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Abstract

We calculate the D-wave heavy quarkonium production at fixed target ex-

periments under the NRQCD factorization formalism. We find that the color

octet contributions are two orders of magnitude larger than color-singlet con-

tributions if color-octet matrix elements are taken according to the NRQCD

velocity scaling rules. Within the theoretical uncertainties, the prediction for

the production rate of 2−− D-wave charmonium state agrees with the prelim-

inary result of E705 and other experiments. Searching for the 1−− D-wave

state ψ(3770) is further suggested.
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Studies of heavy quarkonium production in high energy collisions provide important in-

formation on both perturbative and nonperturbative QCD. Recent progress in the this area

was stimulated by the experiment results ofCDF at the Fermilab Tevatron. In the 1992-1993

run, the CDF data [1] for the prompt production rates of ψ and ψ′ at large transverse mo-

mentum were observed to be orders of magnitude larger than the lowest order perturbative

calculation based on the color-singlet model. At the same time, a new framework in treating

quarkonium production and decays has been advocated by Bodwin, Braaten and Lepage in

the context of nonrelativistic quantum chromodynamics (NRQCD) [2]. In this approach, the

production process is factorized into short and long distance parts, while the latter is associ-

ated with the nonperturbative matrix elements of four-fermion operators. This factorization

formalism gives rise to a new production mechanism called the color-octet mechanism, in

which the heavy-quark and antiquark pair is produced at short distance in a color-octet

configuration and subsequently evolves nonperturbatively into physical quarkonium state.

The color-octet terms in the gluon fragmentation to J/ψ(ψ′) have been considered to ex-

plain the J/ψ(ψ′) surplus problems discovered by CDF [3,4]. Taking the nonperturbative
〈

OJ/ψ
8 (3S1)

〉

and
〈

Oψ′

8 (3S1)
〉

as input parameters, the CDF surplus problem for J/ψ and ψ′

can be explained as the contributions of color-octet terms due to gluon fragmentation. In the

past few years, applications of the NRQCD factorization formalism to J/ψ(ψ′) production

at various experimental facilities have been studied [5].

Even though the color-octet mechanism has gained some successes in describing the

production and decays of heavy quark bound systems, it still needs more effort to go be-

fore finally setting its position and role in heavy quarkonium physics. (For instance, the

photoproduction data from HERA [6] puts a question about the universality of the color-

octet matrix elements [7], in which the fitted values of the matrix elements 〈OJ/ψ
8 (1S0)〉 and

〈OJ/ψ
8 (3PJ)〉 are one order of magnitude smaller than those determined from the Tevatron

data [4])1 So, we must find other processes to test the color-octet mechanism in the heavy

quarkonium production.

In our previous studies [9–12], we propose the D-wave heavy quarkonia production as

a crucial test for the color-octet mechanism. We have calculated the D-wave quarkonium

production via gluon fragmentation at the hadron colliders [10], in the Z0 decays [11], and the

D-wave charmonia production in B decays [12]. All these results show that the color-octet

mechanism is crucially important to D-wave charmonium production, and the color-octet

1Possible solutions for this problem have been suggested recently in [8].
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contributions are found to be over two orders of magnitude larger than the color-singlet

contributions.

In this paper, we analyze the D-wave heavy quarkonium production in fixed target exper-

iments, at energies in which the color-octet gluon fragmentation is not dominant. However,

the analysis of S-wave charmonium and bottomonium production in fixed target experiments

show that the color-octet contribution is important in removing large discrepancies between

experiments and predictions from the color-singlet model [13]. We can further expect that

the color-octet contribution may be dominant in the production of D-wave quarkonium pro-

duction in fixed target, because within the color-singlet model the D-wave heavy quarkonia

production is always suppressed by the second derivative of the wave function at the origin.

