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Abstract

We present the first phenomenological study of the masses of orbitally excited

baryons in large Nc QCD. Restricting here to the nonstrange sector of the

ℓ = 1 baryons, the 1/Nc expansion is used to order and select a basis of

effective operators that spans the nine observables (seven masses and two

mixing angles). Fits are performed using subsets of the complete set of nine

operators, including corrections up to O(1/Nc) where leading order is N1
c .

This study shows that the 1/Nc expansion provides an excellent framework

for analyzing the mass spectrum, and uncovers a new hierarchy of operator

contributions.

http://arxiv.org/abs/hep-ph/9807334v1


I. INTRODUCTION

It appears that QCD admits a useful and elegant expansion in powers of 1/Nc, where

Nc is the number of colors [1]. There are explicit rules that determine the order in Nc of

any given Feynman diagram or matrix elements of any given operator. One can thus isolate

first the leading contributions to the observable under consideration and then systematically

include contributions that are proportional to higher powers of 1/Nc.

One may question whether 1/Nc = 1/3 is small enough to provide a valid phenomeno-

logical expansion parameter. Experience suggests that it is. For the ground state baryons,

the large Nc approach has been used successfully to study SU(6) spin-flavor symmetry [2–6],

masses [4,7–9], magnetic moments [4,8,10–12], and axial current matrix elements [2,4,8,12].

The next natural step in this progression is studies of excited baryons, in particular of

the mixed symmetry, negative parity 70-plet of SU(6). There have been studies of the strong

[13,14] and radiative [15] decays of these states and of the structure of axial operator matrix

elements [16]. Progress [17] along the lines of the present work has already been made with

the first non-leading mass operators.

In this paper, we study the relative order 1/Nc and 1/N2
c corrections to the masses of

the nonstrange members of the 70-plet. Qualitatively, we find that the large Nc limit is

accurate for the 70-plet, in the sense that all the mass operators—if one wishes, all the mass

terms in an effective Hamiltonian—give contributions at or below the level estimated from

large Nc considerations. None are larger. Quantitative detail is added to this statement in

Section III.

Before proceeding, we make some comments on the nature of the 70-plet and the nomen-

clature we use. We describe the state as a symmetrized “core” of (Nc − 1) quarks in the

ground state plus one excited quark in a relative P state. The wave function is antisym-

metric in color and symmetric in SU(6) × O(3), where SU(6) is the spin-flavor symmetry

and O(3) is the rotation group. We use SU(6) to classify the large Nc baryon states and

the transformation properties of the operators; however, we need not assume that SU(6) is
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an exact symmetry. In fact, while the leading order contribution to the masses is of O(Nc),

SU(6) is broken at O(N0
c ) for our states.

One can analyze the masses in the 70-plet by expressing the effective Hamiltonian as

a sum of operators, one of which is proportional to the identity and the rest are products

of SU(6) × O(3) generators times numerical coefficients. Each operator contributes to the

mass at a definite order in Nc, which is determined by rules delineated in Sec. II.

The operator analysis for the excited baryons involves more distinguishable generators

than the ground state baryons, because of the orbital angular momentum and because one

quark is singled out. This leads to a much larger collection of mass operators. A list is given

in the next section, which shows that there is one operator of O(Nc), two operators of O(1),

and many of O(1/Nc) or smaller.

Regarding the states, nonstrange mixed symmetry SU(6) states with one quark singled

out have total quark spin and isospin related by S = I or I ± 1, with each of S and I in the

range 1/2 to Nc/2. (There is one exception: There are no doubly maximal mixed symmetry

S = I = Nc/2 states.) Thinking of the states as a core of Nc − 1 ground state quarks with

spin Sc and isospin Ic combined with an excited quark with angular momentum ℓ = 1 leads

to writing the SU(6) × O(3) states, with the help of Clebsch-Gordan coefficients, as

|JJ3; II3 (ℓ, S = I + ρ)〉 =
∑

mℓ,m1,α1,η









ℓ S J

mℓ m J3

















Sc 1/2 S

m1 m2 m

















Ic 1/2 I

α1 α2 I3









cρ,η

× |Sc = Ic = I + η/2;m1, α1〉 ⊗ |1/2;m2, α2〉 ⊗ |ℓ,mℓ〉 (1.1)

Here, the m’s are angular momentum projections, the α’s are isospin projections. Note that

Sc = Ic since the (nonstrange) core is symmetric in SU(6) indices, and we have written

Ic = I + η/2, where η = ±1. Note also that ρ ≡ S − I = ±1, 0. States with strangeness

are defined analogously, except that SU(3) Clebsch-Gordan coefficients appear in that case.

