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1 Introduction

The modern treatment of the pion–nucleon system as an effective field theory of the
standard model was pioneered by Gasser, Sainio, Švarc [1] and Krause [2] who formulated
the “relativistic” version of baryon chiral perturbation theory. It was then shown by
Jenkins and Manohar [3] that the methods of heavy quark effective theory [4] allow for
a systematic low-energy expansion of baryonic Green functions in complete analogy to
the meson sector. The latter approach is usually called heavy baryon chiral perturbation
theory.

Applications of this effective field theory beyond the tree level require the knowledge
of the divergences generated by one-loop graphs. For the pion–nucleon interaction in the
heavy mass expansion, the full list of one-loop divergences to O(p3) has been worked out
by Ecker [5]. This analysis was then extended to the three-flavour case by Müller and
Meißner [6]. In these papers, the bosonic loop and the mixed loop (boson and fermion
lines in the loop) were treated separately. This required a cumbersome investigation of
the singular behaviour of products of propagators, because the mixed loop does not have
the form of a determinant, like the purely bosonic or fermionic loops.

To overcome these difficulties, we have recently developed [7] a method where bosons
and fermions are treated on an equal footing. Employing the notions of supermatrices,
superdeterminants and supertraces [8, 9], we have constructed a super-heat-kernel rep-
resentation for the one-loop functional of a boson-fermion system. In this approach, the
determination of the one-loop divergences is reduced to simple matrix manipulations, in
complete analogy to the familiar heat-kernel expansion technique for bosonic or fermionic
loops.

The present paper is organized as follows: in Sect. 2 I briefly review the super-heat-
kernel method. In contrast to the Euclidean space formulation used in [7], the presentation
in this work refers to Minkowski space throughout. In Sect. 3 the super-heat-kernel for-
malism is applied to a rather general class of scalar–heavy fermion interactions (including,
of course, heavy baryon chiral perturbation theory). The one-loop divergences to second
order in the fermion fields are given explicitly. These results are then specialized to the
two-flavour version of heavy baryon chiral perturbation theory in Sect. 4. My conclusions,
together with an outlook to possible extensions of the present work, are summarized in
Sect. 5. Several momentum-space integrals are collected in the Appendix.

2 Super-Heat-Kernel

Let us consider a general action

S[ϕ, ψ, ψ] =
∫
ddx L(ϕ, ψ, ψ) (2.1)

for nB real scalar fields ϕi and nF spin 1/2 fields ψa. Anticipating the later use of dimen-
sional regularization, I am starting in d-dimensional Minkowski space. To construct the
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generating functional Z of Green functions, these fields are coupled to external sources
ji (i = 1, . . . , nB), ρa, ρa (a = 1, . . . , nF ),

Z[j, ρ, ρ] = eiW [j,ρ,ρ] =
∫
[dϕdψdψ] ei(S[ϕ,ψ,ψ]+j

Tϕ+ψρ+ρψ) , (2.2)

where W [j, ρ, ρ] is the generating functional of connected Green functions. I have used
the notation

jTϕ+ ψρ+ ρψ :=
∫
ddx (jiϕi + ψaρa + ρaψa) . (2.3)

The normalization of the functional integral is determined by the condition Z[0, 0, 0] = 1.
The solutions of the classical equations of motion

δS

δϕi
+ ji = 0,

δS

δψa
+ ρa = 0,

δS

δψa
− ρa = 0 (2.4)

are denoted by ϕcl, ψcl. They are uniquely determined functionals of the external sources.
With fluctuation fields ξ, η defined by

ϕi = ϕcl,i + ξi ,

ψa = ψcl,a + ηa , (2.5)

the integrand in (2.2) is expanded in terms of ξ, η, η. The resulting loop expansion of the
generating functional

W = WL=0 +WL=1 + . . .

starts with the classical action in the presence of external sources:

WL=0 = S[ϕcl, ψcl, ψcl] + jTϕcl + ψclρ+ ρψcl . (2.6)

