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Abstract

We analyze the general nonlinear evolution equations for multi gluon correlators derived
in [1] by restricting ourselves to a double logarithmic region. In this region our evolution
equation becomes local in transverse momentum space and amenable to simple analysis.
It provides a complete nonlinear generalization of the GLR equation. We find that
the full double log evolution at high density becomes strikingly different from its linear
doubly logarithmic DGLAP counterpart. An effective mass is induced by the nonlinear
corrections which at high densities slows down the evolution considerably. We show that
at small values of impact parameter the gluonic density grows as a logarithm of energy.
At higher values of impact parameter the growth is faster, since the density of gluons is
lower and nonlinearities are less important.
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1 Introduction

One of the most important theoretical problems in the high energy hadronic physics is the un-
derstanding of high density nonlinear effects which may lead to unitarization of perturbatively
generated growth of the hadronic cross sections at very high energy. The simplest process in
which one hopes to see these effects is deep inelastic scattering. Standard linear evolution [2],
which is phenomenologically so successful at present energies predicts a perturbatively generated
growth of the total cross section faster than a power of a logarithm. This contradicts the expecta-
tion based on the unitarity constraint that the growth should not be faster than the second power
of the logarithm of energy1. It is natural to assume that the effects that are left out of the linear
evolution are the ones that are ultimately responsible for the unitarization effects. In particular
the suspicion falls on possible screening effects due to finite partonic density. At high energy this
density grows and the emission of high transverse momentum partons which are scattered by the
probe should be inhibited relative to the low density situation 2. These nonlinear effects are not
taken into account by the linear evolution equations. Recently it has been argued that already
the presently available data on DIS can not be reasonably explained without taking into account
the nonlinear effects in QCD evolution [8].

Possible nonlinear generalizations of perturbative evolution have been discussed many times
in literature starting with the famous GLR model [9]. A fully nonlinear evolution equation based
on a particular model for the gluon source was derived by Mueller in [10], which inspired much
of the later research in this field. More recently generalized nonlinear evolution equations were
discussed by Levin and Laenen [11] and Ayala, Gay-Ducati and Levin [12]. All these approaches
are based to some extent on a physically motivated ansatz and it is important to understand the
impact of nonlinearities in a more general framework.

In a recent series of papers [1, 13–15] we have developed an approach to the evolution of
dense partonic systems within the framework of the Wilson renormalization group3. The method
is based on earlier work by McLerran, Venugopalan and Ayala, Jalilian-Marian, McLerran and
Venugopalan [19] in which the idea of representing fast partons by static color charge density was
developed. This approach results in a nonlinear functional evolution equation for the generating
functional of the color charge density correlators, which is valid to leading order in αs at densities
which parametrically do not exceed 1/αs. This is indeed the region of density which is interesting
for the perturbative unitarization effects. The equation is fairly complicated since it only requires
ordering in longitudinal momenta during evolution and puts no constraint of any kind on the
ordering of transverse momenta. In fact, in the low density limit it reduces to the BFKL equation
for the two point correlation function [14] and a simple truncation of it reproduces the complete
BKP hierarchy [20].

The aim of the present paper is twofold. First we are going to show how by a simple trans-
formation this evolution equation is converted into a set of equations for the evolution of the
correlators of the chromoelectric field rather than the color charge density. This form is perhaps
more advantageous, since these correlators are more directly related to observable quantities and
for example the DGLAP evolution operates directly with them. Our second goal is to consider
these evolution equations in the doubly logarithmic regime. That is to say we will work in the
approximation where strict transverse momentum ordering is imposed on the evolution. In our

1 There is a certain caveat here, since in a strict sense there is no proof that the DIS cross section has to unitarize
in the same way as purely hadronic cross sections. Still one believes based on physical arguments that the growth
of the DIS cross section at high Q2 should not exceed a power of a logarithm [3, 4].

2Another possibility is that even at high Q2 at high enough energy the scattering becomes nonperturbative
due to large contributions from the small transverse momentum region. This situation then is entirely outside the
reach of the methods of perturbative QCD. It has been however convincingly argued that even if this is the case
asymptotically, there are many physically interesting situations where the main contribution to the cross section
come from the perturbative region [5–7]. In these cases the perturbative nonlinearities must play a crucial role.

3Let us note that there exists a number of approaches to small-x physics based either directly on constructing
the QCD effective action at small x by combining the reggeon and usual gluon terms [16] (see also [17]), or on the
generalization of the operator product expansion [18]. It is important to understand the relation between these
different approaches and the approach described in this paper. At the moment this relation is not completely clear
to us.
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framework this corresponds to the leading order in the expansion in powers of transverse deriva-
tives. It turns out that the evolution equations simplify tremendously in this limit and become
much more tractable.