But this suppression can be avoided in the color-octet model. Therefore, the D-wave heavy

quarkonium production may provide another test for the color-octet mechanism. In addi-

tion, on the experimental side, there are some clues for the D-wave 2−− charmonium state

in E705 300 GeV π±- and proton-Li interaction experiment [14]. In this experiment there

is an abnormal phenomenon that in the J/ψπ+π− mass spectrum, two peaks at ψ(3686)

and at 3.836 GeV (given to be the 2−− state) are observed and they have almost the same

height. Obviously, this situation is difficult to explain based upon the color-singlet model.

However, it might be explained within the scope of NRQCD.

In NRQCD the Fock state expansion for 3DJ states is

|3DJ〉 = O(1)|QQ̄(3DJ , 1
¯
)〉+O(v)|QQ̄(3PJ ′, 8

¯
)g〉+O(v2)|QQ̄(3S1, 8

¯
or 1

¯
)gg〉+ · · · . (1)

In the above expansion, the contributions to the NRQCD matrix elements for the production

of the D-wave charmonium from the three terms are the same order of v according to the

NRQCD velocity scaling rules. So, in the factorization formula of D-wave quarkonium

production, all of these three terms should be considered. Accordingly, the production cross

section for the physical D-wave quarkonium state δJ in hadron process 2

A +B → δJ +X (2)

can be written as

σ(A+B → δJ +X) =
∑

i,j

1
∫

0

dx1dx2fi/A(x1)fj/B(x2)σ̂(ij → δJ), (3)

2Here, the symbol δJ denotes the physical spin-triplet D-wave heavy quarkonium state. The

notation 2S+1DJ represents the cc̄ or bb̄ pair configurations with angular momentum L = 2.
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σ̂(ij → δJ) =
∑

n

F (ij → n)
〈

OδJ
n

〉

. (4)

Here, n denotes cc̄ pair configuration in the three Fock states of Eq. (1) (including angular

momentum 2S+1LJ and color index 1 or 8). F (ij → n) is the short distance coefficient for

the subprocess ij → n.
〈

OδJ
n

〉

is the long distance non-perturbative matrix element which

represents the property of the c̄c pair in n configuration evolving into the physical state δJ .

The short distance coefficient F can be calculated by using perturbative QCD in expansion

of powers of αs. The long distance matrix elements are still not available from the first

principle at present, which can are obtained by fitting the theoretical prediction with the

experimental result in literatures. By the naive NRQCD velocity scaling rules, these three

matrix elements are of the same order in powers of v. Their scaling properties are,

〈

OδJ
1 (3DJ)

〉

∼M7
c v

7,
〈

OδJ
8 (3S1)

〉

∼M3
c v

7,
〈

OδJ
8 (3P ′

J)
〉

∼M5
c v

7. (5)

That is to say that the color-octet and color-singlet processes are of the same order in

powers of v. However, the color-octet processes are enhanced by an order of αs over the

color-singlet processes. So, in the hadroproduction of D-wave heavy quarkonium at fixed

target experiments the color-octet contributions should be included.

First, we will calculate the color-singlet contribution to 3DJ quarkonium hadroproduc-

tion. The leading order color-singlet contribution comes from the gluon-gluon fusion process

gg → 3DJg. The production rate of this process can be calculated by making use of the

covariant formalism. The general form of the wave function of the spin-triplet heavy quarko-

nium state (with angular momentum 3LJ ) can be written as

Φ(P, ~q) =
1

M

∑

sm

〈JM |1sLm〉Λ1
+(~p1)γ0 6ǫ(s)(M+ 6P )γ0Λ2

−
(~p2)ψLm(~q), (6)

where ǫ(s) is the polarization vector associated with the spin-triplet states. Λ1
+(~p1) and

Λ2
−
(~p2) are positive energy projection operators of quark and antiquark .