The one-loop term WL=1 is given by a Gaussian functional integral

eiWL=1 =
∫
[dξdηdη] eiS

(2)[ϕcl,ψcl,ψcl;ξ,η,η] , (2.7)

where
S(2)[ϕcl, ψcl, ψcl; ξ, η, η] =

∫
ddx L(2)(ϕcl, ψcl, ψcl; ξ, η, η) (2.8)

is quadratic in the fluctuation variables. Employing the notation introduced in (2.3), S(2)

takes the general form

S(2) =
1

2
ξTAξ + ηBη + ξTΓη + ηΓξ

=
1

2

(
ξTAξ + ηBη − ηTBTηT + ξTΓη − ηTΓ

T
ξ + ηΓξ − ξTΓTηT

)
, (2.9)

where A,B,Γ,Γ are operators in the respective spaces; A = AT and B are bosonic
differential operators, whereas Γ and Γ are fermionic (Grassmann) operators. They all
depend on the classical solutions ϕcl, ψcl.
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The standard procedure for the evaluation of (2.7) is to integrate first over the fermion
fields η, η to yield the bosonic functional integral

eiWL=1 = detB
∫
[dξ] e

i
2
ξT (A−ΓB−1Γ+ΓTB−1TΓ

T
)ξ .

This leads to the familiar result

WL=1 =
i

2

[
ln det(A− ΓB−1Γ + ΓTB−1TΓ

T
)− ln detA0

]
− i(ln detB − ln detB0)

=
i

2
Tr ln

A

A0

− i Tr ln
B

B0

+
i

2
Tr ln(1−A−1ΓB−1Γ + A−1ΓTB−1TΓ

T
)

=
i

2
Tr ln

A

A0
− i Tr ln

B

B0
−

∞∑

n=1

i

2n
Tr

(
A−1ΓB−1Γ−A−1ΓTB−1TΓ

T
)n
,

A0 := A|j=ρ=ρ=0, B0 := B|j=ρ=ρ=0 . (2.10)

Recalling that A−1, B−1 are the scalar and fermion matrix propagators in the presence of
external sources, the one-loop functionalWL=1 is seen to be a sum of the bosonic one-loop
functional i

2
Tr ln(A/A0), the fermion-loop functional −i Tr ln(B/B0) and a mixed one-

loop functional where scalar and fermion propagators alternate. In order to determine
the ultraviolet divergences that occur in the mixed term in (2.10), the calculational
inconveniences mentioned in Sect. 1 are encountered.

These problems can be circumvented [7] by reorganizing the three parts ofWL=1 into a
more compact form, using the notion of supermatrices, supertraces, etc. (see for instance
[8, 9]). Combining the bosonic and fermionic fluctuation variables in a multicomponent
field

λ =



ξ
η
ηT


 , (2.11)

S(2) in (2.9) can be written as

S(2) =
1

2
λT K λ . (2.12)

The explicit form of the supermatrix operator K follows immediately from the second
line in (2.9):

K =




A Γ −ΓT

−Γ
T

0 −BT

Γ B 0


 . (2.13)

The one-loop functional of connected Green functions can now be written in compact
form [7] in terms of a supertrace

WL=1 =
i

2
Str ln

K

K0

. (2.14)
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With the notation

Str O =
∫
ddx str〈x|O|x〉

I distinguish supertraces with and without space-time integration.
For actual calculations, the form of the supermatrix operator K defined in (2.13) is

not the most convenient one. Applying a similarity transformation to K, the generating
functional can also be written as

WL=1 =
i

2
Str ln

K ′

K ′
0

(2.15)

with

K ′ =




A
√
µ Γ −√

µ ΓT√
µ Γ µB 0

√
µ Γ

T
0 µBT


 . (2.16)

The arbitrary mass parameter µ introduced in (2.16) guarantees equal dimensions for
all entries in K ′ ([K ′] = [A] = 2). Although this quantity does not, of course, appear
in any final result, it turns out to be quite helpful for the inspection of expressions at
intermediate stages of calculations.

