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Abstract

We derive the so-called Barbieri–Remiddi solution of the Bethe–Salpeter equation

in QED in its general form and discuss its application to the bound state energy

spectrum.
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1 Introduction

The Bethe–Salpeter (BS) equation [1] is usually considered the rigorous framework in which

to approach the bound state problem in QED. The increasing precision of the experimental

data concerning QED bound states (e. g. decay rate, energy levels, etc. for some recent

reviews we refer the reader to [2]) makes more and more urgent to effort the evaluation of

physical quantities by handling the BS equation with a systematic and unified formalism.

In this paper we will focus our attention to the bound state energy levels in QED and will

discuss the so-called Barbieri–Remiddi (BR) formalism. This formalism was first suggested

for positronium [3, 4] (for a clarifying quanto-mechanical example see also [5]), but has been
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used in recent years also for hydrogenic atoms [6], QCD bound states [7] and scalar-scalar

bound states [8]. The main idea is to solve exactly the BS equation for a suitable zeroth-order

kernel containing the relevant binding interaction (i. e. the Coulomb potential) and then to

perform a perturbative expansion in terms of the difference between the complete two-body

kernel and the zeroth-order one. What is appealing in this approach is that the zeroth-order

solution is completely known in analytic closed form. Therefore the perturbative expansion

obtained in this way is completely self-contained and does not need to be improved for higher

correction in the fine structure constant α.

In the following the BR formalism will be derived in the general case of muonium (i. e.

different masses). This result is new and contains the positronium and hydrogenic case as a

particular one. Moreover it furnishes a way to treat radiative and recoil corrections in the

same theoretical framework, which seems to be very promising.

The paper contains two main sections. In section 2 we derive the perturbative expansion

of the energy levels from the BS equation in the so-called Kato formalism. In section 3 we

derive in some detail the BR solution for muonium. Section 4 is devoted to some comments

and conclusions.

2 The Bethe–Salpeter equation

In this section we review some basics concerning the Bethe–Salpeter equation in QED and set

up the theoretical background for the next section. The main result will be the perturbative

expansion of the energy levels of the two fermion bound state given by Eq. (12).

Let us consider a system of two fermions (of mass m1 and m2 and electric charge −e and

Ze respectively) like muonium. The four point Green function G is the sum of the Feynman

graphs shown in Fig. 1 (notice that for a particle-antiparticle system, like positronium, one

has to add the annihilation graphs). Let us define G0 the two fermions free propagator:

G0(E; p) = S
(1)
F (E1; p)S

(2)
F (−E2; p)

T , SF (Ej; p) =
i

Ejγ0 + p/−m+ iǫ
, (1)
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G = + + +

+ + + +

+ + + +       ⋅ ⋅ ⋅

Figure 1: Four point Green function G: graphs up to two loops.

where (1) and (2) refer to the two fermion lines, Ej ≡ E mj/(m1 +m2), E is the bound state

energy and p, q are the relative momenta of the outcoming and incoming particles in the

centre-of-mass reference frame 1. It is found that the Green function G satisfies the equation:

G(E; p, q) = G0(E; p)

[

(2π)4δ4(p− q) +
∫

d4k

(2π)4
K(E; p, k)G(E; k, q)

]

. (2)

This equation (for simplicity we have neglected the spinor indices) is known as the Bethe–

Salpeter equation [1]. The kernel K, describing the interaction between the two fermions,

1 Let p(1) and p(2) be the momenta of the outcoming particles, and

P ≡ p(1) + p(2), p ≡ µ

m1
p(1) − µ

m2
p(2),

with µ = m1m2/(m1+m2) the reduced mass of the two particles. In the centre-of-mass frame ~p (1) = −~p (2)

implies P = (p
(1)
0 + p

(2)
0 ,~0 ) = (E,~0 ). From the previous equations we obtain

p(1) = p+
m1

m1 +m2
P = (p0 + E1, ~p ),

p(2) = −p+
m2

m1 +m2
P = (−p0 + E2,−~p ),

where Ej = E mj/(m1 +m2) and therefore

E = E1 + E2.