Λ1
+(~p1) =

E1 + γ0~γ · ~p1 +Mcγ0
2E1

, Λ2
−
(~p2) =

E2 − γ0~γ · ~p2 −Mcγ0
2E2

. (7)

For the D-wave function, Φ(P, ~q) must be expanded to the second order in the relative

momentum ~q. The first and second derivatives of the wave function are

Φα(~q) =
−1

2M2
cM

∑

sm

〈JM |1sLm〉[Mcγα 6 ǫ(s)(M+ 6P ) +Mc 6 ǫ(s)(M+ 6P )γα]ψLm(~q); (8)

Φαβ(~q) =
−1

2M2
cM

∑

sm

〈JM |1sLm〉γα 6 ǫ(s)(M+ 6P )γβψLm(~q). (9)
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After integrating over the relative momentum ~q, the orbit angular momentum part of the

wave function will depend on the radial wave function or its derivatives at the origin RS(0),

R′

P (0), and R
′′

D(0), respectively, for S-wave (L = 0), P -wave (L = 1), and D-wave (L = 2)

states,

∫

d3q

(2π)3
ψ00(q) =

1√
4π
RS(0), (10)

∫

d3q

(2π)3
qαψ1m(q) = iǫα

√

3

4π
R′

P (0), (11)

∫

d3q

(2π)3
qαqβψ2m(q) = eαβm

√

15

8π
R′′

D(0), (12)

where the polarization tensor’s label m is magnetic quantum number. For the spin-triplet

case where J = 1, 2, 3, using explicit Clebsch-Gordan coefficients, there are following

relations for the three cases [15].

∑

sm

〈1Jz|1s2m〉ǫ(m)
αβ ǫ

(s)
ρ = −[

3

20
]1/2[(gαρ −

pαpρ
4M2

c

)ǫ
(Jz)
β + (gβρ −

pβpρ
4M2

c

)ǫ(Jz)α

−2

3
(gαβ −

pαpβ
4M2

c

)ǫ(Jz)ρ ], (13)

∑

sm

〈2Jz|1s2m〉ǫ(m)
αβ ǫ

(s)
ρ =

i

2
√
6Mc

(ǫ(Jz)ασ ǫτβρσ′p
τgσσ

′

+ ǫ
(Jz)
βσ ǫταρσ′p

τgσσ
′

), (14)

∑

sm

〈3Jz|1s2m〉ǫ(m)
αβ ǫ

(s)
ρ = ǫ

(Jz)
αβρ . (15)

Here, ǫα, ǫαβ , ǫαβρ are the spin-one, spin-two and spin-three polarization tensors which obey

the projection relations [15]

∑

m

ǫ(m)
α ǫ

(m)
β = (−gαβ +

pαpβ
4M2

c

) ≡ Pαβ , (16)

∑

m

ǫ
(m)
αβ ǫ

(m)
α′β′ =

1

2
[Pαα′Pββ′ + Pαβ′Pβα′ ]− 1

3
PαβPα′β′ , (17)

∑

m

ǫ
(m)
αβρǫ

(m)
α′β′ρ′ =

1

6
(Pαα′Pββ′Pρρ′ + Pαα′Pβρ′Pβρ′ + Pαβ′Pβα′Pρρ′

+ Pαβ′Pβρ′Pρα′ + Pαρ′Pββ′Pρα′ + Pαρ′Pβα′Pρβ′)

− 1

15
(PαβPρα′Pβ′ρ′ + PαβPρβ′Pα′ρ′ + PαβPρρ′Pα′β′

+ PαρPβα′Pβ′ρ′ + PαρPββ′Pα′ρ′ + PαρPβρ′Pα′β′

+ PβρPαα′Pβ′ρ′ + PβρPαβ′Pα′ρ′ + PβρPαρ′Pα′β′). (18)
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So, the differential cross section for the color-singlet process gg → δJX can be calculated,

as an expansion of the form in Eq.(3),

dσ(gg → δJg)1
dt

= F (gg → 3DJg)×
〈

OδJ
1 (3DJ)

〉

, (19)

where the color-singlet matrix element
〈

OδJ
1 (3DJ)

〉

can be related to the second derivative

of the nonrelativistic radial wave function at the origin |R′′

D(0)|2 for D-wave by

〈

OδJ
1 (3DJ)