For reasons of simplicity, we have restricted to nonstrange baryons in this work.

For S = I ± 1, the notation simplifies since c±,± = 1 and c±,∓ = 0. For S = I,
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c0+ = +

√

√

√

√

S (Nc + 2(S + 1))

Nc (2S + 1)
and c0− = −

√

√

√

√

(S + 1)(Nc − 2S)

Nc (2S + 1)
. (1.2)

(The orthogonal combination gives the totally symmetric SU(6) state.) The explicit form

of the state allows us to calculate analytically the matrix elements for any operator for

arbitrary Nc.

For the physical case of Nc = 3, the above expressions admit the 7 nonstrange states of

the 70-plet. Strictly speaking, the label 70-plet refers only to the mixed symmetry baryons

appearing at Nc = 3; for large Nc, the representations tend to be much larger. In the 70-plet,

the nonstrange states consist of two isospin-3/2 states, ∆1/2 and ∆3/2, and five isospin-1/2

states, N1/2, N
′
1/2, N3/2, N

′
3/2, and N ′

5/2. The subscript indicates total baryon spin; unprimed

states states have quark spin 1/2 and primed states have quark spin 3/2. In partial wave

notation, the 2 deltas and 5 nucleons are labeled S31, D33, S11 (twice), D13 (twice), and D15,

respectively.

Section II explains the operator analysis and gives matrix elements of a complete set of

operators for the baryon states. Section III contains our analysis of physical masses and

mixing angles. Closing comments are made in Sec. IV.

II. OPERATORS AND MATRIX ELEMENTS

Since the physically observed baryons are assigned to irreducible representations of the

symmetry group SU(6) × O(3), it is natural to write all possible mass operators in terms

of the generators of this group. O(3) is the group of spatial rotations and is generated by

the orbital angular momentum operator ℓi, while the spin-flavor group SU(6) has spin Si,

flavor T a, and combined spin-flavor Gia generators. In the two-flavor case, these operators

are defined by

Si ≡ q†
(

σi

2
⊗ 11

)

q,

T a ≡ q†
(

11⊗ τa

2

)

q,
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Gia ≡ q†
(

σi

2
⊗ τa

2

)

q, (2.1)

where σi and τa are the usual Pauli matrices. The field operators q, q†, which we term

“quarks,” are not the dynamical quarks, but rather eigenstates of the spin-flavor group such

that an appropriately symmetrized collection of Nc of them have the quantum numbers of

the physical baryons. The collection of operators constructed with these fields completely

spans all possible physical mass operators. Only if the quarks are heavy can the fields q be

identified with the dynamical valence quarks.

The goal of the large Nc analysis is to organize operators by their effects on a given

observable (in this case, the masses) in a systematic expansion in powers of Nc. Factors

of Nc originate either as coefficients of operators in the Hamiltonian, or through matrix

elements of those operators. For example, the unit operator 11 contributes at O(N1
c ), since

each quark contributes coherently in the matrix element. The spin of the baryon S2 is known

to contribute to the masses at O(1/Nc) [7], because the matrix elements of Si are of O(N0
c )

for baryons that have spins of order unity as Nc → ∞. Similarly, matrix elements of T a are

O(N0
c ) in the two-flavor case since the baryons considered have isospin of O(N0

c ), but the

operator Gia has matrix elements on this subset of states of O(N1
c ). This means that the

contributions of the Nc quarks add incoherently in matrix elements of the operator Si or T a

but coherently for Gia. Note that matrix elements of a given operator are not necessarily

homogeneous in Nc; for example, values such as Nc + 3 can occur.

In this work, the generators Si
c, T

a
c , G

ia
c are reserved to mean those acting upon the

core, while separate SU(6) generators si, ta, and gia are defined for the single excited-quark

system. Including the operator ℓi completes the list of building blocks for the necessary mass

operators. Strictly speaking, the naive symmetry group for this operator basis is SU(6) ×

SU(6) × O(3), although actually only the diagonal subgroup SU(6) × O(3) truly acts on

the baryon states. Given this enlarged notation, it is possible to construct a large number

of operators; however, many are linearly dependent and may be discarded.