Finally, we note that in the static limit

E → m1 +m2, Ej → mj.

In the same way we can treat the incoming momenta.
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is not known in analytic closed form and is given by all the two particle irreducible graphs

without external legs shown up to two loop in Fig. 2. Graphically the BS equation can be

represented as in Fig. 3.

K = + + +

+ + +       ⋅ ⋅ ⋅

Figure 2: The interaction kernel K.

G, as a function of E, has simple poles in the bound state energy levels En... [9] (n...

is a convenient set of quantum numbers which classifies the levels). Since the Coulomb

interaction is contained in K, En... (without mass terms) has to coincide with the Bohr

levels at the leading order in α. Therefore for any n..., we can write

G(E) =
Rn...

E − En...

+ Ĝn...(E) , En... = m1 +m2 −
µ

2

(

Zα

n

)2

+ · · · , (3)

where Rn... is the residuum at the pole, Ĝn... is non singular in the limit E → En... and µ

is the reduced mass of the two particle system. From now on we will neglect the explicit

indication of the momenta in the argument of the functions, where considered not strictly

necessary.

Inserting (3) into the BS equation and comparing the residua, we obtain:

Rn... = G0(En...)K(En...)Rn..., (4)

which is known as the homogeneous Bethe–Salpeter equation. Moreover, from the compari-

son of the non singular parts in E −En... we obtain the normalization condition [10]:

Rn... = Rn...

∂

∂E

(

G−1
0 −K

)

(En...) Rn... . (5)
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G = + GK

Figure 3: Inhomogeneous BS equation: G(E) = G0(E) +G0(E)K(E)G(E).

The BS equation (2) is, up to now, not solvable in analytic closed form. Let Kc be an

interaction kernel satisfying the following two properties:

i) Kc reproduces the same non relativistic limit of K, i.e. the Coulomb potential V =

−4πZα/p2 times some spinorial factors;

ii) the BS equation for Kc:

Gc(E) = G0(E) +G0(E)Kc(E)Gc(E), (6)

is analytically solvable in closed form.

With these assumptions it is possible to solve the BS equation for G at least perturbatively

in terms of δK ≡ K −Kc and to give a perturbative expansion for the bound state energy

levels (the poles of G).

From the property i) it follows that Gc has simple poles for E = Ec
n. These poles are

surely more degenerate than the poles of the complete Green function G and give back, at

the leading order in α, the Bohr levels:

Gc(E) =

∑

Rc
n...

E −Ec
n

+ Ĝc
n(E) , Ec

n = m1 +m2 −
µ

2

(

Zα

n

)2

+ · · · , (7)

where Rc
n... is the residuum at the pole and Ĝc

n is non singular in the limit E → Ec
n. The

sum is extended over all the degenerate states for each n ∈ lN. The residuum Rc
n... satisfies

the analogous of equations (4) and (5):

Rc
n... = G0(E

c
n)Kc(E

c
n)R

c
n... , (8)

Rc
n... = Rc

n...

∂

∂E

(

G−1
0 −Kc

)

(Ec
n) R

c
n... . (9)
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From the definition of δK and from (2) and (6) we obtain the perturbative expansion of

G in terms of δK:

G(E) = Gc(E) +Gc(E)δK(E)Gc(E) +Gc(E)δK(E)Gc(E)δK(E)Gc(E) + · · · . (10)

In order to obtain from (10) the perturbative expansion of the poles En... we will use the

so-called Kato perturbation theory [11]. Since the energy levels are the poles of G we can

write:

En... =

∮

Γn

dz z Tr {G(z)On...}
∮

Γn

dz Tr {G(z)On...}
, (11)

where Γn is a closed curve in lC which contains only the poles En... and Ec
n of G and Gc

respectively, On... is an operator which does not vanish on Rn... and R
c
n... and Tr means the

trace over the spinor indices. A convenient choice is

On... ≡
∂

∂E

(

G−1
0 −Kc

)

(Ec
n) R

c
n...