〉

=
15(2J + 1)Nc

4π
|R′′

D(0)|2. (20)

The calculation of the short distance coefficient F (gg → 3DJ)g is straightforward. Because

the results are lengthy, we give the expressions in the Appendix. As in the case of gluon frag-

mentation to color-singlet 3DJ [10], gg → 3DJg processes also have the infrared divergences

involved, which are associated with the soft gluon in the final state. In our calculations of

the cross section for these processes, we follow the way in Ref. [10] by imposing a lower cutoff

Λ on the energy of the outgoing gluon in the quarkonium rest frame. The cutoff Λ can be

set to be mQ to avoid large logarithms in the divergence terms.

For the color-octet contributions in the gg, gq, qq̄ subprocesses, we readily have [4,13]

σ̂(gg → δJ)8 =
5π3α2

s

12(2mQ)3s
δ(x1x2 − 4m2

Q/s)[
3

m2
Q

〈

OδJ
8 (3P0)

〉

+
4

5m2
Q

〈

OδJ
8 (3P2)

〉

], (21)

σ̂(gq → δJ)8 = 0, (22)

σ̂(qq̄ → δJ)8 =
16π3α2

s

27(2mQ)3s
δ(x1x2 − 4m2

Q/s)
〈

OδJ
8 (3S1)

〉

. (23)

Here
√
s is the center-of-mass energy, and αs is normalized at the scale 2mQ.

Our numerical results are displayed in Fig.1 to Fig.4. We use the Glück-Reya-Vogt (GRV)

LO parton distributions for the proton and the pion [16,17]. We set the renormalization scale

to be 2mQ.

In Fig.1 and Fig.2, we plot the total cross section of D-wave heavy quarkonium for

proton-nucleon collisions for xF > 0, where we choose the color-octet matrix elements to be

related to the color-singlet matrix elements according to the naive NRQCD velocity scaling

rules,
〈

Oδc
1

8 (3S1)
〉

M3
c

≈
〈

Oδc
1

8 (3P1)
〉

M5
c

≈
〈

Oδc
1

1 (3D1)
〉

M7
c

, (24)

〈

Oδb
1

8 (3S1)
〉

M3
b

≈

〈

Oδb
1

8 (3P1)
〉

M5
b

≈

〈

Oδb
1

1 (3D1)
〉

M7
b

. (25)
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And the heavy quark spin symmetry relations for the color-octet matrix elements have been

used,

〈

OδJ
8 (3S1)

〉

≈ 2J + 1

3

〈

Oδ1
8 (3S1)

〉

, (26)

〈

OδJ
8 (3P1)

〉

≈ 2J + 1

3

〈

Oδ1
8 (3P1)

〉

. (27)

The values of color-singlet matrix elements are obtained from the potential model calculation,

|R′′

D(0)|2c = 0.015GeV 7, |R′′

D(0)|2b = 0.637GeV 7 [18]. Fig.1 is the cross section for the D-wave

charmonium and Fig.2 for the D-wave bottomonium respectively. From these figures, we

can see that the color-octet contributions are two orders of magnitude larger than the color-

singlet contributions.

It must be noted that all of the cross sections are expressed in terms of heavy quark mass

as mc and mb, for which we take values as

mc = 1.5GeV, Mb = 4.9GeV.

If we choose the charm quark mass as one half of the charmonium mass (e.g., δc ≈ 3.8GeV ),

the theoretical prediction of the cross section will be reduced by an order of magnitude for

the color-singlet contributions and by a factor of five for the color-octet contributions at a

typical energy scale
√
s = 24GeV . Compared with this large uncertainty, the variation due

to the choice of parton distribution functions and αs(µ) is negligible.

In Fig.3 and Fig.4, we plot the cross sections of D-wave charmonium and bottomonium

states in pion-nucleon collisions for xF > 0. Similar to the case of proton-nucleon collisions,

in pion-nucleon collisions we can see from these figures that the color-octet contributions are

two order of magnitude larger than the color-singlet contributions.