In the proper-time formulation, the one-loop functional assumes the form

WL=1 = − i

2

∫ ∞

0

dτ

τ
Str

(
eiτK

′ − eiτK
′

0

)

= − i

2

∫ ∞

0

dτ

τ

∫
ddx str 〈x|eiτK ′ − eiτK

′

0 |x〉 , (2.17)

which is just the desired super-heat-kernel representation. Note that the convergence of
the integral at the upper end (τ → ∞) is guaranteed by the small imaginary parts present
in the bosonic and fermionic differential operators A and B, which are ensuring at the
same time the usual Feynman boundary conditions. (For a free theory A = −✷−M2+ iǫ,
B = i 6 ∂ − m + iǫ.) On the other hand, the behaviour of the integral at the lower end
exhibits the divergence structure of the theory under investigation.

As long as we are only interested in those parts of the one-loop functional that are at
most bilinear in fermion fields, the supermatrix K ′ can be reduced to the simpler form

K ′′ =

[
A

√
2µ Γ√

2µ Γ µB

]
, (2.18)

such that the one-loop functional reads

WL=1 =
i

2
Str ln

K ′′

K ′′
0

− i

2
Tr ln

B

B0

+ . . . (2.19)

The terms omitted are at least quartic in the fermion fields.
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3 Scalars Interacting with Heavy Fermions

In the case of chiral perturbation theory with heavy baryons, the fluctuation action (2.9)
generated by the lowest order meson–baryon Lagrangian (O(p2) in the mesonic and O(p)
in the baryonic part) has the general form

S(2) = −1

2
ξT (DµD

µ + Y )ξ + η(α + βµD
µ)ξ + ξT (δ − βµDµ)η + ηivµDµη , (3.1)

where
Dµ = ∂µ +Xµ , Dµ = ∂µ + fµ ,

δ = α−Dµβµ ,
v2 = 1 , v · β = 0 .

(3.2)

Xµ, Y and fµ are bosonic (matrix-) fields, whereas α and βµ are fermionic objects. The
form of δ in (3.2) is required by the reality of (3.1). vµ is the usual velocity vector
introduced in the heavy mass expansion. Apart from the condition v · β = 0 (which
is indeed satisfied in heavy baryon chiral perturbation theory), no further assumption
about the terms entering in (3.1) is made in this section. The discussion will therefore
apply to a rather large class of theories of scalars interacting with heavy fermions, not
necessarily related to chiral perturbation theory. The further specialization to the pion–
nucleon system is reserved until the next chapter.

The action (3.1) is invariant under local gauge transformations

ξ(x) → R(x)ξ(x) , R(x)TR(x) = 1 ,
η(x) → U(x)η(x) , U(x)†U(x) = 1 ,
Xµ → R∂µR

−1 +RXµR
−1 ,

Y → RY R−1 ,
fµ → U∂µU

−1 + UfµU
−1 ,

α → UαR−1 ,
βµ → UβµR

−1 .

(3.3)

Consequently, also the divergent part of the one-loop functional exhibits this symmetry
property [10]. The matrix-fields Y , α, βµ together with their covariant derivatives

∇̂µY := ∂µY + [Xµ, Y ],

∇̂µα := ∂µα + fµα− αXµ,

∇̂µβν := ∂µβν + fµβν − βνXµ, (3.4)

and the associated “field-strength” tensors

Xµν := ∂µXν − ∂νXµ + [Xµ, Xν ],

fµν := ∂µfν − ∂νfµ + [fµ, fν ] (3.5)

are therefore the appropriate building blocks for the construction of a gauge-invariant
action.
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The general heat-kernel formalism of the preceding section will now be applied to
(3.1). In this case, the matrix-operators A, B, Γ and Γ defined in (2.9) are given by

A = −D2 − Y , B = iv · D , Γ = α + β ·D , Γ = δ − β · D . (3.6)

As I am considering only terms at most bilinear in the fermionic variables, the form (2.18)
for the supermatrix operator is the appropriate one. Employing the method of Ball [11],
the relevant diagonal space-time matrix element can be written as

str 〈x|eiτK ′′|x〉 = str
∫
ddk〈x|eiτK ′′|k〉〈k|x〉 = str

∫
ddk

(2π)d
eikxeiτK

′′

e−ikx

= str
∫ ddk

(2π)d
eiτK̃

′′

1 , (3.7)

with

K̃ ′′ =

[
−D2 − Y + k2 + 2ik ·D √

2µ(δ − β · D + ik · β)√
2µ(α + β ·D − ik · β) µ(iv · D + v · k)