∂

∂E

(

G−1
0 −Kc

)

(Ec
n).

Inserting (10) in (11) integrating in z and taking into account (9), we obtain (up to order

δK4):

En... = Ec
n +

1

Dn...

〈δK(Ec
n)〉n... +

1

D2
n...

〈

δK(Ec
n)Ĝc(E

c
n)δK(Ec

n)
〉

n...

+
1

D2
n...

〈δK(Ec
n)〉n...

〈

∂

∂E
δK(Ec

n)

〉

n...

+
1

D3
n...

〈

δK(Ec
n)Ĝc(E

c
n)δK(Ec

n)Ĝc(E
c
n)δK(Ec

n)
〉

n...

+
1

D3
n...

〈

δK(Ec
n)Ĝc(E

c
n)δK(Ec

n)
〉

n...

〈

∂

∂E
δK(Ec

n)

〉

n...

+
1

D3
n...

〈

∂

∂E

(

δKĜcδK
)

(Ec
n)

〉

n...

〈δK(Ec
n)〉n...

+
1

D3
n...

〈δK(Ec
n)〉n...

[〈

∂

∂E
δK(Ec

n)

〉

n...

]2

+
1

2

1

D3
n...

[〈δK(Ec
n)〉n...]

2

〈

∂2

∂E2
δK(Ec

n)

〉

n...

+ O(δK4), (12)

where

〈A〉n... ≡ Tr {A Rc
n...} =

∫ d4p

(2π)4

∫ d4q

(2π)4
Tr {A(p, q) Rc

n...(p, q)} .
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Dn... is the degeneracy of the E = En... level and is defined to be

Dn... ≡
〈

∂

∂E

(

G−1
0 −Kc

)

(Ec
n)

〉

n...

. (13)

Equation (12) expresses the bound state energy En... as an expansion in δK. Since δK is

the difference between the sum of the infinit series of Feynman graphs drawn in Fig. 2 and

the kernel Kc, δK is not known in closed form. Each graph of Fig. 2 contributes to (12) with

a series of powers of α, because the dependence of the residuum Rc
n on the fine structure

constant (like in the well-known non-relativistic case where the hydrogen wave-functions

depend on α). For consistency with i) the explicit calculation must exhibit that to an

increasing order in δK it corresponds an increasing leading order in α in the contributions to

the energy levels. In this sense expansion (12) can be interpreted as a perturbative expansion

in the fine structure constant. Once Kc is explicitly given and the corresponding BS equation

is solved (this means we have an analytic expression for Ec
n, R

c
n... and Ĝ

c
n) the expansion (12)

allows to obtain without any ambiguity the energy levels up to a given order in α for all the

two-fermions bound states in QED. We emphasize that, in absence of an exact solution of

Eq. (6), expression (12) could be evaluated only for an approximate choice of Gc to improve

at any increasing of the requested precision.

3 The Barbieri–Remiddi solution

In this section we work out with some detail the so-called Barbieri–Remiddi solution of

equation (6) (for and exhaustive description see [12]). With this name we mean a zeroth

order kernel Kc which satisfies the previous given properties i) and ii) (in other words Kc

should describe correctly at the leading order in α the bound state and make solvable the

corresponding BS equation (6)) as well as the solution of the corresponding BS equation.

The BR solution was first given for the positronium [3]. In the following we will give the

generalization of that solution for a bound state of two fermions with different masses, i. e.

muonium. Once Kc is given, we solve the equation for Gc and work out the poles Ec
n and
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the residua Rc
n.... At that point the perturbative expansion of the energy levels (12) will be

completely defined.

