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Abstract

An Aoki-Denner form of the renormalization scheme is suggested for the

physical amplitudes in MSSM. The Higgs sector is reparameterized with the

mass of the CP odd scalar, and the mass of the heavy CP even one instead

of tanβ in our scheme. The counterterms of tanβ is fixed perturbatively

on mass shell just within Higgs sector. The counterterms of gauge-scalar

mixings are defined with Ward-Takahashi identities from scalar-scalar mix-

ings. The effect of the reparameterization is also probed on the radiative

correction of the mass of the lightest Higgs.

I. INTRODUCTION

In the minimal supersymmetric standard model (MSSM) [1], the masses and
couplings of physical bosons are restricted and can be expressed in terms of merely two free
parameters at tree level, although supersymmetry is softly broken [2]. Those constrains
no doubt will be affected by radiative corrections, especially by top/stop quark loops.

If MSSM is a perturbative theory as reckonable as it had been expected, its qualities
at lower order should be kept somehow up to higher order. For example, if those treelevel
relations had been disregarded completely, the prediction for the mass of the light CP even
Higgs Mh < 130 GeV in the effective potential(EP) approach [3] or in the renormalization
group method(RG) [4] will be non-trivially complicated. These kinds of work gave a
logarithm correction ε ∼ 3GFM

4
t sin

2 β log(1 +m2
t̃
/m2

t ) [3] to estimate the mass of Higgs
bosons with good approximation, which can be used for Higgs phenomena [5].

When one counts in the momentum dependence of the full set of Green functions,
one can also deduce a logarithm correction like that ε within the framework of Feynman
diagrammatic calculation (FDC). At the same time, FDC is also well necessary for the
phenomena on present or future colliders [6], whose main goal is searching for the (lightest)
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Higgs boson. To identify a Higgs boson on wherever Tevatron, LHC or NLC, the knowl-
edge of its mass is necessary indeed. Especially, to study whether the produced Higgs is
a supersymmetric one, an appropriate supersymmetry-like simulation for its production
cross sections and decay widths is more crucial and beneficial.

Then, instead of abandoning all the tree level relations in MSSM, one should investi-
gate which of those simple supersymmetric constrains can be remained perturbatively in
FDC and how the other variables can be deduced loop by loop. With this bias we noticed
[7,8], which have developed renormalization procedures within the on-mass-shell scheme
following [9]. In their representation, the physical mass of Higgs boson was acquainted
as the pole solution for the renormalized propagator, and the Higgs phenomena can be
predicted systematically [10]. Recently, even the two loop FDC in the same line of [9] had
been developed for the prediction of the parameter ρ = M2

W/(M2
Z cos2 θw) and the mass

of Higgs bosons [11]. All these works have demonstrated the efficacy of FDC.
So in this work we try to spread the formalism in [7,8], and highlight their effect as

FDC for decay width or cross section. We seek for an alternative realization motivated
by [12] and [13], in which the wave function renormalization of mass eigenstates are
performed explicitly, and in which the gauge fixing terms are renormalized simply, to
offer a practical option for general MSSM perturbative calculations. Such kind of frame
has been established for the general two Higgs doublet model (2HDM), for example in [14].
However, the property of the supersymmetry in MSSM allows us to give more relations in
the radiative corrections. Similar consideration had ever been adopted in [15] for radiative
corrections.

In both [15] and [7], the tanβ was selected as an input parameter of MSSM and its
counterterm is subtracted with a MS manner. Since δβ is much used for most FDC
of MSSM, it should be fixed at a definite scale with an Ultraviolet (UV) finite part.
For the simplicity of loop calculations, it should also be defined through a set of 2-
point one particle irreducible (1PI) Green functions but not the complicated 3-points
Green functions. (It’s well known that, in SM the gauge symmetry has simplified the
counterterm of electric charge δe as a combination of the self energies of neutral gauge
bosons). Then the reparameterization in our scheme is a reasonable attempt through
replacing tanβ with the heavy CP even scalar MH .

In addition, the mixing of gauge and Higgs bosons raised outstanding since MSSM
is a gauge theory with two scalar doublets as a special 2HDM. Especially the heavy
top (super) quark will contribute a large correction to these mixing loops, which will
be necessary for the physical process involving the pseudo-scalar or the charged Higgs
bosons. To our knowledge, this subject is less discussed as a part of systematic MSSM
renormalization from the point view of gauge invariance, although various of treatments
were already defined from the subtraction of Goldstone propagators in time of need. Since
the Ward-Takahashi identities (WTI) plays an important role for the renormalization of
gauge field theory, we tried to generalize the treatment in [12] to this MSSM case for the
counterterms of gauge-scalar mixings.

The present paper is organized as following. In section II, we introduced the conven-
tions and notations for MSSM. In section III, we accomplished the Aoki-Denner form of
the renormalization of MSSM, including the pole mass of the lightest CP even Higgs bo-
son and the on-mass-shell counterterms of β. In section IV we deduced the wave-function
renormalization constants of gauge-scalar mixing terms. A brief discussion is oriented on
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the application of these formulae in the last section. Some essential expressions are listed
in the Appendices.

II. TREE LEVEL STRUCTURE OF MSSM AND NOTATIONS

The original SU(2)L ⊗ U(1)Y gauge invariant Higgs sector in MSSM read,

Lkin = H1D
†
− µD

µ
−H1 +H2D

†
+ µD

µ
+H2 (2.1)

where Dµ
∓ = ∂µ ∓ i

2
g1B

µ − ig2T
aW a µ. For low energy phenomena, the Higgs sector of

MSSM has a soft broken potential with explicit CP conservation,

Vsoft = m2
1H1H1 +m2

2H2H2 −m2
3(ǫabH

a
1H

b
2 + h.c.)

+
1

8
g2(H1H1 −H2H2)

2 − g22
2
|H1H2|2 (2.2)

where m2
3 is defined to be negative and ǫ12 = −ǫ21 = −1, g2 = g21 + g22. Here can we

count clearly the five parameters of this model, g1, g2, m1, m2, and m3 (where a µ has
been absorbed into m1 and m2). This model in Higgs sector has fewer parameters than
2HDM, so it should be more predictive.