]
. (3.8)

The further evaluation of this expression is considerably simplified by the observation
that in the following intermediate steps we may restrict ourselves to constant fields [11]
Xµ, α, βµ, fµ, Y = −X2. As the final result for the one-loop divergences has to be gauge-
invariant, no information is lost and the full expression for space-time dependent fields
is recovered by the substitutions

−X2 → Y ,

−[Xµ, X
2] → ∇̂µY ,

[Xµ, Xν] → Xµν ,

fµα− αXµ → ∇̂µα ,

fµβν − βνXµ → ∇̂µβν ,

[fµ, fν ] → fµν . (3.9)

In this approach, (3.7) reduces to the much simpler expression

str 〈x|eiτK ′′|x〉 =
∫

ddk

(2π)d
str eM+N (3.10)

with

M = iτ

[
k2 + 2ik ·X 0

0 µ(iv · f + v · k)

]
,

N = iτ
√
2µ

[
0 δ − β · f + ik · β

α + β ·X − ik · β 0

]
. (3.11)

Let us first consider the part bilinear in the fermionic matrix N (generating the terms
of the form α . . . α, α . . . βµ, βµ . . . α, βµ . . . βν). The corresponding part of the generating
functional (2.10) is just

WL=1|Γ...Γ := −i Tr (A−1ΓB−1Γ) . (3.12)
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The appropriate decomposition of the exponential in (3.10) can be performed by using
Feynman’s “disentangling” theorem [12]:

exp(M +N) = expM Ps exp
∫ 1

0
ds Ñ(s) (3.13)

with

Ñ(s) := e−sMNesM

and

Ps exp
∫ 1

0
ds Ñ(s) :=

∞∑

n=0

∫ 1

0
ds1

∫ s1

0
ds2 . . .

∫ sn−1

0
dsn Ñ(s1)Ñ(s2) . . . Ñ(sn) . (3.14)

(In the mathematical literature, (3.13) is also known as “Duhamel’s formula”.) Picking
out the part bilinear in N ,

str eM+N =
∫ 1

0
ds

∫ s

0
ds′ str

[
e(1−s)MNe(s−s

′)MNes
′M

]
+ . . . , (3.15)

a few simple manipulations lead to

str eM+N = −2µτ 2
∫ 1

0
dz eiτ [(1−z)k

2+zµv·k] tr
[
(δ − β · f + iβ · k)e−τzµv·f

(α + β ·X − iβ · k)e−2τ(1−z)k·X
]
+ . . . (3.16)

After integration over z, the µ-dependent terms cancel once the proper-time and the
momentum-space integrals are applied. The remaining contribution toWL=1 assumes the
form

WL=1|Γ...Γ = −
∫
ddx

∫ ∞

0

dt

t
t3−d

∫
ddl

(2π)d
eiv·l tr

[
(δ − β · f + iβ · l/t)e−tv·f

(α + β ·X − iβ · l/t)(l2 + 2itl ·X)−1
]
, (3.17)

where a suitable change of the integration variables has been performed. The divergent
part (for d→ 4) can now be easily isolated:

W div
L=1|Γ...Γ = Γ(4− d)

∫
ddx

∫
ddl

(2π)d
eiv·l

l2

tr
{
(δ − β · f) v · f (α + β ·X) +

1

3!
β · l (v · f)3β · l

+
[
(δ − β · f)(α+ β ·X) + i(δ − β · f) v · f β · l

−iβ · l v · f (α + β ·X) +
1

2!
β · l (v · f)2β · l

]
2il ·X
l2

+
[
−i(δ − β · f) β · l + iβ · l (α + β ·X)− β · l v · f β · l

] 4(l ·X)2

(l2)2

−β · l β · l 8i(l ·X)3

(l2)3

}
. (3.18)
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The necessary formulas for the l-integration are given in the Appendix. In the last step,
one has to identify the appropriate gauge-invariant combinations (constituting a non-
trivial check of the calculation) and reconstruct the full result by using (3.9). In this way,
I finally obtain:

W div
L=1|Γ...Γ =

i

48π2(d− 4)

∫
d4x tr

{
−12αv · ∇̂α + 6

[
αβµX

µνvν + βµαX
µνvν

]

−3
[
β · β v · ∇̂Y + 2 βµ(v · ∇̂βµ)Y

]
− 4βµ(v · ∇̂)3βµ + β · β ∇̂µX

µνvν

+6 βµ(v · ∇̂βν)Xµν + 4 βµβν v · ∇̂Xµν + 2 βµβν∇̂µXνρvρ
}
. (3.19)

Note that (3.19) has to be real, which is another independent check of the result.
The remaining part of the generating functional with the fermionic operators Γ, Γ

turned off,

WL=1|Γ=Γ=0 =
i

2
Tr ln

A

A0

− i Tr ln
B

B0

, (3.20)

does not require any additional effort. A simple calculation (involving a Gaussian
momentum-space integration) gives

i

2
Tr lnA|div = − 1

(4π)2(d− 4)

∫
d4x tr

(
1

12
XµνX

µν +
1

2
Y 2

)
, (3.21)

which is the standard result obtained by ’t Hooft [10] using diagrammatic methods.
The second term in (3.20) vanishes identically, as it corresponds to the closed loop of

a “light” fermion component in the heavy mass expansion:

Tr lnB = −
∫
ddx

∫ ∞

0

dt

t

∫
ddk

(2π)d
tr

(
eit(iv·D+v·k)1

)

= −
∫
ddx

∫ ∞

0

dt

t
t−d

∫ ddl

(2π)d
eiv·l tr

(
e−tv·D1

)
= 0 ,

which follows from
∫

ddl

(2π)d
eiv·l = δ(d)(v) = 0 .

4 Renormalization of the Pion–Nucleon Interaction

The functionals (3.19) and(3.21) are the basic formulas for the analysis of the one-loop
divergences to O(p3) in heavy baryon chiral perturbation theory. They can be applied to
both the two-flavour and the three-flavour case. In the following I shall confine myself to
chiral SU(2).

The starting point for the formulation of the effective field theory of the pion–nucleon
system is QCD with the two light flavours u, d coupled to external Hermitian fields [13]:

L = L0
QCD + q̄γµ

(
Vµ +

1

3
Vsµ + γ5Aµ

)
q − q̄(S − iγ5P )q , q =

[
u
d

]
. (4.1)
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L0
QCD is the QCD Lagrangian with mu = md = 0, S and P are general two-dimensional

matrix fields, the isotriplet vector and axial-vector fields Vµ,Aµ are traceless and the
isosinglet vector field Vsµ is included to generate the electromagnetic current.

Explicit chiral symmetry breaking is built in by setting S = Mquark = diag [mu, md].
The chiral group G = SU(2)L × SU(2)R is spontaneously broken to the isospin group
SU(2)V . It is realized non-linearly [14] on the Goldstone pion fields φ:

uL(φ)
g→ gLuL(φ)h(g, φ)

−1, g = (gL, gR) ∈ G ,

uR(φ)
g→ gRuR(φ)h(g, φ)

−1, (4.2)

where uL, uR are elements of the chiral coset space SU(2)L × SU(2)R/SU(2)V and the
compensator field h(g, φ) is in SU(2)V .