Let us define the energy projectors

Λ±(~p,mj) ≡
Epj ± (mj − ~p · ~γ)γ0

2Epj

; (14)

with Epj ≡
√

~p 2 +m2
j . In terms of Λ± the free fermion propagator SF can be written as

SF (Ej ; p) = i

(

Λ+(~p,mj)γ
0

p0 + Ej − Epj + iǫ
+

Λ−(~p,mj)γ
0

p0 + Ej + Epj − iǫ

)

.

Moreover, we define

Λ(~p, ~q ) ≡
(

16Ep1Ep2Eq1Eq2

(Ep1 +m1)(Ep2 +m2)(Eq1 +m1)(Eq2 +m2)

) 1

2

(15)

×
(

γ0Λ+(~p,m1)
1 + γ0

2
Λ+(~q,m1)

)(1) (

γ0Λ−(~q,m2)
1− γ0

2
Λ−(~p,m2)

)(2)T

.

The zeroth order BR interaction kernel for the muonium is

Kc(E; ~p, ~q ) ≡ iR(E; ~p )R(E; ~q )V (~p− ~q )Λ(~p, ~q ), (16)

with

R(E; ~p ) =

(

8µE2

(E + Ep1 + Ep2)(E −Ep1 + Ep2)(E + Ep1 − Ep2)

) 1

2

. (17)

We assume (16) as a definition. In the following we will verify that this choice satisfies the

properties i) and ii) given in the previous section.

In the static limit (E → m1 +m2, Ej → mj and ~p, ~q → 0),

Kc(E; ~p, ~q ) → −i V (~p− ~q )

(

1 + γ0

2

)(1) (
1− γ0

2

)(2)T

,

i. e. Kc reproduces the Coulomb potential times some spinorial factors.

In order to verify that the choice (16) makes solvable the BS equation (6) it is useful to

express the Green function Gc in terms of a new function Hc
2:

Gc(E; p, q) ≡ G0(E; p) + iR(E; ~p )R(E; ~q )Hc(E; ~p, ~q )G0(E; p)Λ(~p, ~q )G0(E; q). (18)
2 In general Hc could depend on each component of the momenta p and q. The explicit calculation,

however, will show that Hc does not depend on p0 and q0 (see Eq. (20)).
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Including (18) and (16) in (6), we have

Hc(E; ~p, ~q ) = V (~p− ~q ) − i
∫

d4k

(2π)4
R(E;~k )2

(k0 + E1 − Ek1 + iǫ)(k0 − E2 + Ek2 − iǫ)

× V (~p− ~k )Hc(E;~k, ~q ).

Integrating on k0 we obtain

Hc(E; ~p, ~q ) = V (~p− ~q ) +
∫

d3k

(2π)3
1

E∗ − k2/2µ
V (~p− ~k )Hc(E;~k, ~q ), (19)

where

E∗ ≡ (E −m1 −m2)(E −m1 +m2)(E +m1 −m2)(E +m1 +m2)

8µE2
.

Equation (19) is nothing else than the Schrödinger equation for the propagator of a non

relativistic particle in an external Coulomb field. Therefore its solution is known. A way

to express it is by means of the Gegenbauer polynomia Cλ
j (for the definition and some

properties see [13]) [14]:

Hc(E; ~p, ~q ) = V (~p− ~q )− 16πµ(Zα)2γ

(p2 + γ2)(q2 + γ2)

∞
∑

j=0

1

j + 1− µZα/γ
C1

j

(

ξ̂(~p ) · η̂(~q )
)

, (20)

where γ ≡ √−2µE∗. Substituting Eq. (20) in (18) we obtain the explicit analytic expression

of the Green function corresponding to the kernel Kc given by (16). As we will see, once Gc

is given, it is straightforward to work out the poles Ec
n, the residua Rc

n... and Ĝ
c
n.