Down to Electroweak scale, Higgs fields develop their vacuum expectation value (VEV)
v1 6= 0, v2 6= 0 and mix into mass eigenstates. With the same components of Φ1,Φ2 in
[16], the doublets are,

H1 =

(

H1
1

H2
1

)

=

(

(v1 + φ0
1 − iχ0

1)/
√
2

−φ−
1

)

, H2 =

(

H1
2

H2
2

)

=

(

φ+
2

(v2 + φ0
2 + iχ0

2)/
√
2

)

(2.3)

(2.4)

but neither v1 nor v2 is new independent parameters. They can be induced as functions
of the five original parameters from the minimum point of the potential [17]

∂V

∂v1
= 0,

∂V

∂v2
= 0, (all fields → 0) (2.5)

and v ≡
√

v21 + v22 gives the mass of gauge bosons as known well in SM.
Furthermore we choose the mass of pseudo-scalar Higgs MA and the mass of heavier

CP even neutral Higgs MH as the input parameters for the Higgs sector. Then other
parameters can be represented upon these five independent parameters.

cos2 2β =
M2

H(M
2
A +M2

Z −M2
H)

M2
AM

2
Z

(2.6)

tan 2α = tan 2β
M2

A +M2
Z

M2
A −M2

Z

, m2
3 = −M2

A sin β cos β,

v1 = v cos β, v2 = v sin β (2.7)

We’ll see later that Eq.(2.6) and the first of Eq.(2.7) can be used to define β and α loop
by loop. At tree-level, Eq. (2.5) appear explicitly
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0 = m2
3v sin β + v cos β(m2

1 +M2
Z cos 2β/2)

0 = m2
3v cos β + v sin β(m2

2 −M2
Z cos 2β/2) (2.8)

which has used Eq. (2.6, 2.7), and implied that, m2
1, m

2
2 can be considered as functions

dependent on MA,MH ,MZ ,MW and e. This constrain will be changed by loop correction
although they lead to simple tree-level mass for Higgs bosons,

M2
h =

1

2
[ M2

A +M2
Z −∆], M2

H+ = M2
A +M2

W (2.9)

where ∆ =
√

(M2
A +M2

Z)
2 − 4M2

ZM
2
A cos2 2β

The gauge-Goldstone mixing terms must be encountered when the gauge invariant
eigenstates are transformed into mass eigenstates. For example, to Z boson there is

one term Zµ∂µG with a coefficient (v1 cos β + v2 sin β)
√

g21 + g22/2. In our selecting of
parameterization, this mixing term becomes

Lmix = −MZZ
µ∂µG (2.10)

Fortunately, this mixing can be cancelled at tree level by the one from so-called gauge-
fixing term,

Lgf = − 1

2αz

(∂µZ
µ + αzMZG)2 (2.11)

which is necessary for the quantization to gauge fields. The same thing keep for W gauge
boson and photon.

Here we have chosen the SM-like gauge fixing, and in following calculation, we adopt
the ’t Hooft-Feynman gauge, αz = αw = αγ = 1, since the physical result should be gauge
independent.

III. RENORMALIZATION PROCEDURE FOR MSSM

A procedure of renormalization is expected to perform the perturbative calculation.
One choice is naively including the virtual super particles into the radiative loops in [14]
and mechanically applying the subtraction formulae listed there, with an argument that
the tree-level relations are spoilt. Unless the necessity to withdraw so far, however, we
prefer to find one mediocre formalism aimed at Eq. (2.2). The supersymmetric structure
of this potential still enable us to predict perturbatively the pole mass of the lightest Higgs
and to define the counterterm of β even though the conventions of [12,13] are followed
here.

3.1. general framework

This scheme defines explicitly the renormalization constants of fields as mass eigen-
states,
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W±
µ → Z

1/2
W W±

µ ,
(

Zµ

Aµ

)

→
(

Z
1/2
Z Z

1/2
Zγ

Z
1/2
γZ Z1/2

γ

)

(

Zµ

Aµ

)

(

A
G

)

→
(

Z
1/2
A Z

1/2
AG

Z
1/2
GA Z

1/2
G

)

(

A
G

)

,
(

H
h

)

→
(

Z
1/2
H Z

1/2
Hh

Z
1/2
hH Z

1/2
h

)

(

H
h

)

(3.1)

We haven’t taken the renormalization to the gauge eigenstates used in [7] and [8] such
as,

Hi → Z
1/2
Hi Hi, Bµ → Z

1/2
B Bµ,

→

Wµ→ Z
1/2
W

→

Wµ

(ξB,W
1,2 → 1 + δξB,W

1,2 ) (3.2)

which seems more compact and concise, so we have to seek alternative way to treat
tadpoles and define δβ. As to the input parameters, our scheme prefer the renormalization
to the five physical parameters bellow,

M2
Z → M2

Z + δM2
Z M2

W → M2
W + δM2

W

M2
A → M2

A + δm2
A M2

H → M2
H + δm2

H

e → e + δe (3.3)

where MW , MZ are the mass of gauge bosons, e is the electric charge, and they are
renormalized in the conventional electroweak treatment

ℜe Σ̂Z(k
2) = ΣZ(k

2)− δM2
Z + δZZ(k

2 −M2
Z) = 0

ℜe Σ̂W (k2) = ΣW (k2)− δM2
W + δZW (k2 −M2

W ) = 0

Γ̂γee
µ (k2 = 0, 6 p = 6 q = me) = ieγµ (3.4)

Regarded as the physical mass of the pseudo-scalar (heavy CP even neutral) Higgs
boson, the MA (MH) in Eq. (3.3) finds its counterterm in a way like Eq. (3.4), as will be
demonstrated later.

In addition to the wave function renormalization of charged Higgs, the renormalization
of physical Higgs masses,

M2
h → M2

h + δM2
h M2

H+ → M2
H+ + δM2

H+ (3.5)

formally complete the renormalization of 2HDM including MSSM. In the conventional
treatment [20] and [14], Eq. (3.5) fix the counterterms of Higgs mass, and gives no in-
formation on the value of these masses. However, in MSSM we can give alternative
interpretation to Eq. (3.5) and subtract the magnitude of Higgs masses from it.

