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Axions from String Decay

C. Hagmanna, S. Changb, and P. Sikivieb

a Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA 94550

b University of Florida, Physics Department, Gainesville, FL 32611

We have studied numerically the evolution and decay of axion strings. These global defects decay
mainly by axion emission and thus contribute to the cosmological axion energy density. The relative
importance of this source relative to misalignment production of axions depends on the spectrum.
Radiation spectra for various string loop configurations are presented. They support the contention
that the string decay contribution is of the same order of magnitude as the contribution from
misalignment.

1. INTRODUCTION

Axion strings arise in the early universe
when the global U(1)PQ symmetry breaks

spontaneously at the scale af ~ 1012 GeV. A

Brownian network of strings is formed initially
with O(1) string per horizon volume. As the
horizon expands, wiggles on the strings will
start oscillating and radiate axions. Strings will
also intercommute and form closed loops,
which collapse and convert into axions.
Simulations of gauge string networks show
that a scaling solution [1,2] is reached after a
few Hubble times with about one long string
per horizon size and a population of decaying
loops. This process continues until QCD time,
when the axion acquires a small mass. As a
consequence, domain walls form between
strings. The wall-string system is short-lived
because wall tension pulls the strings together,
followed by mutual annihilation into free
axions. If there is an inflationary period after
PQ symmetry breaking with a reheat

temperature af< , strings get diluted and do

not contribute to the cosmological axion
density.

The dynamics of axion strings is governed
by the classical Lagrangian density
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where )/(exp afaiφφ =  is a complex scalar

field whose phase is the axion field. A simple
solution of (1) is a static, straight global string

with core size 1)( −= afλδ and energy per

unit length

)/(ln2 δπµ Lfa≈                  (2)

where L  is the long distance cutoff, i.e. the
interstring distance. The logarithmic factor in
Equation 2 distinguishes a global from a gauge
(local) string, whose energy density decays
exponentially outside of its core. For axion

strings near QCD time, 70)(ln QCD ≈aft  and

most of the string energy resides outside of the
core.

The number of axions emitted by strings
during the string epoch (1 GeV < T < 1012 GeV)
can in principle be calculated from the
radiation spectrum of the evolving string
network. Analytic techniques are not well
developed and one must rely on numerical
simulations. A major difficulty is the
enormous loop to core size ratio of realistic
axion strings. Currently, the largest computer

simulations have 7)/(ln ≈δL . Yet, it is

valuable to study the spectrum as a function of
)/(ln δL  in order to deduce a possible trend.

This is especially important for closed loops as
they dissipate most of the string network
energy.

In the past, there has been considerable
controversy over the correct radiation
spectrum. One group [3,4,5,6,7] (scenario A)
argues that the spectrum is strongly peaked at
wavelengths of order the loop size. This
corresponds to an under-damped decay with



about 5-10 oscillations per loop half-life when
70)/(ln ≈δL . A second group [8,9,10]

(scenario B) argues that the loops decay
without oscillations, in a time of order the
initial size divided by the speed of light. The
radiation spectrum is kdkdE /1~/  (which is

also the spectrum of the static string field) with
cutoffs at the inverse loop size and core
thickness. Of course, it is possible that neither
scenario A or B is correct.

The cosmological axion number density at
time t is related to the radiation spectrum
through
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and ωddE  is the radiated axion energy

spectrum. A useful quantity is
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In scenario B, axN is predicted to stay constant

since both axion radiation and static string
field have the same spectrum. Conversely, one

expects axN  to increase by )/(ln δL  in scenario

A. The factor initialfinal / axax NNr = , by which axN

increases during the decay of a string loop
determines the string decay contribution to the
axion cosmological energy density. The string
decay contribution is r  times the contribution
from misalignment. In scenario A, r  is of the
order )/(ln δL , whereas in scenario B, r  is of

order unity.

2. LOOP SIMULATIONS

We have performed simulations of various
loop geometries: (1) circular loops initially at
rest, (2) noncircular loops with angular
momentum, and (3) string-antistring pairs
with angular momentum. The initial

configurations are set up on large (~107 points)
Cartesian grids, and then time-evolved using
the finite-difference equations derived from
Eq. (1). A FFT spectrum analysis of the kinetic
and gradient energies during the collapse

yields )(tN ax .