Among the three triplet states ofD-wave charmonium, δc2 is the most promising candidate

to discover firstly. Its mass falls in the range of 3.810 ∼ 3.840 GeV in the potential model

calculation, that is below the DD̄∗ threshold but above the DD̄ threshold. However, the

parity conservation forbids it decaying into DD̄. It, therefore, is a narrow resonance. Its

main decay modes are expected to be,

δc2 → J/ψππ, δc2 → 3PJγ(J = 1, 2), δc2 → 3g. (28)

The hadronic transition rate of δc2 → J/ψπ+π− is estimated to be [11]

Γ(δc2 → J/ψπ+π−) = Γ(3D1 → J/ψπ+π−) ≈ 46 keV. (29)

For the E1 transition δ2c → 3PJγ(J = 1, 2), using the potential model with relativistic effects

being considered [19], we find

7



Γ(δc2 → χc1γ) = 250 keV, Γ(δc2 → χc2γ) = 60 keV, (30)

where the mass of δc2 is set to be 3.84GeV . As for the δ
c
2 → 3g annihilation decay, an estimate

gives [15]

Γ(δc2 → 3g) = 12 keV. (31)

From (29), (30), and (31), we find

Γtot(δ
c
2) ≈ Γ(δc2 → J/ψππ) + Γ(δc2 → χc1γ) + Γ(δc2 → χc2γ) + Γ(δc2 → 3g)

≈ 390 keV, (32)

and

B(δc2 → J/ψπ+π−) ≈ 0.12. (33)

Comparing (33) with B(ψ′ → J/ψπ+π−) = 0.324 ± 0.026, the branching ratio of δc2 →
J/ψπ+π− is only smaller by a factor of 3, and therefore the decay mode of δc2 → J/ψπ+π−

could be observable in various experiments, such as at hadron colliders and at fixed target

experiments.

Multiplied by the assumed branching ratio of δc2 → J/ψπ+π− above, we can estimate

the production rate of δc2 in pion-nucleon collisions. From Fig.3, at
√
s ≈ 24GeV , the cross

section is predicted to be σ(π−N → δc2 + X)B(δc2 → J/ψπ+π−) = 4nb per nucleon. This

value is in agreement with the preliminary result of E705, where the cross section is estimated

to be 5.3 ± 1.9 ± 1.3nb [14]. From Fig.3, we can see that the experimental result of E705

collaboration can not be explained within the color-singlet model, because the prediction of

the color-singlet model is two orders of magnitude smaller than the color-octet model. This

indicates that though the agreement with the E705 data can not be taken too seriously (due

to large theoretical uncertainties, e.g., the choice of charm quark mass; the naive estimate for

the color-octet matrix elements), an appreciable D-wave signal can only be explained by the

color-octet mechanism. Experimentally, the strong signal of J/ψπ+π− at 3.836GeV observed

by E705 is now questioned by other experiments. (E705 observed (77 ± 21) and (58 ± 21)

background-subtracted events at ψ′(2S) and 3.836 GeV respectively [14]; while E672-E706

reported (224 ± 44) and (52 ± 30) background-subtracted events at ψ′(2S) and 3.836 GeV

respectively [20]). Nevertheless, if the E705 result is confirmed (even with a smaller rate,

say, by a factor of 3, for the signal at 3.836GeV , as might be implied by other experiments

[20]), the color-octet production mechanism may provide a quite unique explanation for the

D-wave charmonium production.
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Moreover, the 1−− D-wave charmonium state ψ(3770) may also be observable at the

fixed target experiments, with a rate smaller by a factor of 5
3
than the 2−− state, provided

the decay channel ψ(3770) → DD̄ (with about 100% decay branching ratio to the charmed

meson pairs) can be detected.