Since the excited system consists of only one quark, at most one generator from among
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s, t, or g appears in any operator. A similar but stronger statement may be made for the

core: Since we ultimately perform phenomenological analysis on cores with two quarks, at

most two of the set {Sc, Tc, Gc} are needed. However, operator reduction rules exist [8] that

significantly reduce the number of core operators that must be considered. Finally, since

we are interested here in ℓ = 1 baryons, only operator combinations of ∆ℓ = 0, 1, 2 need be

considered. Hence, only up to two factors of ℓi are required. Indeed, when two ℓ’s appear,

it is convenient to use ℓ
(2)
ij , the rank two tensor combination of ℓi and ℓj given by

ℓ
(2)
ij =

1

2
{ℓi, ℓj} −

ℓ2

3
δij. (2.2)

The explicit power of Nc for a given operator is determined by using the usual large

Nc counting of 1/
√
Nc for each quark-quark-gluon coupling, and considering the minimal

number of exchanged gluons necessary to generate a given operator. To be specific, we

decompose an n-body operator O as follows:

O = X∗

n−1
∏

i=1

Xi, (2.3)

where X∗ represents all operators acting on the excited quark, including factors of ℓi, and

each Xi represents an SU(6) generator acting on the core. The physical realization of such

an operator requires exchanging a minimum of n−1 gluons between different quarks, leading

to a suppression of 1/Nn−1
c , which we henceforth include in the definition of the operators.

If X∗ = 11, the result is maintained as written if n rather than n − 1 operators act on the

core.

One then considers each core operator Xi to determine whether its matrix elements

are coherent for the baryon states under consideration; a factor of Nc is included for each

coherent operator. Thus, the full large Nc counting of the matrix element is O(N1−n+m
c ),

where m is the number of coherent Xi. In the two-flavor case, only Gia
c has coherent matrix

elements. The order of the matrix element thus obtained determines whether or not we

retain the operator in computing a given process to a desired order in the 1/Nc expansion.

With this counting, one finds 22 potentially independent, time-reversal even, isosinglet

operators: One (11) with matrix element of O(N1
c ), two at O(N0

c ), ten at O(1/Nc), and nine
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at O(1/N2
c ) or higher. This counting does not fully take into account numerous relations

between the matrix elements of the operators evaluated on the nonstrange ℓ = 1 baryons.

One reduction that has been included uses the observation that, for the nonstrange mixed

symmetry states,

1

Nc

〈gGc〉 = −Nc + 1

16Nc

+ δS,I
I(I + 1)

2N2
c

. (2.4)

This operator naively produces O(N0
c ) matrix elements, but both the O(N0

c ) and O(1/Nc)

parts are the same for all baryons in the multiplet, and thus may be absorbed into matrix

elements of 11, with the remainder being demoted to O(1/N2
c ). Similarly, both 〈ℓs〉 and

〈ℓtGc〉 are O(N0
c ), but it may be observed that 〈ℓs+ 4ℓtGc/(Nc + 1)〉 is O(1/Nc), so only

〈ℓs〉 truly represents an independent O(N0
c ) operator. The full set of operator reductions

will be presented in a future publication [18].

In any case, there are only 9 observables (masses and mixing angles) in the nonstrange

ℓ = 1 system, and so only 9 independent operators are required. An independent basis

is presented in Table I: All 3 occurring up to O(N0
c ) (first considered in Ref. [17]), and a

selection of 6 at O(1/Nc) whose matrix elements, when combined with the first 3, are seen to

be independent for Nc = 3. With these operators denoted by O1,O2, . . . ,O9, respectively,

the nine independent mass matrix elements are given by

Mj =
9
∑

i=1

ci〈Oi〉j (j = 1 . . . 9). (2.5)

The coefficients ci are independent of Nc at leading order, given our choice of operator nor-

malization. These operator coefficients encapsulate all unknown strong interaction physics

unspecified by the large Nc spin-flavor analysis. In Table I we present the matrix elements

〈Oi〉j. Explicit spin and flavor indices are suppressed when their contraction is unambiguous.