2.1. Circular loops

Because of azimuthal symmetry, circular loops
can be studied in r-z space. By mirror
symmetry, the problem can be further reduced
to one quarter-plane.

The static axion field far from the string core

is (with ≡af 1)
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),( zrzra Ω≈                                  (6)

in the infinite volume limit, where Ω  is the
solid angle subtended by the loop. We use as
initial configuration the outcome of a
relaxation routine starting with Equation 6
outside the core and

)(exp)(58.0)( θδρρφ i≈       (7)

Figure 1: Core position of collapsing loop versus time for

λ = 0.001 (dotted line) and λ = 0.004 (solid line). The

lattice size is 4096×4096.

within the core. Here, ρ  is the distance to the

string, and θ  is the winding angle. The
relaxation and the subsequent dynamical
evolution are done with reflective boundary
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conditions. A step size dt = 0.2 was used for
the time evolution and the total energy was
conserved to better than 1 %. In general the
loops collapsed at nearly the speed of light
without a rebound. For a small range of

parameters, 80 < δ/0R   < 190, where 0R  is the

initial loop radius, we noticed a small bounce
as shown in Figure 1.

There is a substantial Lorentz contraction of
the string core as it collapses (see Figure 2). A
lattice effect became evident when the reduced
core size becomes comparable to the lattice
spacing. This lattice effect consists of a
“scraping” of the string core on the underlying
grid, during which the kinetic energy of the
string gets dissipated into high frequency
axion radiation. We always choose λ  small
enough to avoid this phenomenon.

Figure 2: Intensity plot of potential energy (contours
represent constant potential energy) in vicinity of string

core for R
0 
= 2400, λ = 0.001 at t = 2600. The Lorentz factor is

about 4. The arrows represent the axion field.

A spectrum analysis of the fields was
performed by expanding the gradient and
kinetic energies as
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with the boundary conditions 0)( max1 =RkJ m

and 0)(sin max =Zkn . The dispersion

relationship is given by 22
nmmn kk +=ω .

Figure 3 shows the power spectrum
)ln(/ kddE  displayed in kln  bins of

width 5.0ln =∆ k  at t = 0 and after the collapse

at t = 3000. At both times, the spectrum
exhibits an almost flat plateau, consistent with
a kdkdE /1/ ∝  spectrum. The high frequency
cutoff of the spectrum is increased however
after the collapse and is associated with the
Lorentz contraction of the core.

The evolution of )/(∑≡
mn

mnmnax kEN  during

the loop collapse was studied for various

values of δ/0R . We observe a marked

decrease of axN  by ~ 20 % during the collapse

roughly independent of δ/0R .

Figure 3: Energy spectrum of collapsing loop for R
0 

=

2400 and λ = 0.001. The white (black) histogram represents
the spectrum at t = 0 (t = 3000). The increased high

frequency cutoff of the final spectrum is due to the Lorentz
contraction of the core.
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Figure 4: axN of a circular loop as a function of time for

R
0 
= 2400, and λ = 0.004 (solid line), λ = 0.001 (dashed line),

and λ = 0.00025 (dotted line).

2.2.  Rotating loops

There exists a family of nonintersecting
(“Kibble-Turok”) [11,12,13,14] loops, which
have been studied in the context of gauge
strings. They are solutions of the Nambu-Goto
equations of motion and all have non-zero
angular momentum.

Intercommuting (self-intersection with
reconnection) causes the loop sizes to shrink,
and hence the average energy of radiated

axions to increase and hence axN  to decrease.

Intercommuting favors scenario B for these
reasons. We picked the Kibble-Turok
configuration as an initial condition to avoid
intercommuting as much as possible, thus
giving scenario A the best possible chance to
get realized.
   A common loop parameterization is given by
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where Rt /)( ±=± σσ , and )2,0( Rπσ ∈  is the

length along the loop. For a significant subset
[12,13,14] of the free parameters )1,0(∈α ,

),( ππψ −∈  the loop never self-intersects. A

noteworthy feature is the periodic appearance
of cusps, where the string velocity
momentarily reaches the speed of light. The
motion of a gauge string is damped by

emission of gravitational radiation and the
loop diameter shrinks with time. The power is

2µGP Γ= , where µ  is the energy per unit

length, G  is the gravitational constant, and Γ
is a constant ~ 50 - 100 which depends on

ψα , . Evidently, the power is independent of

loop size, and the loop undergoes
410)/(1 ≈Γ µG oscillations in its lifetime. The

radiation power spectrum was numerically

determined [15,16] to be 3/4/1 kPk ∝ .