The main feature of the full nonlinear evolution is the appearance of a dynamical mass. This
mass is induced by quantum corrections to the QCD evolution at finite density and is proportional
to the square of the chromoelectric field. Its effect is to slow down the evolution relatively to the
standard perturbative case. As a consequence the gluon density in the small impact parameter
region at high density grows with energy only logarithmically as opposed to the exp

√
ln s type

of growth at low density. To construct an explicit solvable model we approximate the generating
functional for the chromoelectric field by a Gaussian. In this Gaussian approximation the only
independent quantity is the distribution function itself, that is the two point correlation function
of the chromoelectric field. All higher correlators have simple factorization properties in terms of
the two point function. This model leads to a simple closed nonlinear equation for the distribution
function which is qualitatively quite similar to the equation considered in [12].

The paper is structured as follows. In Sec. 2 we briefly review the general structure of the
nonlinear evolution equation and show how to rewrite it directly in terms of correlators of the
chromoelectric field. In Sec. 3 we explain how the double logarithmic limit arises in the present
framework and derive the explicit evolution equation in this limit. Sec. 4 is devoted to analysis
of the the resulting equation and the derivation of the simple Gaussian model. Finally Sec. 5
contains a brief discussion.

2 Evolution equations for the correlators of the chromo-

electric field.

First let us briefly recall the framework and the results of [1]. In this approach the averages of
gluonic observables in a hadron are calculated via the following path integral

< O[A] >=

∫

DρDAµO[A] exp

{

−
∫

d2x⊥F [ρa(x⊥)] (1)

−i

∫

d4x
1

4
Fµν
a F a

µν − 1

Nc

∫

d2x⊥dx
−δ(x−)ρa(x⊥)trTaW−∞,∞[A−](x−, x⊥)

}

where W is the Wilson line in the adjoint representation along the x+ axis. The hadron is
represented by an ensemble of color charges localized in the plane x− = 0 with the (integrated
across x−) color charge density ρ(x⊥). The statistical weight of a configuration ρ(x⊥) is

Z = exp{−F [ρ]} (2)

In the tree level approximation (in the light cone gauge A+ = 0) the chromoelectric field is
determined by the color charge density through the equations

F+i =
1

g
δ(x−)αi(x⊥) (3)

and the two dimensional vector potential αi(x⊥) is ”pure gauge” and is related to the color charge
density by

∂iα
a
j − ∂jα

b
i − fabcαb

iα
c
j = 0

∂iα
a
i = −ρa (4)

Integrating out the high longitudinal momentum modes of the vector potential generates the
renormalization group equation, which has the form of the evolution equation for the statistical
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weight Z [1, 15] 4

d

dζ
Z = αs

{

1

2

δ2

δρ(u)δρ(v)
[Zχ(u, v)]− δ

δρ(u)
[Zσ(u)]

}

(5)

In the compact notation used in Eq. (5), both u and v stand for pairs of color index and transverse
coordinate, with summation and integration over repeated occurrences implied. The evolution in
this equation is with respect to the rapidity ζ, related to the Feynman x by

ζ = ln 1/x (6)

Technically it arises as a variation of Z with the cutoff imposed on the longitudinal momentum
of the fields Aµ. The quantities χ[ρ] and σ[ρ] have the meaning of the mean fluctuation and the
average value of the extra charge density induced by the high longitudinal momentum modes of
Aµ. They are functionals of the external charge density ρ. The explicit expressions have been
given in [1]. For the purpose of the general discussion in this section we do not need their explicit
form. Eq. (5) can be written directly as evolution equation for the correlators of the charge density.
Multiplying Eq. (5) by ρ(x1)...ρ(xn) and integrating over ρ yields

d

dζ
< ρ(x1)...ρ(xn) >= (7)

αs

[

∑

0<m<k<n+1

< ρ(x1)...ρ(xm−1)ρ(xm+1)...ρ(xk−1)ρ(xk+1)...ρ(xn)χ(xm, xk) >

+
∑

0<l<n+1

< ρ(x1)...ρ(xl−1)ρ(xl+1)...ρ(xn)σ(xl) >

]

In particular, taking n = 2 we obtain the evolution equation for the two point function

d

dζ
< ρ(x)ρ(y) >= αs {< χ(x, y) + ρ(x)σ(y) + ρ(y)σ(x) >} (8)

This set of equations for the correlators of the color charge density completely specifies the
evolution of the hadronic ensemble as one moves to higher energies (or lower values of x).