3.2. constrains on mass counterterms

In MSSM, the mass relations between gauge and Higgs bosons are connected by
Eqs. (2.8) and Eq. (2.6,2.7). Since the renormalization should not increase the number of
the independent (free) parameters, we have to reproduce the masses of bosons through
the breaking of gauge symmetry, to investigate how those connections can be regulated
by the loop corrections. In another word, the relation between different counterterms
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should be determined by these constrains. Then the rescaling of the scalar’s VEV (i.e.
the renormalization of those constrains) is of the first importance. For the convenience
to expound, we construct the generalized form of Eqs. (2.8)

Th =
v

8
{[8m2

3 cos β + sin β(8m2
2 − g2v2 cos 2β)] cosα

−[8m2
3 sin β + cos β(8m2

1 + g2v2 cos 2β)] sinα}
TH =

v

8
{[8m2

3 sin β + cos β(8m2
1 + g2v2 cos 2β)] cosα

+[8m2
3 cos β + sin β(8m2

2 − g2v2 cos 2β)] sinα} (3.6)

The v1, v2 should generate properly the masses of gauge bosons and fall into the last two
of Eq. (2.7) order by order. To generate the masses of Higgs bosons, it’s convenient to
employ the original matrices in the quadratic terms of scalar fields. The matrices (a factor
1
2
compressed) have been rotated but are not necessarily identified as the physical masses.

The most important one is the mass form of the pseudo-scalar A,

MAA = 2[ (−4m2
1 + 4m2

2 − g2v2 cos 2β) cos 2ϑ+ 4(m2
1 +m2

2 − 2m2
3 sin 2ϑ) ]/16 (3.7)

which has no more impact but a equation to solve m2
1, m

2
2, m

2
3, associated with Eq. (3.6).

It’s easy to check from the Eq. (A.2) in the Appendices that, m2
1, m

2
2, m

2
3 return to

their tree-level form Eqs. (2.8) and (2.6, 2.7) only if ϑ → β, Th → 0, TH → 0. Then
the mass matrices (quadratic form) of the Higgs sector can be recast as functions of
e,MW ,MZ ,MA, β(M

2
H).

These fundamental parameters (e ,MW ,MZ ,MA,MH) can run from their bare to
corresponding renormalized (physical) values, as described in Eq. (3.3). When such a
replacement is performed, a natural renormalization condition show itself up,

T R
h ≡ Th(eR,MWR,MZR,MAR,MHR) = 0

T R
H ≡ TH(eR,MWR,MZR,MAR,MHR) = 0 (3.8)

This indicates nothing else but that, the physical rescaling of VEV is to eliminate the
linear terms of Higgs fields, so that each renormalized (one point) Green function has tree
level form in renormalized parameters, and so that viR is the place where the potential
reach its minimum, and the resonable relation

v1δv1 + v2δv2 = vδv,
v2
v1
(
δv2
v2

− δv1
v1

) = sec2 β δβ (3.9)

rather than δv2 = δv1 = δv = 0 had been used. From now on, the subscription R is omit-
ted on the right side of equations unless the renormalized quantity is not equivalent to the
physical one. To show how δβ is traded for δM2

H , we write the other two transformations
at length

MAA(e,MW ,MZ ,MA,MH) → M2
A + δM2

A

MHH(e,MW ,MZ ,MA,MH) ≡ [(4m2
1 + 4m2

2 + g2v2)

+2(2m2
1 − 2m2

2 + g2v2 cos 2β) cos 2α+ 2(4m2
3 − g2 sin β cos β) sin 2α]/8

=
1

2
[M2

A +M2
Z +∆] + THH → MR

HH + δMHH

= [ M2
H + T R

HH ] + { [ (
1

2
+

∂∆

∂M2
A

)δM2
A + (

1

2
+

∂∆

∂M2
Z

)δM2
Z +

∂∆

∂β
δβ ] + THH }

= [ M2
H + T R

HH ] + { [ δM2
H ] + THH} (3.10)
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where THH is a linear combination of Th, TH and T R
HH = 0. Then Eqs. (3.9, 3.7) and

Th(e,MW ,MZ ,MA,MH) → T R
h + Th = 0 + Th,

TH(e,MW ,MZ ,MA,MH) → T R
H + TH = 0 + TH (3.11)

induced

MAG(e,MW ,MZ ,MA,MH) → [ MR
AG ] + δMAG

= [
M2

A(v2 cos ϑ− v1 sinϑ)

v1 cosϑ+ v2 sinϑ
+ T R

AG ] + TAG

Mhh(e,MW ,MZ ,MA,MH) → M2
hR + T R

hh + [ δM2
h + Thh ] (3.12)

where M2
hR obey Eq. (2.9) and δMhh is just its variation,

δMhh ≡ δM2
h + Thh = Thh + (

1

2
− ∂∆

∂M2
A

)δM2
A + (

1

2
− ∂∆

∂M2
Z

)δM2
Z − ∂∆

∂β
δβ (3.13)

Here the rotational matrix had been defined with different angles as shown in the
Eq. (A.1). An easy algebra concludes that, δϑ (or δϑ+) can be cancelled automatically
and neatly by δβ, only if β = ϑ = ϑ+ is set in the coefficients of these counterterms.
This pleasing result indicates that, in this scheme, the angles for Higgs coupling to other
particles can be kept as only one angle, i.e. β. And, one δβ is sufficient and consistent
for any one loop calculations.

