100 ∼ −170 430 ∼ 570 (2 ∼ 7)× 10−2 0.82 ∼ 0.96 7 ∼ 40

3 300 −310 ∼ −830 490 ∼ 210 (1 ∼ 3)× 10−2 0.82 ∼ 0.94 7 ∼ 40

500 −830 ∼ −970 510 ∼ 470 (0.9 ∼ 1.1)× 10−2 0.82 ∼ 0.88 25 ∼ 40

100 100 ∼ 310 160 ∼ 490 (5 ∼ 16)× 10−2 0.82 ∼ 0.91 7 ∼ 40

500 −770 ∼ −990 −100 ∼ −240 (0.6 ∼ 2)× 10−2 0.82 ∼ 1.0 7 ∼ 40

5 100 ∼ 530 370 ∼ 1000 (1 ∼ 3)× 10−2 0.82 ∼ 1.0 7 ∼ 40
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900 −100 ∼ −170 690 ∼ 550 (5 ∼ 6)× 10−3 0.99 ∼ 1.0 37 ∼ 40

100 ∼ 530 690 ∼ 1000 (5 ∼ 10)× 10−3 0.88 ∼ 1.0 14 ∼ 40

300 −630 ∼ −910 −290 ∼ −430 2.8 ∼ 3.5 0.82 ∼ 1.0 7 ∼ 12

530 ∼ 910 290 ∼ 510 2.5 ∼ 3.5 0.82 ∼ 1.0 7 ∼ 14

40 500 −250 ∼ −330 −100 ∼ −130 0.4 ∼ 0.9 0.82 ∼ 1.0 7 ∼ 19

930 ∼ 1000 510 ∼ 570 1 ∼ 2 0.82 ∼ 1.0 7 ∼ 9

900 −300 ∼ −590 −100 ∼ −230 0.1 ∼ 0.5 0.82 ∼ 1.0 7 ∼ 40

100 ∼ 280 110 ∼ 210 0.2 ∼ 0.6 0.82 ∼ 1.0 7 ∼ 40

TABLE IV. Same as in TABLE III with different set of λ2. Here two approximate end values

of soft parameters A0 and m1/2 with the corresponding neutrino parameters are shown.

λ2 = 3× 10−5 λ2 = 3× 10−4

tan β m0 A0 m1/2 A0 m1/2

3 100 −300 ∼ −120 120 ∼ 240 100 ∼ 160 380 ∼ 1000

300 −900 ∼ −640 320 ∼ 420 −100 ∼ −900 150 ∼ 1000

900 none none −1000 ∼ −620 880 ∼ 1000

5 100 100 ∼ 300 140 ∼ 380 100 ∼ 300 220 ∼ 1000

500 −1000 ∼ −820 −220 ∼ −120 −1000 ∼ −100 −200 ∼ 460

none none 100 ∼ 340 580 ∼ 1000

900 none none −1000 ∼ −100 120 ∼ 1000

40 300 −300 ∼ −240 −120 ∼ −100 −600 ∼ −320 −320 ∼ −160

180 ∼ 260 120 ∼ 140 240 ∼ 560 160 ∼ 360

500 −560 ∼ −300 −240 ∼ −120 −1000 ∼ −540 −540 ∼ −260

140 ∼ 460 120 ∼ 240 400 ∼ 980 280 ∼ 680

900 −1000 ∼ −420 −420 ∼ −100 −320 ∼ −300 −100 ∼ −120

100 ∼ 800 120 ∼ 480 740 ∼ 1000 520 ∼ 680
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