Our aim in this section is to convert Eq. (8) into a set of equations which determine directly
the evolution of the multi particle correlators of the chromoelectric field αi

5. For this purpose we
multiply Eq. (5) not by ρ(x1)...ρ(xn) but rather by αa1

i1
(x1)...α

an

in
(xn) and again integrate over ρ.

This results in a set of equations analogous to Eq. (8)

d

dζ
< αa1

i1
(x1)...α

an

in
(xn) > (9)

= αs

[

∑

0<l<n+1

< αa1

i1
(x1)...α

al−1

il−1
(xl−1)α

al+1

il+1
(xl+1)...α

an

in
(xn)σ

al

il
(xl) > +

∑

0<m<k<n+1

< αa1

i1
(x1)...α

am−1

im−1
(xm−1)α

am+1

im+1
(xm+1)...

×α
ak−1

ik−1
(xk−1)α

ak+1

ik+1
(xk+1)...α

an

in
(xn)χ

amak

imik
(xm, xk) >

]

Here we have defined

χab
ij (x, y) >= raci (x, u)χcd(u, v)r†dbj (v, y) (10)

σa
i (x) = rabi (x, u)σb(u) + pabci (x, u, v)χbc(u, v)

4All the functions in the rest of this paper depend only on transverse coordinates. To simplify notation we
largely drop the subscript ⊥ in the following.

5The chromoelectric field strength F i+ is proportional to αi as per Eq. (3). In what follows we will therefore
refer to αi as to the field strength.
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with

rabi (x, y) =
δαa

i (x)

δρb(y)
(11)

pabci (x, y, z) =
δ2αa

i (x)

δρb(y)δρc(z)

In Eqs. (11), (12) the repeated indices are summed over.
We now have to express the quantities r and p explicitly in terms of the field αi. Once this is

done the equations Eq. (10) become explicit equations for the evolution of the correlators of the
field αi, since the charge density ρ is already known in terms of αi by virtue of Eq. (4).

To find rabi we differentiate Eq. (4) with respect to ρ and get

∂ir
ab
i = −δab (12)

ǫij∂ir
ab
j − 2facdǫijα

c
ir

db
j = 0

This set of equations is easily solved by decomposing ri into the longitudinal and the transverse
parts according to

rabi = ∂il
ab + ǫij∂jt

ab (13)

with the following result

rabi (x, y) = − < x|
{

∂iδ
ab + ǫij∂j

[

1

D∂

]ac

ǫklα
cb
k ∂l

}

1

∂2
|y >= − < x|

[

Di
1

∂D

]ab

|y > (14)

Here < x|O|y > denotes a configuration space matrix element in the usual sense. Scalar products
with respect to space time indices here and below refer only to transverse indices, so that for
example ∂D = ∂iDi with i = 1, 2. For convenience we have also defined

αab
i = fabcαc

i (15)

Dab
i = ∂iδ

ab + αab
i .

Now differentiating Eq. (13) once again with respect to ρ we can solve for p:

pabci (x, y, z) = −
(

ǫij∂j

[

1

D∂

]ad
)

(x, u)fdfeǫklr
fb
k (u, y)recl (u, z) . (16)

Here again summation over the repeated color indices and integration over the transverse coordi-
nate u on the right hand side is understood.

Equations (14) and (16) give the complete solution for r and p in terms of the field α. The set
of equations Eq. (10) together with Eq. (11) and Eqs. (14), (16) directly govern the evolution of
the correlators of chromoelectric field.

We close this section by noting that the quantities χab
ij and σa

i have very simple physical
meaning. As mentioned above, the high momentum modes of the vector field which have been
integrated out in order to arrive at the evolution equation induce extra color charge density δρ. The
average value of this induced density and its mean fluctuation appear in the evolution equations
for the correlators of charge density, as σa and χab. Clearly the appearance of the induced color
charge density leads to the change in the value of the chromoelectric field through the solution of
Eq. (4) with ρ+ δρ on the right hand side. Diagrammatically the new field is represented by the
sum of the tree level diagrams with ρ+ δρ as the source. Those are depicted in Fig. 1. It is clear
that σa

i is nothing but the average value of the induced chromoelectric field. Additionally, since
the induced charge density δρ contains components with frequencies p− higher than those of the
input charge density ρ, upon time averaging the induced chromoelectric field is characterized also
by mean fluctuation < δαa

i δα
b
j >= χab

ij . This again has the simple diagrammatic representation

5



Figure 1: The diagrams contributing to the chromoelectric field at order αs. The full circles denote the

background charge density ρ. The empty circles denote the average of the charge density induced by the

fluctuations < δρ >= σ. The black bars denote contractions corresponding to the mean fluctuation of the

induced charge density < δρδρ >= χ.