The nucleon doublet Ψ transforms as

Ψ =

[
p
n

]
g→ Ψ′ = h(g, φ)Ψ (4.3)

under chiral transformations. The local nature of this transformation requires a connec-
tion

Γµ =
1

2

[
u†R(∂µ − irµ)uR + u†L(∂µ − iℓµ)uL

]
(4.4)

in the presence of external gauge fields

rµ = Vµ +Aµ , ℓµ = Vµ −Aµ (4.5)

to define a covariant derivative

∇µΨ = (∂µ + Γµ − iVsµ)Ψ . (4.6)

To lowest order in the chiral expansion the effective Lagrangian of the pion–nucleon
system is [1, 13]

Leff =
F 2

4
〈uµuµ + χ+〉+ Ψ̄(i 6∇ −m+

gA
2

6uγ5)Ψ , (4.7)

with

uµ = i
[
u†R(∂µ − irµ)uR − u†L(∂µ − iℓµ)uL

]
,

χ = 2B(S + iP ), χ+ = u†RχuL + u†Lχ
†uR .

F,m, gA are the pion decay constant, the nucleon mass and the neutron decay constant in
the chiral limit, whereas B is related to the quark condensate. 〈. . .〉 stands for the trace
in flavour space.

The heavy baryon mass expansion of (4.7) is obtained by introducing velocity-
dependent fields

Nv(x) = eimv·xP+
v Ψ(x) , (4.8)

Hv(x) = eimv·xP−
v Ψ(x) ,

P±
v =

1

2
(1± 6v) , v2 = 1 ,

9



leading to

Leff =
F 2

4
〈uµuµ + χ+〉+Nv(iv · ∇+ gAS · u)Nv + . . . (4.9)

The additional terms involving the “heavy” fermion components Hv are irrelevant for our
present purposes. (For a more detailed discussion the reader is referred to [5, 15].) The
only dependence on Dirac matrices in (4.9) is through the spin-vector matrices

Sµ =
i

2
γ5σ

µνvν , S · v = 0 , S2 = −3

4
1 , (4.10)

which obey the (anti-) commutation relations

{Sµ, Sν} =
1

2
(vµvν − gµν) , [Sµ, Sν ] = iεµνρσvρSσ . (4.11)

To obtain the associated second-order fluctuation Lagrangian L(2)
eff , (4.9) is expanded

around the classical fields φcl, Nv,cl. In the standard “gauge” uR(φcl) = u†L(φcl) =: u(φcl)
a convenient choice of the bosonic fluctuation variables ξi (i = 1, 2, 3) is given by [13]

uR(φ) = u(φcl) e
i
→

ξ(φ)·
→

τ

2F , uL(φ) = u†(φcl) e
−

i
→

ξ(φ)·
→

τ

2F ,
→

ξ (φcl) = 0 , (4.12)

where
→
τ denotes the Pauli matrices. For the fermion fields I write Nv = Nv,cl + η. In this

way I get

L(2)
eff =

1

2

[
(dµkiξi)(d

µ
kjξj)− σijξiξj

]

+
1

8F 2
N v[iξi[τi, τk](v · dkjξj) + gAξi[τi, [S · u, τj]]ξj]Nv

+
1

F
N v

[
i

4
[v · u, τi]ξi − gASµτi(d

µ
ijξj)

]
η

+
1

F
η
[
i

4
[v · u, τi]ξi − gASµτi(d

µ
ijξj)

]
Nv

+η(iv · ∇+ gAS · u)η , (4.13)

where

dµij = δij∂
µ + γµij , γµij = −1

2
〈Γµ[τi, τj ]〉 ,

σij =
1

4
〈(u · u+ χ+)δij − τiuµτju

µ〉 . (4.14)

Note that the quantities Nv, uµ, Γµ, χ+ in (4.13) are to be taken at the solutions of the
classical equations of motion. (The subscript “cl” has only been dropped for simplicity.)
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It is now easy to verify that the action associated with (4.13) can indeed be written
in the standard form (3.1) by setting

Xµ = γµ + gµ , gµij = − ivµ

8F 2
N v[τi, τj ]Nv , i = 1, 2, 3 ,

Y = σ + s , sij =
gA
4F 2

N v (2 δij S · u− τi S · u τj − τj S · u τi)Nv ,

fµ = Γµ − iVsµ − ivµgAS · u

αai =
i

4F
([v · u, τi]Nv)a , a = 1, 2 ,

(βµ)ai = −gA
F
Sµ(τiNv)a . (4.15)