From (20) we have immediately that Gc has poles in

E∗ = −µ
2

(

Zα

n

)2

⇒ E = Ec
n =

√

m2
1 − (µZα/n)2 +

√

m2
2 − (µZα/n)2 n ∈ lN. (21)

Notice that up to order α2

Ec
n ≈ m1 +m2 −

µ

2

(

Zα

n

)2

.

The poles of Gc give back the mass terms plus the Bohr levels, i. e. the physically correct

levels up to order α2. Moreover we have

Ej(E
c
n) = Ec

n

mj

m1 +m2
≈ mj −

mj

m1 +m2

µ

2

(

Zα

n

)2

.

9



The residuum at the pole E = Ec
n, as defined in (7), is

∑

Rc
n...(p, q) =

i

4µ

Ec
n

√

m2
1 − (µZα/n)2

√

m2
2 − (µZα/n)2

R(Ec
n; ~p )R(Ec

n; ~q )

×
(

p2 + (µZα/n)2
) (

q2 + (µZα/n)2
)

rn(~p, ~q )

× G0(E
c
n; p)Λ(~p, ~q )G0(E

c
n; q), (22)

where

rn(~p, ~q ) ≡ 64πn
(

µZα

n

)5 C1
n−1

(

ξ̂(~p ) · η̂(~q )
)

[p2 + (µZα/n)2]2 [q2 + (µZα/n)2]2
=

n−1
∑

l=0

l
∑

m=−l

ϕnlm(~p )ϕ∗
nlm(~q ).

(23)

ϕnlm(~p ) ≡ Rnl(p)Ylm(p̂) are the well-known hydrogen atom wave functions [15]. Moreover,

we can write

(

Λ+(~p,m1)
1 + γ0

2
Λ+(~q,m1)γ

0

)(1) (

Λ−(~q,m2)
1− γ0

2
Λ−(~p,m2)γ

0

)(2)T

=

(

Λ+(~p,m1)
1 + γ0

2
Λ+(~q,m1)γ

0

)

αβ

(

Λ−(~q,m2)
1− γ0

2
Λ−(~p,m2)γ

0

)

γδ

=

(Λ+(~p,m1))αρ

(

1 + γ0

2

)

ρσ

(

Λ+(~q,m1)γ
0
)

σβ
(Λ−(~q,m2))γν

(

1− γ0

2

)

ντ

(

Λ−(~p,m2)γ
0
)

τδ

=
1

2

∑

Ss

(

Λ+(~p,m1)ΓSsΛ−(~p,m2)γ
0
)

αδ

(

Λ−(~q,m2)Γ
†
SsΛ+(~q,m1)γ

0
)

γβ
, (24)

where we have used the Fiertz identity:

(

1 + γ0

2

)

ρσ

(

1− γ0

2

)

ντ

=
1

2

∑

Ss

(

Γ†
Ss

)

νσ
(ΓSs)ρτ S ∈ 0, 1, s ∈ −S, ..., S ;

with the definitions:

Γ00 =
1 + γ0

2
γ5, Γ1s = i

1 + γ0

2
~vs · ~γ ,

Γ†
00 =

1− γ0

2
γ5, Γ†

1s = i
1− γ0

2
~v ∗
s · ~γ ,

~v0 = (0, 0, 1) ~v±1 = − 1√
2
(±1, i, 0) .

Eqs. (23) and (24) allow to identify the quantum numbers n... with the principal quantum

number n, with the numbers S, s describing the spin of the bound state and with the numbers
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l, m describing the angular momentum. The corresponding states Rc
nlmSs are

(Rc
nlmSs(p, q))αβγδ =

i

2µ

Ec
n

√

m2
1 − (µZα/n)2

√

m2
2 − (µZα/n)2

R(Ec
n; ~p )R(Ec

n; ~q )

×
(

Ep1Ep2Eq1Eq2

(Ep1 +m1)(Ep2 +m2)(Eq1 +m1)(Eq2 +m2)