Figure 2: The average fluctuation of the induced chromoelectric field χab
ij . The notations are the same

as in Fig.1.

shown in Fig 2.6 The explicit expressions Eqs. (11), (14 and (16) are equivalent to resumming all
the diagrams of the type indicated in Fig. 1 and Fig. 2. They clearly exhibit the mechanism of
the evolution of the field correlators in our approach.

3 The Doubly Logarithmic Regime

We would now like to consider the evolution in the doubly logarithmic approximation. By this
we mean that in every step of the evolution not only the longitudinal momenta are lowered but
in addition, the transverse momenta are required to grow. That is of course just the QCD parton
model picture that the ”valence” partons have transverse momenta on the typical hadronic scale
while the high transverse momentum partonic components of a hadron exist only as fluctuations
at short time scales. As discussed in [1] increasing the frequency in the evolution is equivalent to
transverse momentum ordering in addition to the longitudinal momentum ordering. This scheme
is therefore equivalent to the Born–Oppenheimer approximation in a system with a continuum of
time scales.

Technically, in our approach the doubly logarithmic regime is singled out by restricting the
transverse momenta in the fluctuation field which is being integrated over to be smaller than the
transverse momentum of the observable that is being calculated, but larger than the transverse
momentum of the background field. Practically this just means that the background field through-
out the calculation is considered to be independent of x⊥. The results are then easily obtained
by taking the leading order of the transverse derivative expansion of the general expressions for χ
and σ given in [1]. The result in this limit simplifies very much for two main reasons. First, since
there is ordering in all momentum components in the evolution it is clear that virtual diagrams
can not give a non-vanishing contribution. This is simply the result of momentum conservation

6Given that Eq. (5) contains the average value and the mean fluctuation turn as the only relevant characteristics
of the induced density δρ this naturally carries over to the the induced field δα to leading order in the coupling
constant αs.
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in the x⊥ independent background. Therefore we have immediately

σa = σa
i = 0 . (17)

The calculation of the real part also simplifies. This is because the two components of the
chromoelectric field commute in this limit

[αi, αj ] = 0 (18)

This is the consequence of the first equation in Eq. (4) for constant αi. This means that αi can be
treated as constant numbers. Using the explicit expressions from [1] for χ we obtain in the double
logarithmic limit

χab(x, y) = −4

[

α2 < x| (∂D)2

D2(∂2 + 2α2)
|y >

]ab

(19)

and

χab
ij (x, y) = 4

[

α2 < x| DiDj

D2(∂2 + 2α2)
|y >

]ab

. (20)

Let us first check that our expressions in the limit of weak field do indeed reproduce the
DGLAP evolution in the double logarithmic regime, as claimed. To this end let us consider the
evolution of the two point function7 .

d

dζ
< αa

i (x)α
b
j(y) >= 4αs

[

< x|α2 DiDj

D2(∂2 + 2α2)
|y >

]ab

(21)

At weak fields the 2α2 term in the denominator of Eq. (21) should be dropped and the covariant
derivatives become simple derivatives. Taking trace of the evolution equation over both, color and
transverse indices we obtain

d

dζ
< αa

i (x)α
a
i (y) >= −4αsNc < αa

i α
a
i >< x| 1

∂2
|y > (22)

The gluon distribution is related to the field correlator in the following way [1]

xG(Q) = (2π)2
∫

d2b < F+i(b, xp+, x+)F+i(b, xp+, x+) >Q

=
1

4παs

∫

d2b

∫ Q2

0

d2k

∫

d2xeikx < αa
i (b + x/2)αa

i (b− x/2) > (23)

Here F+i(b, k+) =
∫

dx−eik
+x−

F+i(b, x−) and the subscript Q means that the transverse coordi-
nates in the chromoelectric fields operators are equal with accuracy 1/Q. This also gives

∂

∂ lnQ2
[xG(Q)] =

1

4αs
Q2

∫

d2b

∫

d2xeiQx < αa
i (b + x/2)αa

i (b− x/2) > (24)

The factor 1
4παs

appears in these expressions since the vector potential αi differs in normalization
from the chromoelectric field by a factor 1/g, see Eq. (3). Taking the Fourier transform of Eq. (22)
and integrating over the impact parameter bi we obtain

∂2

∂ζ∂ lnQ2
[xG(Q)] =

αsNc

π
xG(Q) (25)

which is precisely the double logarithmic approximation to the DGLAP equation.