Let us first consider the one-loop divergences generated by (3.21). Using (4.15),

tr Y 2 = tr σ2 + 2 tr (σs) + . . . (4.16)

and

tr (XµνX
µν) = tr γµνγ

µν + 4 tr {γµν(∂µgν + [γµ, gν])}+ . . . , (4.17)

where
γµν := ∂µγν − ∂νγµ + [γµ, γν ] . (4.18)

The first terms on the right-hand sides of (4.16) and (4.17) are purely mesonic; they
determine the divergence structure of the well-known Gasser–Leutwyler functional of
O(p4) [13]. The second ones are bilinear in the fermion fields, whereas the dots refer to
irrelevant terms ∼ (N v . . . Nv)

2. To facilitate the comparison with [5], I write the fermion
bilinears extracted from (3.21) in the following form:

W div
L=1|Γ=Γ=0 =

∫
d4xNv Σ

div
1 Nv , Σdiv

1 = − 1

8π2F 2(d− 4)
Σ̂1 . (4.19)

For Σ̂1 I find

Σ̂1 = − i

6
(∇µΓµνv

ν) +
gA
4

(〈u · u+ χ+〉S · u+ 〈S · u uµ〉uµ) , (4.20)

where
Γµν := ∂µΓν − ∂νΓµ + [Γµ,Γν ] . (4.21)

This result agrees with the corresponding expression in (36) of [5]. Note that I have used
several SU(2) relations to arrive at a simpler form for Σ̂1 in (4.20).

The one-loop divergences originating from (3.19) are again presented in the form

W div
L=1|Γ...Γ =

∫
d4xNv Σ

div
2 Nv , Σdiv

2 = − 1

8π2F 2(d− 4)
Σ̂2 . (4.22)

11



Inserting (4.15) in (3.19), I obtain:

Σ̂2 = i
{
1

4
[2(v · u)2 + 〈(v · u)2〉]v · ∇+

1

2
v · u(v · ∇v · u) + 1

4
〈v · u(v · ∇v · u)〉

}

+ gA

{
−1

2
v · u〈S · u v · u〉+ 1

4
〈S · u(v · u)2〉 − Sµvν [Γµν , v · u]

}

+ ig2A

{
−3

2
(v · ∇)3 − 5

6
(∇µΓµνv

ν) + iεµνρσvρSσ[2Γµνv · ∇+ (v · ∇Γµν)]

− 3

32
(v · ∂〈4u · u+ 3χ+〉)−

3

16
〈4u · u+ 3χ+〉v · ∇

}

+ g3A

{
−1

2
S · u(v · ∇)2 − 2Sµ〈S · uΓµν〉Sν −

1

2
(v · ∇S · u)v · ∇

−1

6

(
(v · ∇)2S · u

)
− 1

4
uµ〈uµS · u〉 − 1

16
S · u〈χ+〉

}

+ ig4ASµ

{
[2(S · u)2 − 4〈(S · u)2〉]v · ∇ +

2

3
(v · ∇S · u)S · u

+
4

3
S · u(v · ∇S · u)− 4〈S · u(v · ∇S · u)〉

}
Sµ

+ g5ASµ

{
2

3
(S · u)3 − 4

3
〈(S · u)3〉

}
Sµ , (4.23)

which is in agreement with the corresponding result in [5]. (Note that “+−” in the fourth
line of (53) in [5] should be read as a minus sign.)

5 Conclusions

I have shown that the super-heat-kernel technique constitutes the appropriate theoretical
tool for analyzing the one-loop divergences in systems with (non-renormalizable) boson–
fermion interactions. I recall here the essential ingredients that were combined to arrive
at an efficient computational scheme:

• The one-loop functional is written in terms of the superdeterminant of a suitably
chosen supermatrix operator.

• The associated super-heat-kernel representation is the appropriate form of the one-
loop functional for studying its divergence structure.

• It is easier to determine the diagonal heat-kernel matrix elements directly by in-
serting a complete set of plane waves instead of calculating the Seeley–DeWitt co-
efficients with two different space-time arguments and taking the coincidence-limit
at the end.