III. RESULTS

In addition to the nonstrange mixed symmetry states defined in Sec. I, two mixing angles

are necessary to specify the S = 1/2 and S = 3/2 nucleon mass eigenstates. We define
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







N(1535)

N(1650)









=









cos θN1 sin θN1

− sin θN1 cos θN1

















N1/2

N ′
1/2









(3.1)

and








N(1520)

N(1700)









=









cos θN3 sin θN3

− sin θN3 cos θN3

















N3/2

N ′
3/2









, (3.2)

as in Ref. [13]. The mass eigenvalues and mixing angles can be expressed in terms of the

coefficients ci of the operators presented in the previous section.

Since we have found an operator basis that completely spans the 9-dimensional space

of observables, we can solve for the ci given the experimental data. For each baryon mass,

we assume that the central value corresponds to the midpoint of the mass range quoted in

the Review of Particle Properties [19]; we take the one standard deviation error as half of

the stated range. To determine the off-diagonal mass matrix elements, we use the mixing

angles extracted from the analysis of strong decays given in Ref. [13], θN1 = 0.61± 0.09 and

θN3 = 3.04 ± 0.15. These values are consistent with those obtained in [15] from radiative

decays. Solving for the operator coefficients, we obtain the values shown in Table II.

Naively, one expects the ci to be of comparable size. Using the value of c1 as a point of

comparison, it is clear that there are no operators with anomalously large coefficients. Thus,

we find no conflict with the naive 1/Nc power counting rules. It is interesting that a number

of the operators appear to be unimportant in describing the experimental data (presumably

due to the underlying dynamics). For example, of the two operators that contribute to

the masses at O(1), the operator O2 = ℓs has a coefficient which is suppressed relative to

O3 = ℓ(2)gGc/Nc by more than factor of 10; in effect, this operator is no more important

than a typical O(1/N2
c ) correction. Of the operators that contribute to the masses at order

1/Nc, only the operator O6 = S2
c/Nc contributes as much as one would expect, with the next

largest corrections coming from the operators O4 = ℓs+ 4ℓtGc/(Nc + 1) and O5 = ℓSc/Nc.

Using these observations, we can attempt to fit the data using judiciously chosen subsets

of the original 9 operators. We fit to the seven mass eigenvalues as well as the two mixing
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angles θN1 and θN3. The operator set we consider first are O1, O2, and O3; these yield mass

predictions accurate to order 1 in the 1/Nc expansion, and thus present the first nontrivial

spin-flavor symmetry-breaking corrections. We show the result of this fit in Table III. In

short, the lowest order operators fail in reproducing the experimental data. Notably, the

mixing angles are far off the mark, and the J = 1/2 ∆ state is predicted to be heavier

than the J = 3/2 ∆ state. The difficulty in obtaining a good fit from a leading order

analysis is an outcome that perhaps could have been anticipated: Naively, one might expect

that the lowest nontrivial mass corrections are roughly a factor of Nc = 3 smaller than the

mean baryon mass, or approximately 500 MeV. The largest splitting within our set of seven

baryons is ≈ 180 MeV, for example, in the case of the N(1700)-N(1520) mass difference.

Thus, we might have concluded a priori that 1/Nc corrections are necessary in order to

reproduce the detailed features of the mass spectrum.

In the remaining fits, we include 1/Nc corrections. The 6 parameter fit shown in Table IV

includes all the subleading operators that appear to be significant in Table II; the operators

included are O1 through O6. The resulting fit is in extremely good agreement with the

experimental data, with no predicted mass more than 0.4 standard deviations from the

corresponding experimental central value, and a χ2 per degree of freedom of 0.1.

More strikingly, Table II implies that we can discard additional operators and still obtain

a reasonable fit. Notice that the smallness of the coefficients c2, c4, and c5 renders the

corresponding operators numerically unimportant, and thus they can be neglected if we are

only interested in working to order 1/Nc. In Table V we give a fit retaining the remaining

three operators, O1, O3, and O6. The χ
2 per degree of freedom for this fit is 1.87, which is not

bad considering that have only included two nontrivial operators. Notice that the particular

operator choice for this fit leads to a degeneracy between the ∆1/2 and ∆3/2 which is lifted

by the corrections that we have discarded. We do not display the fits corresponding to all

possible choices for the subleading operators. It suffices to point out that these additional

fits interpolate between the 6 and 3 parameter fits that we have presented in Tables IV

and V. One may also fit to the mass eigenvalues and predict the mixing angles. These fits
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are not qualitatively different from the ones given here, and will be presented in a longer

publication [18]. The crucial observation is that the subleading operator O6 = S2
c/Nc is the

most significant ingredient in taking us from the poor fit shown in Table III to the good fits

in Tables IV and V.