Axion strings are much more short-lived
than gauge strings and radiate axions
efficiently due to the strong topological
coupling between string and field. No closed
loop solutions are known however.

According to scenario A [7,15], the radiated

power is 250 afP ≅ , independent of loop size,

and the loop shrinks linearly with time. The
expected number of oscillations per loop half-
life is 450/)/(ln ≈δπ L  for 70)/(ln ≈δL . In

addition, axN should increase by a factor

)/(ln δL . In scenario B on the other hand, axN

should remain approximately constant.
We performed numerous simulations of

rotating loops on a 3D (2563) lattice with
periodic boundary conditions. Standard
Fourier techniques were used for the spectrum
analysis, and axN  was computed as a function

of time using the dispersion relationship

)coscoscos3(2 pnmmnp kkk −−−=ω .     (10)

Figure 5: axN of non-intersecting (“Kibble-Turok”) loops

as a function of time for α = 0.01, φ = 0, and λ = 0.2 (solid

line), λ = 0.1 (dashed line), and λ = 0.0625 (dotted line). The

lattice size is 2563 and R = 72.
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Figure 6: Energy of non-intersecting loop. Shown are
total, gradient, kinetic, and potential energy as a function of

time for α = 0.01, ψ = 0, and λ = 0.0625.

Figure 5 shows axN  for various core sizes

and constant ψα, . The behavior is very

similar to that of a non-rotating circular loop
with a reduction of ~ 25 %. Figure 6 depicts the
energy of the collapsing loop. Clearly, the total
energy is well conserved. A few percent of the
loop energy is dissipated as massive radiation,

shown here as potE .

2.3.  String-antistring pairs

Lastly, we studied rotating, parallel string-
antistring pairs, which can be thought of as
cross-sections of loops with large eccentricity.
The 20482 lattice was initialized with the
Abrikosov ansatz [17]

),(),(),( 222111 yyxxyyxxyx −−−−= ∗φφφ   (11)

where ),(),,( 2211 yxyx  are the locations of

string and antistring respectively. The fields
were relaxed with periodic boundary
conditions and the cores held fixed. The time

derivative ),( yxφ� was obtained by a finite

difference over a small time step. The
attractive force per unit length between strings

ρπ
ρ
ρρ /2

)(
)( ≈

∂
∂= V

F                                   (12)

is competing against the centrifugal force. In
general, one expects a bound relativistic

system to form, which decays by emission of
axions and eventually annihilates.

Figure 7: Collapsing string-antistring pair. The initial

rotational velocity of the cores is 0.4 and λ = 0.005. The
snapshots are for t = 40, 800, 1440.
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 Figure 7 shows the decay of a string-antistring
system for an initial rotational velocity of 0.4.
For the parameter range (3 < )/(ln δρ ,

≤rotv 0.6, ~ρ 500), the system collapsed

immediately in a time of order ρ .

The spectrum and axN  were computed as

well and Figure 8 shows the evolution for
several cases.

Figure 8: axN  of collapsing string-antistring pair. The

initial rotational velocity is 0.6 (dashed), 0.4 (solid), 0.2

(dotted) and λ = 0.005.

3. CONCLUSION

   Two different opinions exist about how
axion  strings decay. The first view (scenario
A) states that the loops are moderately
damped and oscillate several times during
their lifetime. The instantaneous radiation
spectrum is dominated by wavelengths of

order the loop size, and axN  is predicted to

increase during the decay by a factor )/(ln δL .

   Scenario B on the other hand proposes that
the loops are critically damped, the radiation

spectrum is k/1 , and axN  is approximately

constant. Our simulations clearly support

scenario B since axN  decreases by about 20 %

during the decay of axion loops for )/(ln δL  ~

6. Moreover, the decrease of axN  which we

observe during the decay of string loops, does
not change with )/(ln δL over the range of

)/(ln δL  which we investigated.
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