3.3. M2
hP as pole mass

Combined with the fields renormalization in Eq. (3.1), above mass counterterms can
be fixed by the so-called on mass shell renormalization conditions in the Higgs sector,

1). Tadpoles

0 = T R
h + Th + th, 0 = T R

H + TH + tH (3.14)

2). Heavy neutral CP even Higgs

d

dq2
ΣHH(q

2)|q2=M2
H

+ ZHH + ZHh = 1

ℜe Σ̂H(q
2)|q2=M2

H
= [ ΣHH(q

2) + (ZH + ZhH)q
2 ]|q2=M2

H
− 2Z

1/2
H Z

1/2
Hh δMHh

−ZH(MHH + δMHH)− ZhH(Mhh + δMhh) = 0

ℜe Σ̂Hh(q
2)|q2=M2

H
= [ ΣHh(q

2) + (Z
1/2
HhZ

1/2
H + Z

1/2
h Z

1/2
hH )q2 ]|q2=M2

H
− Z

1/2
hHZ

1/2
h (Mhh + δMhh)

−Z
1/2
HhZ

1/2
H (MHH + δMHH)− (Z

1/2
h Z

1/2
H + Z

1/2
HhZ

1/2
hH )δMHh = 0 (3.15)

3). light neutral CP even Higgs

d

dq2
Σhh(q

2) + Zhh + ZhH = 1

ℜe Σ̂hh(q
2) = [ Σh(q

2) + (Zh + ZHh)q
2 ]− Zh(Mhh + δMhh)

−ZHh(MHH + δMHH)− 2Z
1/2
h Z

1/2
Hh δMHh = 0

ℜe Σ̂hH(q
2) = [ ΣHh(q

2) + (Z
1/2
h Z

1/2
hH + Z

1/2
HhZ

1/2
H )q2 ]− Z

1/2
hHZ

1/2
h (Mhh + δMhh)

−Z
1/2
HhZ

1/2
H (MHH + δMHH)− (Z

1/2
H Z

1/2
h + Z

1/2
HhZ

1/2
hH )δMHh = 0 (3.16)
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The subtraction for the neutral CP odd Higgs A has the same form as Eq. (3.15) when a
particle substitution (H, h) → (G,A) is made. The symbolics th, tH ,ΣHH ,Σhh,ΣhH ,ΣAA

and ΣGA denote the 1PI Green functions ( loop integrals with UV divergence ). For the
sector that concerns the selected input parameters it’s easy to solve,

Th = −th, TH = −tH

δM2
H = ΣHH(M

2
H)− THH , δZH = − d

dq2
ΣHH(M

2
H)

δZhH =
2[ ThH − ΣhH(M

2
H) ]

M2
H −M2

hR

δM2
A = ΣAA(M

2
A), δZA = − d

dq2
ΣAA(M

2
A), δZG = − d

dq2
ΣGG(0)

δZGA =
2[ TGA − ΣGA(M

2
A) ]

M2
A

(3.17)

where Eqs. (3.10) and (3.12) have been used.
It’s noticeable that, the variable of ΣHH is the physical massM2

H in Eq. (3.15), which is
just M2

HR at the same time. On the contrary the variable of Σhh is not M2
hR in Eq. (3.16).

The physical (pole) mass of the light Higgs can be solved as function of M2
A,M

2
H ,M

2
Z , e.

One Taylor expansion may simplify the analysis and help us to realize this point.

q2 = M2
hR +

1

2
(q2 −M2

hR)
2 d2

d2q2
Σhh(q

2)|q2=M2
hR

+O((q2 −M2
hR)

3
)

+
1

2
[ δM2

Z + δM2
A − δ∆ ]− Σhh(M

2
hR) + Thh (3.18)

The choice q2 = M2
HR in Eq. (3.15) makes Eq. (3.16) independent of δ∆ (i.e. δβ) when

these two equations are added together,

q2 = M2
Z +M2

A −M2
H +

1

2
(q2 −M2

hR)
2 d2

d2q2
Σhh(q

2)|q2=M2
hR

+O((q2 −M2
hR)

3
)

−[ Σhh(M
2
hR) + ΣHH(M

2
H) ] + [ δM2

Z + δM2
A] + [ Thh + THH ] (3.19)

The d2

d2q2
Σhh(q

2)|q2=M2
hR

term is UV finite unless the order of divergence in the self energies
of the scalars were higher than quadratic. Had not the supersymmetry been broken, the
remained Σhh(M

2
h),ΣHH(M

2
H),ΣAA(M

2
A),Σ

T
ZZ(M

2
Z) and THH , Thh would also be conver-

gent in a super-renormalizable theory. Although the breaking of supersymmetry cause
those self-energies divergent, we can put forward a question, whether there remains a
space to accommodate the cancelation of all of those divergence.

Fortunately, the possibility for the last line in Eq. (3.19) to be UV finite, had been
hinted in the Append.E.7 of [1] and verified analytically in [18]. Our combination of
self-energies for Zµ, A, H and h bosons in Eq. (3.19) had been employed as the “renor-
malization of the neutral Higgs boson mass sum rule” of [15,19].

We have examen it with the top quark and its squarks in one loop corrections. We
can manifest the UV divergence in these 4× 7 + 2× 3 = 36 diagrams to cancel neatly.
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3.4. the FREE MH and the counterterm of β

A cautious one will notice the using of in Eq. (2.6) for Eq. (3.19). This means that we
have defined β as an induced variable perturbatively through Eq. (2.6), i.e

M2
H −M2

Z < M2
A < M2

H (3.20)

Such a presumption originates mainly from that, no experiment has indicated the
necessary to abort this relation till now, although LEP does not prefer a SM Higgs lighter
than gauge boson Z [21]. The tendency limMA→∞MH = MA is one prediction of MSSM
at tree level and it is found to hold in the evolutions at one loop [2,?]. Here we consider
it as a possible point of MSSM to test.

There is no theoretical evaluation against (3.20) yet. In reality, we could have erased
the subscription q2 = M2

H from Eq. (3.15) and could have got an expression analogous
with Eq. (3.18) for the heavy Higgs. Nevertheless, such two equations could never be
sufficient for three variables (M2

HP ,M
2
hP , δ∆) if we had employed β as an independent

input, although such a treatment sounds more strict and careful. Furthermore, the UV
convergent part of δβ is difficult to tag although its UV divergent part (MS) had been
fixed uniquely by the gauge symmetry, so that the uncertainty in δβ would be traded
into M2

hP , M2
HP by δ∆ if q2 = M2

H was dismissed. In fact the M2
HP predicted in those

β − scheme is never destined to be conflict with Expression (3.20).
The EP [3] performed little numerical evaluations for M2

HP . One typical numerical
evolution in RG approach can be found in the first of [4], and expression (3.20) overlaps
most of the permitted region in its ”Fig.4 − b, Bounds on the higgs masses” when
”R = v2/v1 > 1”. Even the most recent works with stop mixing and RG-improvement,
[24], [23], can not defeat the spectrum (3.20) definitely. In that kind of language [25],
our spectrum means M2

hP −M2
Z < ε < M2

hP , which is a natural space. The former FDC
evaluations, the figures in [22] confirmed the same spectra when tan β > 1.