) 1

2

× (p2 + (µZα/n)2)

(p0 + E1(Ec
n)− Ep1 + iǫ)(p0 − E2(Ec

n) + Ep2 − iǫ)

× (q2 + (µZα/n)2)

(q0 + E1(Ec
n)− Eq1 + iǫ)(q0 − E2(Ec

n) + Eq2 − iǫ)

× ϕnlm(~p )ϕ∗
nlm(~q )

×
(

Λ+(~p,m1)ΓSsΛ−(~p,m2)γ
0
)

αδ

(

Λ−(~q,m2)Γ
†
SsΛ+(~q,m1)γ

0
)

γβ
.(25)

These states are not degenerate (how it is possible to verify directly by calculating DnlmSs).

Sometimes in the literature the residua at the poles of the Green function are written as

(Rc
nlmSs(p, q))αβγδ = (ψc

nlmSs(p))αδ

(

ψ
c

nlmSs(q)
)

γβ
;

the functions ψc
nlmSs and ψ

c

nlmSs are called the BR wave functions of the bound state:

(ψc
nlmSs(p))αδ =





i

2µ

Ec
n

√

m2
1 − (µZα/n)2

√

m2
2 − (µZα/n)2





1

2

R(Ec
n; ~p )

×
(

Ep1Ep2

(Ep1 +m1)(Ep2 +m2)

) 1

2

× (p2 + (µZα/n)2)

(p0 + E1(Ec
n)−Ep1 + iǫ)(p0 −E2(Ec

n) + Ep2 − iǫ)

× ϕnlm(~p )
(

Λ+(~p,m1)ΓSsΛ−(~p,m2)γ
0
)

αδ
, (26)

ψ
c

nlmSs = γ0 (ψc
nlmSs)

† γ0 . (27)

Actually there are no reasons to introduce the bound state wave functions: from the for-

malism developed in the previous section it is clear that all the physical quantities can be

expressed in terms of residua.

Finally, we obtain Ĝc
n subtracting from Gc the singular part:

Ĝc
n(E

c
n; p, q) = (2π)4δ4(p− q)G0(E

c
n; p) +G0(E

c
n; p)Kc(E

c
n; ~p, ~q )G0(E

c
n; q)

+ Ĥc(E
c
n; p, q), (28)

11



where Ĥc takes into account all the contributions non singular in E = Ec
n which come from

the second term in (20). For an explicit expression of Ĥc in the positronium case we refer

the reader to [16].

4 Conclusions

From the above given expressions we can recover some interesting limiting cases.

Putting Z = 1 and m1 = m2 ≡ m (µ = m/2 and E1 = E2 = E/2) the above given

zeroth-order solution of the BS equation reduces to the original BR solution given in [3]

for positronium. The main difference with the muonium case is that for positronium also

annihilation graphs contribute to the interaction kernel K. In the literature the singlet state

(S = 0) is usually referred as parapositronium and the triplet state (S = 1) as orthopositro-

nium. Some applications can be found in [12, 16, 17, 18, 19].

Taking the limit of one particle mass to infinity the case of a particle in an external

Coulomb field is recovered. In this case (e. g. m2 → ∞ ) µ = m1 ≡ m, the difference

E2 −m2 is finite and the bound state energy E is given by

E = lim
m2→∞

(E1 + E2 −m2).

This case has been extensively studied in [6, 12, 20] for the evaluation of the pure radiative

corrections to the energy levels of hydrogenic atoms.

As a conclusive remark, we stress that all these systems and muonium can be studied

now in the same framework. In particular the formalism provides a powerful tool in dealing

simultaneously with radiative, recoil and radiative-recoil corrections. Extremely interesting

seems also to be the study of the infinit mass limit of one particle in the energy expansion

(12) evaluated on muonium states. This should eventually clarify how this limit works in a

purely off mass-shell context.
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