In conclusion, in this paper, we have calculated theD-wave heavy quarkonium production

in fixed target experiments. We find that the color-octet mechanism plays an important role

in the production. The color-octet contributions are two order of magnitude higher than

the color-singlet contributions both in proton-nucleon and pion-nucleon collisions. Despite

of some theoretical uncertainties, the prediction of the color-octet model is found to be in

agreement with the preliminary result of E705 collaboration. This may provide another

positive support to the color-octet production mechanism of heavy quarkonium.
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APPENDIX:

The short distance coefficients for the color-singlet processes gg → 3DJ in Eq.(19) are,

F (gg → 3D1g) =
16α3

sπ
2

81M3s2(M2 − s)5(M2 − t)5(s+ t)5
{102M20s3 + 302M20s2t+ 302M20st2

+ 102M20t3 − 286M18s4 − 1732M18s3t− 2844M18s2t2 − 1732M18st3

− 286M18t4 + 275M16s5 + 3840M16s4t+ 10289M16s3t2 + 10289M16s2t3

+ 3840M16st4 + 275M16t5 − 227M14s6 − 5004M14s5t− 19569M14s4t2

− 29536M14s3t3 − 19569M14s2t4 − 5004M14st5 − 227M14t6 + 410M12s7

+ 5137M12s6t+ 23585M12s5t2 + 47908M12s4t3 + 47908M12s3t4

+ 23585M12s2t5 + 5137M12st6 + 410M12t7 − 470M10s8 − 4220M10s7t

− 19534M10s6t2 − 47528M10s5t3 − 63536M10s4t4 − 47528M10s3t5

− 19534M10s2t6 − 4220M10st7 − 470M10t8 + 245M8s9 + 2190M8s8t

+ 10358M8s7t2 + 28602M8s6t3 + 47093M8s5t4 + 47093M8s4t5

+ 28602M8s3t6 + 10358M8s2t7 + 2190M8st8 + 245M8t9 − 49M6s10

− 580M6s9t− 2822M6s8t2 − 8984M6s7t3 − 17653M6s6t4 − 21968M6s5t5

− 17653M6s4t6 − 8984M6s3t7 − 2822M6s2t8 − 580M6st9 − 49M6t10

+ 67M4s10t + 210M4s9t2 + 774M4s8t3 + 2006M4s7t4 + 3147M4s6t5

+ 3147M4s5t6 + 2006M4s4t7 + 774M4s3t8 + 210M4s2t9 + 67M4st10

+ 25M2s10t2 + 100M2s9t3 + 220M2s8t4 + 340M2s7t5 + 390M2s6t6

+ 340M2s5t7 + 220M2s4t8 + 100M2s3t9 + 25M2s2t10 + 5s10t3

+ 25s9t4 + 60s8t5 + 90s7t6 + 90s6t7 + 60s5t8 + 25s4t9 + 5s3t10},

F (gg → 3D2g) =
32α3

sπ
2

27M3s2(M2 − s)5(M2 − t)5(s+ t)5
{M20s3 + 9M20s2t + 9M20st2 +M20t3

− 3M18s4 − 64M18s3t− 130M18s2t2 − 64M18st3 − 3M18t4 + 5M16s5

+ 180M16s4t + 611M16s3t2 + 611M16s2t3 + 180M16st4 − 11M14s6

− 280M14s5t− 1369M14s4t2 − 2208M14s3t3 − 1369M14s2t4 − 280M14st5

− 11M14t6 + 20M12s7 + 269M12s6t+ 1716M12s5t2 + 3927M12s4t3

+ 3927M12s3t4 + 1716M12s2t5 + 269M12st6 + 20M12t7 − 20M10s8

− 1283M10s6t2 − 3888M10s5t3 − 5450M10s4t4 − 3888M10s3t5

− 1283M10s2t6 − 144M10st7 − 20M10t8 + 10M8s9 + 16M8s8t + 5M16t5
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+ 568M8s7t2 + 2365M8s6t3 + 4181M8s5t4 + 4181M8s4t5 + 2365M8s3t6