Those arguments for the tiny of the UV convergent part in δβ is just the one for us to
neglect the loop effect for the difference (violation) from Eq.(2.6), although which follows
the tree level assumption tanβ > 1.

So we straightforward terminate using β but start utilizing M2
H as a free input parame-

ter by M2
H ≡ M2

HPhys = M2
HR. The measurement of M2

H may be not as early as we expect,
but its physical definition is always more unequivocal than the physical definition of β
itself. Another reparameterization attempt had been made in [7]. There β was replaced
by the mass of the lightest Higgs boson M2

h which may be measured first.
The counterterm of M2

H then brought us the one of β through Eq.(2.6),

δβ = ǫ
δZ (H −A)HA

MZHA
+

δH (A+ Z − 2H)AZ + δA (H − Z)HZ

MZHA
(3.21)

where ǫ ≡ Sign(v2 − v1), and

MZHA = 4AZ
√

H(H − Z)(H − A)(A+ Z −H) (3.22)

A,Z,H denotes M2
A,M

2
Z ,M

2
H respectively. δZ means δM2

Z and so on. Similar situation
had ever happened in SM, although the counterterm in our Eq. (3.21) looks like a little
queer. The radiative corrections had never shrunk one from defining the counterterm of
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Weinberg angle δθW by cos2 θW = M2
W/M2

Z even before the discovery of gauge bosons W
and Z.

The renormalization constant of other mixing is get as soon as M2
hP appears,

δZHh = 2[
ΣHh(M

2
hP )

M2
HP −M2

hP

+
THh

(M2
HP −M2

hR)
+

(M2
hP −M2

hR)ΣHh(M
2
HP )

(M2
HP −M2

hR)(M
2
HP −M2

hP )
]

δZh = − d

dq2
Σhh(q

2)|q2=M2
hP

(3.23)

which is useful for practical manipulation. Similar treatment can be applied to the charged
Higgs as listed in the Appendices. The frequently used rotation angle α of CP even Higgs
is defined in the first of Eq. (2.7) and its counterterm is

δα =
1

2
csc2 2α[ 2 csc2 2β

M2
Z +M2

A

M2
A −M2

Z

δβ + 2 tan 2β
M2

ZδM
2
Z −M2

AδM
2
A

(M2
A −M2

Z)
2 ] (3.24)

Now, the radiative corrected tree-level relations are no more than Eq. (2.9). If we do not
insisted that M2

hR (M2
H+R) is physical mass of (charged) Higgs, even these equations hold.

The perturbative MSSM permits a chance to calculate the dependence ofM2
hP ,M

2
H+ , β and

α on e,M2
Z ,M

2
W ,M2

A and M2
H , which will be given as input parameters from experiments.

A numerical investigation is given in the 5’th section, where we will be convinced
that, the re-parameterization β → M2

H has never caused any considerable numerical
distinction from other schemes. And now we turn to another important aspect of MSSM
renormalization, the consequence of gauge invariance.

IV. RENORMALIZATION OF GAUGE-HIGGS MIXING FROM WTI

The appropriate renormalization of gauge fixing term (consequently of gauge-Higgs
mixing), which should be consistent with the renormalization of VEV (consequently of
β), must be studied carefully here. Following [26] and [12], we change nothing else but
attach a subscription R (meaning renormalized) to the fields and parameters in Eq. (2.11).
Then in our scheme, the renormalization keeps the form of Eq. (2.11) unchanged at
all. The main reason is that the renormalization procedure mentioned above on the
classical Lagrangian has really cancelled all the UV divergence of the proper vertices. It’s
convenient to examine this point by one auxiliary generating functional action [12]

Γ̄[F,K] = −i log{
∫

[DF (x)]Exp[i
∫

dxL(x)eff ] + J(x)F (x) +K(x)δBRSF (x)}

+i log{
∫

[DF (x)]Exp[i
∫

dzL(z)gf} (4.1)

where
∫

[DF (x)] denotes the functional integrating of all the fields F (x), such as vector,
scalar and ghost fields. K(x) is the source of the BRST transformation on field F (x),
corresponding term is added to

Leff = Lcl + Lgf + LFP (4.2)

Since the fields power in gauge fixing term is no higher than two, the contribution of
Lgf to the proper vertices from Γ̄[F,K] is merely in loops. So the deduction in Eq. (4.1)
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is equivalent to that no renormalization substitution is needed for Lgf within L(x)eff .
Further expounding necessitates the important WTI which is held in both 2HDM and
MSSM,

∫

d4x
δΓ̄

δZν(x)

δΓ̄

δKν
Z(x)

+
δΓ̄

δAν(x)

δΓ̄

δKν
γ (x)

+
δΓ̄

δG(x)

δΓ̄

δKG(x)

+
δΓ̄

δA(x)

δΓ̄

δKA(x)
+

δΓ̄

δCZ(x)

δΓ̄

δKCZ(x)
+

δΓ̄

δCγ(x)

δΓ̄

δKCγ (x)
= 0 (4.3)

where the symbolic F (x) has been embodied as the neutral vector boson Zµ, photon Aµ,
their corresponding ghost CZ (Cγ), the neutral unphysical Goldstone G and the pseudo-
scalar A. The Ki(x) is the BRST source coupled to corresponding field. When the func-
tional differentiates δ2

δZµ(y1)δCZ (y2)
, δ2

δG(y1)δCZ (y2)
, δ2

δA(y1)δCZ (y2)
, δ2

δAµ(y1)δCZ (y2)
, δ2

δAµ(y1)δCγ (y2)
δ2

δAµ(y1)δCZ (y2)
are performed on Eq. (4.3), a set of WTI as Eqs. (C.1) are obtained. There