• The heat-kernel-representation is perfectly well defined also for supermatrices with
first-order (fermion) differential operators1.

1Note, however, that “squaring” of the fermionic differential operator may simplify the analysis in
theories where the full relativistic Dirac operator is still present [7].
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• The second-order fluctuation action is invariant under a local gauge transforma-
tion. As a consequence, this symmetry property is also shared by the divergence
functional.

• At intermediate stages, the calculation can be carried out with constant (classical)
fields, avoiding cumbersome manipulations with derivatives acting on space-time
dependent objects. At the end, the general result is recovered by gauge invariance.

• Feynman’s disentangling theorem allows the proper decomposition of the exponen-
tial of a sum of non-commuting terms.

• With the divergence functional given in compact form, the one-loop renormalization
of effective quantum field theories becomes an easy task, requiring only a few purely
algebraic operations.

The application to heavy baryon chiral perturbation theory with two flavours served as
an explicit example. A previous result for the counterterms to O(p3) was confirmed.

With the super-heat-kernel method at hand, the systematic study of effective field
theories at the one-loop level is simplified considerably. I am giving here a small selection
of possible applications and extensions of the present work:

• The treatment of the meson–baryon interaction with three flavours is completely
analogous to the two-flavour case disussed before.

• The inclusion of fields with higher spin (photon, ∆-resonance, etc.) is straightfor-
ward. Their components are simply added to the bosonic and fermionic sectors,
respectively.

• The completion of the one-loop renormalization for the pion–nucleon interaction
up to O(p4) may be achieved by a suitable extension of (3.1).

• For the analysis of fermionic bound states, the complete form (2.16) of the super-
matrix operator must be used, as terms quartic in the fermion fields are relevant in
this case.

• In analogy to the mesonic case [13], the super-heat-kernel representation might also
be useful for the finite part of the one-loop functional with two external baryons.
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Appendix

I consider first the integrals

In(v
2) :=

∫
ddl

(2π)d
eiv·l

(l2 + iǫ)n
= fn(d)(v

2)
2n−d

2 (A.1)

with an arbitrary four-vector vµ. The fn(d) are given by

f1(d) = (−i)d−1 Γ(d− 2)

(4π)
d−1
2 Γ(d−1

2
)

(A.2)

and

fn(d) =
1

2n−1 (n− 1)! (d− 2n) . . . (d− 4)
f1(d) , n = 2, 3, . . . (A.3)

The momentum space integrals occurring in (3.18) are now obtained by differentiating
(A.1) a sufficient number of times with respect to vµ and setting v2 = 1 at the end:

∫
ddl

(2π)d
eiv·l

l2
d→4−→ i

4π2
, (A.4)

∫
ddl

(2π)d
eiv·l

l2
lµlν

d→4−→ i

2π2
(gµν − 4vµvν) , (A.5)

∫
ddl

(2π)d
eiv·l

(l2)2
lµ

d→4−→ − vµ
8π2

, (A.6)

∫ ddl

(2π)d
eiv·l

(l2)2
lµlν

d→4−→ i

8π2
(gµν − 2vµvν) , (A.7)

∫ ddl

(2π)d
eiv·l

(l2)2
lµlνlρ

d→4−→ 1

4π2
[− (gµνvρ + . . .) + 4vµvνvρ] , (A.8)

∫
ddl

(2π)d
eiv·l

(l2)3
lµlνlρ

d→4−→ 1

32π2
[− (gµνvρ + . . .) + 2vµvνvρ] , (A.9)

∫
ddl

(2π)d
eiv·l

(l2)3
lµlνlρlσ

d→4−→ i

32π2
[(gµνgρσ + . . .)− 2 (gµνvρvσ + . . .)

+8vµvνvρvσ] , (A.10)
∫

ddl

(2π)d
eiv·l

(l2)4
lµlνlρlσlτ

d→4−→ 1

192π2
[− (gµνgρσvτ + . . .) + 2 (gµνvρvσvτ + . . .)

−8vµvνvρvσvτ ] . (A.11)

The dots indicate the necessary symmetrizations.
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