+ 568M8s2t7 + 16M8st8 + 10M8t92M6s10 + 20M6s9t− 144M10s7t

− 156M6s8t2 − 1072M6s7t3 − 2230M6s6t4 − 2664M6s5t5 − 2230M6s4t6

− 1072M6s3t7 − 156M6s2t8 + 20M6st9 − 2M6t10 − 6M4s10t

+ 50M4s9t2 + 472M4s8t3 + 1172M4s7t4 + 1570M4s6t5 + 1570M4s5t6

+ 1172M4s4t7 + 472M4s3t8 + 50M4s2t9 − 6M4st10 − 16M2s10t2

− 160M2s9t3 − 496M2s8t4 − 832M2s7t5 − 960M2s6t6 − 832M2s5t7

− 496M2s4t8 − 160M2s3t9 − 16M2s2t10 + 16s10t3 + 80s9t4

+ 192s8t5 + 288s7t6 + 288s6t7 + 192s5t880s4t9 + 16s3t10},

F (gg →3 D3g) =
256α3

sπ
2

189M3s2(M2 − s)5(M2 − t)5(s+ t)5
{8M20s3 + 18M20s2t + 18M20st2

+ 8M20t3 − 24M18s4 − 128M18s3t− 206M18s2t2 − 128M18st3

− 24M18t4 + 25M16s5 + 300M16s4t+ 826M16s3t2 + 826M16s2t3

+ 300M16st4 + 25M16t5 − 13M14s6 − 356M14s5t− 1556M14s4t2

− 2424M14s3t3 − 1556M14s2t4 − 356M14st5 − 13M14t6 + 10M12s7

+ 1680M12s5t2 + 3717M12s4t3 + 3717M12s3t4 + 1680M12s2t5

+ 283M12st6 + 10M12t7 − 10M10s8 − 180M10s7t− 1201M10s6t2

− 3342M10s5t3 − 4624M10s4t4 − 3342M10s3t5 − 1201M10s2t6

− 180M10st7 − 10M10t8 + 5M8s9 + 80M8s8t+ 602M8s7t2

+ 1943M8s6t3 + 3307M8s5t4 + 3307M8s4t5 + 1943M8s3t6

+ 602M8s2t7 + 80M8st8 + 5M8t9 −M6s10 − 20M6s9t− 198M6s8t2

− 776M6s7t3 − 1502M6s6t4 − 1812M6s5t5 − 1502M6s4t6 − 776M6s3t7

− 198M6s2t8 − 20M6st9 −M6t10 + 3M4s10t + 40M4s9t2 + 221M4s8t3

+ 514M4s7t4 + 698M4s6t5 + 698M4s5t6 + 514M4s4t7 + 221M4s3t8

+ 3M4st10 − 5M2s10t2 − 50M2s9t3 − 155M2s8t4 − 260M2s7t5

− 300M2s6t6 − 260M2s5t7 − 155M2s4t8 − 50M2s3t9

− 5M2s2t10 + 5s10t3 + 25s9t4 + 60s8t5 + 90s7t6 + 90s6t7

+ 60s5t8 + 25s4t9 + 5s3t10 + 283M12s6t},

where M = 2mQ and s, t, u are Mandelsterm invariants for the processes gg → 3DJg.
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Figure Captions

Fig.1. D-wave charmonium production in proton-nucleon collisions for xF > 0. The dashed

lines are the color-singlet contributions and the solid lines are color-octet contributions. For

the solid lines, from up to down, they are for J = 3, 2, 1 D-wave sates respectively. For the

dashed lines, from up to down, they are for J = 3, 1, 2 sates respectively.

Fig.2 D-wave bottomonium production in proton-nucleon collisions for xF > 0. The lines

are the same as those in Fig.1.

Fig.3 D-wave charmonium production in pion-nucleon collisions for xF > 0. The lines are

the same as those in Fig.1.

Fig.4 D-wave bottomonium production in pion-nucleon collisions for xF > 0. The lines are

the same as those in Fig.1.
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