Γ̃x
i,j denotes two points (1PI) vertex in momentum space, and Γ̃[C i, Kj] denotes the Fourier

transformation of δ2Γ̄
δCiδKj

. The latter can be calculated from

δBRSG =
gv

2
CZ − g1

2
[ C+G− + C−G+ ] +

g

2
CZ [ H cos(α− β)− h sin(α− β) ]

δBRSA =
g

2
CZ [ h cos(α− β) +H sin(α− β) ]− g1

2
[ C+H− + C−H+ ]

δBRSZµ = −ig21
g
(W+

µ C− −W−
µ C+) + ∂µC

Z

δBRSAµ = −ig1g2
g

(W+
µ C− −W−

µ C+) + ∂µC
A (4.4)

for example,

Γ̃[CZ , Kν
Z ] = kνJ(k

2), Γ̃[CZ , KG] = −iMZI(k
2) (4.5)

and so on. It’s luck to find that, for most of those physical vertices Γ̃x
i,j, their coefficient

functions usually vanish at tree-level. Even though those coefficient might remain, these
unphysical vertices Γ̃[C i, Kj] can be eliminated away as the treatment in [12]. Further-
more, when only one-loop corrections of Γ̃x

i,j are concerned, Γ̃[C
i, Kj] can be kept at lower

order, then the tree form J(k2) = 1, I(k2) = 1 is sufficient for these equations,

Γ̃µν
ZZkν + Γ̃µ

ZG(−iMZ) = 0, Γ̃ν
GZkν + Γ̃GG(−iMZ) = 0

Γ̃ν
AZkν + Γ̃AG(−iMZ) = 0, Γ̃µν

γZkν + Γ̃µ
γG(−iMZ) = 0

Γ̃µν
γZkν = 0, Γ̃ν

Aγkν = 0 (4.6)

Except the third and the sixth, these equations are recognized just as the ones met in SM.
For example, [9] had given similar expressions deduced from the generating functional of
the full Green function.

With the definition of the renormalization constants ZZG, δZAZ , δZγG and δZAγ,

Γ̃R µ
ZG = ZZG(−iMZk

µ) + Γ̃µ
ZG, Γ̃R µ

GZ = ZZG(iMZk
µ) + Γ̃µ

GZ

Γ̃R µ
AZ = δZAZ(iMZk

µ) + Γ̃µ
AZ , Γ̃R µ

γG = δZγG(−iMZk
µ) + Γ̃µ

γG

Γ̃R µ
Aγ = δZAγ(iMZk

µ) + Γ̃µ
Aγ (4.7)
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those equations in (4.6) can constrain the renormalized vertices too,

kν [ (M
2
Z + δM2

Z)ZZ
kµkν

k2
+ Γ̃µν

ZZ ] + (−iMZ)[ ZZG(−iMZk
ν) + Γ̃µ

ZG ] = 0

kν [ ZZG(iMZk
ν) + Γ̃µ

GZ ] + (−iMZ)[ ZGk
2 + Γ̃GG ] = 0

kν [ δZZA(iMZk
ν) + Γ̃µ

AZ ] + (−iMZ)[ Z
1/2
GAM

2
A + Γ̃AG ] = 0

kν [ (M
2
Z + δM2

Z)Z
1/2
Z Z

1/2
Zγ

kµkν

k2
+ Γ̃µν

Zγ ] + (−iMZ)[ δZγG(−iMZk
ν) + Γ̃µ

γG ] = 0

kν [ (M
2
Z + δM2

Z)ZZγ
kµkν

k2
+ Γ̃µν

γZ ] = 0, kν [δZAγ(iMZk
ν) + Γ̃µ

Aγ ] = 0 (4.8)

ZZG comes out from Eq. (4.8) up to one loop order, when the first contracted with kµ is
added to the second produced with iMZ . The last two are the trivial constrains which
repeat the fact that, the propagator of massless photon is transverse and Aµ −A mixing
is UV convergent at one-loop.

δZZG =
1

2
δZZ +

1

2
δZG +

δM2
Z

2M2
Z

δZAZ =
1

2
δZGA δZγG =

1

2
δZZγ δZγA = 0 (4.9)

It is the full proper vertex (with gauge fixing term) that goes into physical calculation.
When the gauge fixing term in Eq. (4.1) is restored, only the unit term in the original
gauge-scalar mixing are cancelled, since the gauge fixing terms are kept unchanged in this
scheme. Then such scheme gives

ΓR µ
ZG = δZZG(−iMZk

ν) + Γ̃µ
ZG

ΓR µ
AZ = Γ̃R µ

AZ , ΓR µ
γG = Γ̃R µ

γG (4.10)

It’s worthy to notice that, the δMAG (tadpole in Eq. (3.12)) must be included into the
Γ̃AG. Otherwise, the UV divergence in the Zµ −G transition can not be cancelled neatly
as formally imaged by the third of Eq. (4.6). Since these renormalization constants of
mixing ought to be inserted into the amplitude of some physical process, these tadpoles
mustn’t be dropped away naively, and they support the δβ for a finite S-Matrix. In such
a way, when the relations of proper vertices are constructed appropriately, no doubt,
Eq. (4.6) guarantees that such a perturbative definition can make those renormalized
Green functions on the left side of Eq. (4.7) to be UV convergent.

For a comparing, we perform the renormalization replacement to the linear order of
δ listed in Eq. (3.1) but leave Lgf unchanged, and collect the dimensionless coefficients
of the gauge-scalar fixings Zµ∂

µG, Zµ∂
µA, Aµ∂

µG and Aµ∂
µA respectively, then we find

ourselves run onto Eq. (4.9) again.

Lmix = −MZZ
µ∂µG →

−(MZ + δMZ)[ Z
1/2
Z Zµ + Z

1/2
Zγ A

µ ] ∂µ [ Z
1/2
GAA+ Z

1/2
G G ]

= −MZ [
1

2
δZZ +

1

2
δZG +

δMZ

MZ
] Zµ∂µG

−MZ [
1

2
δZGA ] Zµ∂µA

12



−MZ [
1

2
δZZγ ] Aµ∂µG

+0 Aµ∂µA (4.11)

The similar situation take place for electric charged gauge-scalar mixing and all other
truncated Green functions. This means nothing else but the WTI has ensured the renor-
malization “leaving Lgf out” can cancel all these UV divergence.