IV. CONCLUSIONS

The value of the large Nc approach to baryon phenomenology is that it provides an

organizing principle in constructing the baryon effective field theory. Studies of the excited

baryon mass spectrum in the formative days of SU(6) found numerous operators [20], but

in that period there was no organizing principle available to select among them. Beginning

with a complete operator basis that spans the space of any desired set of observables, large

Nc power counting rules tell us which operators may be discarded if we wish to obtain

predictions to a desired level of accuracy. In this sense, our results for the masses and

mixing angles of the nonstrange ℓ = 1 baryons are completely consistent with the large Nc

picture. We find no operator with a coefficient that is larger than what one would expect

from the naive large Nc power counting rules.

More interesting, however, is that at any given order in 1/Nc, only some of the operators

are of phenomenological relevance. The O(N0
c ) coefficients ci that we have defined in our

effective theory parametrize the long-distance physics that we cannot calculate. If we had

found that these coefficients were of comparable size, we might have concluded that large

Nc counting arguments alone are sufficient to explain the detailed features of the mass

spectrum. Quite the contrary, we find that only a few of our original set of operators are

needed to reproduce the experimental data, most notably, the operators S2
c and ℓ(2)gGc.

It is tempting to speculate that the importance of the operator S2
c can be understood by

considering the explicit nonrelativistic reduction of a one-gluon exchange interaction; the

second operator, however, has a nontrivial flavor structure that does not correspond to the

usual tensor interaction ℓ(2)sSc that one derives in this approach [21]. A fit analogous to
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that of Table V replacing ℓ(2)gGc/Nc with ℓ(2)sSc/Nc increases the χ
2 per degree of freedom

from 1.87 to 2.46. Why the underlying dynamics should prefer these operators is a much

more difficult question which goes beyond what can be addressed in the effective field theory

approach.
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TABLES

〈11〉 〈ℓs〉 1
Nc

〈ℓ(2)gGc〉 〈ℓs+ 4
Nc+1ℓtGc〉 1

Nc
〈ℓSc〉

N1/2 Nc − 1
3Nc

(2Nc − 3) 0 + 2
Nc+1 − 1

3N2
c

(Nc + 3)

N ′
1/2 Nc −5

6 − 5
48Nc

(Nc + 1) 0 − 5
3Nc

N ′
1/2 -N1/2 0 −1

3

√

Nc+3
2Nc

− 5
48Nc

√

Nc+3
2Nc

(2Nc − 1) − 1
Nc+1

√

Nc+3
2Nc

+ 1
3Nc

√

Nc+3
2Nc

N3/2 Nc + 1
6Nc

(2Nc − 3) 0 − 1
Nc+1 + 1

6N2
c

(Nc + 3)

N ′
3/2 Nc −1

3 + 1
12Nc

(Nc + 1) 0 − 2
3Nc

N ′
3/2 -N3/2 0 −1

6

√

5(Nc+3)
Nc

+ 1
96Nc

√

5(Nc+3)
Nc

(2Nc − 1) − 1
2(Nc+1)

√

5(Nc+3)
Nc

+ 1
6Nc

√

5(Nc+3)
Nc

N ′
5/2 Nc +1

2 − 1
48Nc

(Nc + 1) 0 + 1
Nc

∆1/2 Nc +1
3 0 0 − 4

3Nc

∆3/2 Nc −1
6 0 0 + 2

3Nc

1
Nc

〈S2
c 〉 1

Nc
〈tTc〉 1

Nc
〈ℓ(2)sSc〉 1

N2
c

〈ℓigia{Sj
c , G

ia
c }〉

N1/2 + 1
2N2

c

(Nc + 3) − 1
4N2

c

(Nc + 3) 0 − 1
24N3

c

(5Nc − 1)(Nc + 3)

N ′
1/2 + 2

Nc
− 1

Nc
+ 5

6Nc
+ 5

24N2
c

(Nc + 1)