In fact we could have renormalized Lgf with explicit renormalization constants like
the last line of Eq. (3.2). In consequence, we would have to seek proper counterterms for
αz [9], so that all these divergence can be cancelled up within the Lgf terms. Then we
succeed the inference of the work of [27] to economize the renormalization of Lgf at the
beginning.

V. DISCUSSIONS AND CONCLUSIONS

When such a systematic renormalization scheme is completed of Higgs sector and
gauge-scalar mixing, the calculation of S-matrix can be organized in an apparent and
simple way like [13]and [15]. Here we concern only that, by which feature and to what
extent can we judge the lightest Higgs is supersymmetric or not, if it is awaken up here or
there. So Eqs. (3.19, 3.23, 3.21, 3.24) have to be employed for a complete simulation.
The Eq. (2.9) set the mass of the lightest and the charged Higgs when they appear in the
inner line of loops as virtual particles. A symbolic M2

hP can save bookkeeping and these
expressions are very simple for modern computers although they seem tedious.

After the Taylor expanding in Eq.(3.19), the manifestation of the UV cancelation is
straightforward in our analysis expressions, with the help from Cos2α = −Cos2β(M2

A −
M2

Z)/(M
2
H −M2

hR), M2
hR+M2

H = M2
A+M2

Z and a relation in the stop sector 2Mt(Au+
µCotβ) = (M2

t̃1
− M2

t̃2
)Sin2θt̃. (θt̃ is the mixing angle between the left and the right

hand stop quarks). However that series is not convenient for a numerical solution, so
we iterate q2 near M2

hR until our equation is satisfied with a standard FF package [28].
In our scheme the expression (3.20) means that we can not make a global plot for MhP

dependent on MA (MH) when MH (MA) is fixed. We investigated the range MA(MH) ∼
110, 250, 500, 850 GeV respectively with a top quark mass Mt = 175 GeV as shown in the
Fig.1. As to the parameters in the stop quark sector, we prefer to the physical masses
of stops and their mixing angle. A set of representative inputs are plotted, such as light
spectra just over experiment bound [29] ( Mt̃1 = 70 Mt̃2 = 230 ) and a heavy spectra (
Mt̃1 = 250 Mt̃2 = 850 GeV), with both zero (θt̃ = 0) and maximal (θt̃ = π/4) mixing.
One can still recognize MhP from the profile in our figures, although they seem a little
unfamiliar to the eyes accustomed to conventional tanβ plots. The data displayed are
merely by-production of our scheme, from which we can conclude that the dominant
radiative corrections for the lightest Higgs has been acquainted properly, although a more
accurate prediction for its mass is not reached since neither the whole virtual particles
nor the two loop effect were included in our numerical reiteration.

This FDC procedure is designed for a simple and consistent amplitudes calculation
without EP or RG, since less junction means less uncertainty. This realization is also com-
patible with taking over the conventional treatment in [12,9,13,14] for the renormalization
of SM gauge bosons, fermions and couplings.
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This systematic renormalization for MSSM need the super partners of the involved
virtual particles, no matter how heavy they would be. The Decoupling Theorem [30] still
holds but in a manner that particles have to decouple with their corresponding super
partner. Otherwise the UV divergence would be left in mass of the light Higgs boson.
Using Decoupling Theorem in the manner that all the super partners are integrated out
from the original Lagrangian, means the scheme for 2HDM in [14], then the price is that
the all the masses of Higgs bosons and the angles β , α have to be input as FDC free
parameters.

Anyway, that 2HDM and this MSSM have the same gauge structure, so our
Eqs. (4.9, 4.10) is still held and utilizable. Certainly, some decay of Higgs can be employed
to renormalize β, α in this unconstrained 2HDM.
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APPENDIX:

A. mass v.s. gauge eigenstates in MSSM

A. MSSM field representation

(

H
h

)

,
(

G
A

)

,
(

G+

H+

)

=
(

cos ζ sin ζ
− sin ζ cos ζ

)(

φ0
1

φ0
2

)

,
(

χ0
1

χ0
2

)

,
(

φ+
1

φ+
2

)

(A.1)

where ζ = α, ϑ, ϑ+ from left to right respectively. At tree-level ϑ = ϑ+ = β and this
renormalization can accommodate ϑR = ϑR

+ = βR and δϑ = δϑ+ = δβ.
B. m2

i expressed as physical parameters
m2

1, m2
2, m2

3 can be solved as function of MAA, TH , Th in MSSM

m2
1 = − sec2(β − ϑ){[−16MAA + 2(8MAA + 2g2v2 cos2(β − ϑ)) cos 2β]/32

− TH cos ϑ[cos(α− β − ϑ)− 2 cos(α+ β − ϑ)− cos(α− β + ϑ)]/(2v)

− Th cosϑ[− sin(α− β − ϑ) + 2 sin(α + β − ϑ) + sin(α− β + ϑ)]/(2v)}
m2

2 = sec2(β − ϑ){[16MAA + 2(8MAA + 2g2v2 cos2(β − ϑ)) cos 2β]/32

+ Th sinϑ[cos(α− β − ϑ) + 2 cos(α + β − ϑ) + cos(α− β + ϑ)]/(2v)

+ TH sin ϑ[sin(α− β − ϑ) + 2 sin(α+ β − ϑ) + sin(α− β + ϑ)]/(2v)}
m2

3 = sec2(β − ϑ){Th[cos(α + β) + cos(α− β) cos 2ϑ]/(2v)

+ TH [cos 2ϑ sin(α− β) + sin(α+ β)]/(2v)

− M2
A sin 2β/2} (A.2)