N ′
1/2 -N1/2 0 0 + 5

12Nc

√

Nc+3
2Nc

+ 1
24N2

c

√

Nc+3
2Nc

(2Nc − 1)

N3/2 + 1
2N2

c

(Nc + 3) − 1
4N2

c

(Nc + 3) 0 + 1
48N3

c

(5Nc − 1)(Nc + 3)

N ′
3/2 + 2

Nc
− 1

Nc
− 2

3Nc
+ 1

12N2
c

(Nc + 1)

N ′
3/2 -N3/2 0 0 − 1

24Nc

√

5(Nc+3)
Nc

+ 1
48N2

c

√

5(Nc+3)
Nc

(2Nc − 1)

N ′
5/2 + 2

Nc
− 1

Nc
+ 1

6Nc
− 1

8N2
c

(Nc + 1)

∆1/2 + 2
Nc

+ 1
2Nc

0 + 1
6N2

c

(Nc + 1)

∆3/2 + 2
Nc

+ 1
2Nc

0 − 1
12N2

c

(Nc + 1)

TABLE I. Matrix elements 〈Oi〉j of 9 operators, labeled as O1,O2, . . . ,O9, respectively, that

are linearly independent for Nc = 3. The third and sixth rows correspond to off-diagonal matrix

elements.
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c1 c2 c3 c4 c5 c6 c7 c8 c9

+0.470 −0.036 +0.369 +0.089 +0.087 +0.418 +0.040 +0.048 +0.012

±0.017 ±0.041 ±0.208 ±0.203 ±0.157 ±0.085 ±0.074 ±0.172 ±0.673

TABLE II. Operator coefficients in GeV, assuming the complete set of Table I. The vertical

divisions separate operators whose contributions to the baryon masses are of orders N1
c , N

0
c and

N−1
c , respectively.

Parameters (GeV): c1 = 0.542 ± 0.002, c2 = 0.093 ± 0.008, c3 = −0.335 ± 0.039

Fit (MeV) Exp. (MeV) Fit (MeV) Exp. (MeV)

∆(1700) 1610 1720 ± 50 N(1520) 1520 1523 ± 8

∆(1620) 1657 1645 ± 30 N(1535) 1568 1538 ± 18

N(1675) 1682 1678 ± 8 θN1 0.79 0.61± 0.09

N(1700) 1679 1700 ± 50 θN3 2.63 3.04± 0.15

N(1650) 1622 1660 ± 20

TABLE III. Three parameter fit using operators O1,2,3, giving χ2/d.o.f. = 23.33/6 = 3.89. The

operators included formally yield the lowest order nontrivial contributions to the masses in the

1/Nc expansion.
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Parameters (GeV): c1 = 0.468 ± 0.005, c2 = −0.032 ± 0.045, c3 = 0.327 ± 0.093

c4 = 0.081 ± 0.027, c5 = 0.071 ± 0.042, c6 = 0.413 ± 0.044

Fit (MeV) Exp. (MeV) Fit (MeV) Exp. (MeV)

∆(1700) 1701 1720 ± 50 N(1520) 1523 1523 ± 8

∆(1620) 1637 1645 ± 30 N(1535) 1537 1538 ± 18

N(1675) 1678 1678 ± 8 θN1 0.60 0.61± 0.09

N(1700) 1712 1700 ± 50 θN3 3.06 3.04± 0.15

N(1650) 1662 1660 ± 20

TABLE IV. Six parameter fit using operators O1,···,6, giving χ2/d.o.f. = 0.31/3 = 0.10.

Parameters (GeV): c1 = 0.461 ± 0.005, c3 = 0.360 ± 0.059, c6 = 0.453 ± 0.030

Fit (MeV) Exp. (MeV) Fit (MeV) Exp. (MeV)

∆(1700) 1683 1720 ± 50 N(1520) 1530 1523 ± 8

∆(1620) 1683 1645 ± 30 N(1535) 1503 1538 ± 18

N(1675) 1673 1678 ± 8 θN1 0.45 0.61 ± 0.09

N(1700) 1725 1700 ± 50 θN3 3.04 3.04 ± 0.15

N(1650) 1663 1660 ± 20

TABLE V. Three parameter fit using operators O1, O3, and O6, giving χ2/d.o.f. =

11.19/6 = 1.87.

15