C. Mass form
Multiplied by a factor 2, the matrix elements rotated from the original potential read,

MAG = MGA = [ 8m2
3 cos 2ϑ+ (−4m2

1 + 4m2
2 − g21v

2
1 − g22v

2
1 + g21v

2
2 + g22v

2
2) sin 2ϑ ]/4

MGG = [ (4m2
1 − 4m2

2 + g21v
2
1 + g22v

2
1 − g21v

2
2 − g22v

2
2) cos 2ϑ+ 4(m2

1 +m2
2 + 2m2

3 sin 2ϑ) ]/8

Mhh = [ 4m2
1 + 4m2

2 + g21v
2
1 + g22v

2
1 + g21v

2
2 + g22v

2
2
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−2(2m2
1 − 2m2

2 + g21v
2
1 + g22v

2
1 − g21v

2
2 − g22v

2
2) cos 2α

+2(−4m2
3 + g21v1v2 + g22v1v2) sin 2α ]/8

MhH = MHh = [ (4m2
3 − (g21 + g22)v1v2) cos 2α

+(−2m2
1 + 2m2

2 − g21v
2
1 − g22v

2
1 + g21v

2
2 + g22v

2
2) sin 2α ]/2

MH+H− = (4m2
1 + 4m2

2 + g22v
2
1 + g22v

2
2

+(−4m2
1 + 4m2

2 − g21v
2
1 + g21v

2
2) cos 2ϑ+

+2(−4m2
3 + g22v1v2) sin 2ϑ+ ]/4

MH+G− = MG+H− = [ 2(4m2
3 − g22v1v2) cos 2ϑ+ + (−4m2

1 + 4m2
2 − g21v

2
1 + g21v

2
2) sin 2ϑ+ ]/4

MG+G− = (4m2
1 + 4m2

2 + g22v
2
1 + g22v

2
2

+(4m2
1 − 4m2

2 + g21v
2
1 − g21v

2
2) cos 2ϑ+

+2(4m2
3 − g22v1v2) sin 2ϑ+ ]/4 (A.3)

B. counterterms in MSSM

A. The counterterms for the combinations of tadpoles are

TAA = 0

THH =
−1

2v
cos(α− β)[ − 3TH + TH cos 2(α− β)− Th sin 2(α− β) ]

TAG = TGA =
2

v
[ Th cos(α− β) + TH sin(α− β) ]

TGG =
1

v
[ TH cos(α− β)− Th sin(α− β) ]

Thh =
−1

2v
sin(α− β)[ 3Th + Th cos 2(α− β) + TH sin 2(α− β) ]

THh = ThH =
1

2v
[ 3Th cos(α− β) + Th cos 3(α− β)− 4TH sin3(α− β) ]

TH+H− = 0

TH+G− = TG+H− =
2

v
[ Th cos(α− β) + TH sin(α− β) ]

TG+G− =
2

v
[ TH cos(α− β)− Th sin(α− β) ] (B.1)

These tadpoles correction in CP even neutral Higgs are different from the ones get by
others [15,14]. It’s easy to check that our THH + Thh is equal to the bHH + bhh − bAA in
[15], and the aGG in [18]. However, the Goldstone-Higgs mixing terms are the same, as
pointed in the context, these Goldstone-Higgs tadpole loops must be included into the
corresponding proper vertex.

B. renormalization for charged Higgs sector
Pole mass and H+G+ mixing to one loop order

ΣH+(q2) + (q2 −M2
H+R)ZH+ − δM2

H+ = 0

δM2
H+ = δM2

A + δM2
Z

ΣH+G+(0) + (0−M2
H+R − δM2

H+)Z
1/2
H+Z

1/2
H+G+ − TG+H+ = 0
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ΣH+G+(q2) + (q2 −M2
H+R − δM2

H+)Z
1/2
H+Z

1/2
H+G+ + Z

1/2
G+G+Z

1/2
G+H+q

2 − TG+H+ = 0

d

dq2
ΣH+(q2) + ZH+ + ZH+G+ = 1 (B.2)

The third equation restricts the charged Goldstone pole mass to be zero, and it’s help-
ful to solve δZG+H+ in the fourth equation, which is more useful for physical process.
There is analogous expression for the neutral Goldstone but the δZGA can be calculated
independently.

C. Some Ward-Takahashi identities in the neutral sector of MSSM

Γ̃µν
ZZ Γ̃[C

Z , Kν
Z ] + Γ̃µν

ZγΓ̃[C
Z , Kν

γ ] + Γ̃µ
ZGΓ̃[C

Z , KG] + Γ̃µ
ZAΓ̃[C

Z , KA] = 0

Γ̃ν
GZΓ̃[C

Z , Kν
Z ] + Γ̃ν

GγΓ̃[C
Z , Kν

γ ] + Γ̃GGΓ̃[C
Z , KG] + Γ̃GAΓ̃[C

Z , KA] = 0

Γ̃ν
AZ Γ̃[C

Z , Kν
Z ] + Γ̃ν

AγΓ̃[C
Z , Kν

γ ] + Γ̃AGΓ̃[C
Z , KG] + Γ̃AAΓ̃[C

Z , KA] = 0

Γ̃µν
γZΓ̃[C

Z , Kν
Z ] + Γ̃µν

γγΓ̃[C
Z , Kν

γ ] + Γ̃µ
γGΓ̃[C

Z , KG] + Γ̃µ
γAΓ̃[C

Z , KA] = 0

Γ̃µν
γZ Γ̃[C

γ , Kν
Z ] + Γ̃µν

γγ Γ̃[C
γ, Kν

γ ] + Γ̃µ
γGΓ̃[C

γ, KG] + Γ̃µ
γAΓ̃[C

γ, KA] = 0

Γ̃ν
AZ Γ̃[C

γ, Kν
Z ] + Γ̃ν

AγΓ̃[C
γ, Kν

γ ] + Γ̃AAΓ̃[C
γ , KG] + Γ̃AAΓ̃[C

γ, KA] = 0 (C.1)

The similar expressions hold for the charged sector and lead to the W mixing with
scalars,

δZW+G+ =
1

2
δZW +

1

2
δZG+ +

δM2
W

2M2
W

δZW+H+ =
1

2
δZG+H+ (C.2)
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FIG. 1. radiatively corrected light CP even Higgs mass is plotted as a function of MA, tanβ

varying implicitly from 1.4 (low MA) to 80 (heigh MA) with MH fixed. the solid (dashed) lines

are for the heavy (light) stops, with µ = 0 (deferent µ marked for θt̃ = 0), and the thin (thick)

lines are for zero (maximal) mixing.
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