7In this equation as well as in the rest of the paper we use the bra and ket notation < | > to denote both the
averaging over the hadron state (averaging over ρ in Eq. (1)) of the function of αi’s and the configuration space
matrix element of the powers of derivatives ∂i.
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The following comment is due here. The right hand side of Eq. (22) contains the expression
< αa

i α
a
i >. In the leading order of the derivative expansion αi does not depend on the transverse

coordinate, and this expression of course is also constant. If one allows slow variation of the field
(slow in the sense that the scale of the spatial variation should be much larger than 1/Q) this
obviously should be understood as < αa

i (b)α
a
i (b) > where the impact parameter b = (x + y)/2

is the center of mass coordinate. Of course since the spatial resolution is 1/Q, the coordinate of
the field is only defined to this accuracy. The more exact specification can be only given beyond
the leading order of the derivative expansion and is therefore beyond the approximation we are
discussing here. Another way of saying this is that the fields that contribute to the right hand
side of the evolution equation themselves contain only transverse momentum components smaller
than Q. We therefore have to understand < αa

i α
a
i > on the right hand side of Eq. (22) as

< αa
i (b)α

a
i (b) >=

∫ Q2

0

d2k

4π2

∫

d2xeikx < αa
i (b− x/2)αa

i (b + x/2) > (26)

This is precisely howG(Q) arises in the right hand side of Eq. (25). In this approximation therefore
the dependence on Q and b in Eq. (22) factorizes and the products of the fields are defined with
the transverse cutoff 1/Q. This is a general feature of the leading order of derivative expansion
and is not specific in any sense to the weak field limit.

We note that expanding the right hand side of Eq. (21) to second order in the field intensity
and taking trace over color and Lorentz indices we obtain the first nonlinear correction to the
DGLAP equation

∂2

∂ζ∂ lnQ2
xG(Q) =

αsNc

π
xG(Q) − 2

Q2

∫

d2btr < (α(b)2)2 > (27)

This is precisely the contribution of the twist four operator to the evolution of gluon density as
calculated by Mueller and Qiu [21]. It is probably worthwhile noting that Eq. (27) should be
compared not with the nonlinear GLR equation, which is expressed in terms of the distribution
function, but rather with Eq. (25) of [21] which contains the contribution of twist four operators to
the evolution of the gluon distribution. It is straightforward to check that taking into account the
normalization of the operator G(2) in [21] our Eq. (27) is indeed equivalent to Eq. (25) of [21]. The
nonlinear GLR equation arises as an approximation to this equation if one assumes factorization
of the four gluon operator into the square of the gluon distribution in a very particular manner.
Assuming this factorization Eq. (27) would indeed lead to the GLR equation with the same
coefficient as given in [21].

Equations for the higher correlators can be analyzed in a similar fashion in the weak field
limit. They all reduce to homogeneous evolution equations and yield simple expressions for the
anomalous dimensions of the higher twist operators. Our main interest here, however, is to explore
the opposite situation, namely when the fields and partonic densities become large and this is what
we will do in the rest of this paper.

The most prominent feature of equation (21) is the appearance of the factor Q2 − 2α2 in the
denominator. The field strength −2α2 therefore plays the role of a dynamically generated mass
in the evolution at high density8. This is not entirely unexpected, but it is gratifying to see the
emergence of this dynamical mass in such a straightforward fashion in our approach. Clearly the
effect of this mass is to slow down the evolution. In fact it is easy to see that when the density
becomes large this “mass term” dominates the evolution and leads to unitarization.

Let us consider the evolution of the distribution function in the high density -strong field limit
−α2 > Q2. Neglecting Q2 relative to α2 in the denominator in Eq. (21)9 we obtain

∂2

∂ζ∂ lnQ2
xG(Q) =

Nc(Nc − 1)

2
Q2S (28)

8Note that the matrix α as we have defined it is anti hermitian. The eigenvalues of α2 are therefore negative.
9This must be done with care, since the matrix α2 has zero eigenvalues. See comment following Eq. (28).
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Here S is the area of the hadron within which the density is high. It appears due to the integration
over the impact parameter. The origin of the color factor Nc(Nc − 1) is the following. If the
matrix α2 had no zero eigenvalues, this factor would be just N2

c − 1 - the trace of the unit matrix
in the adjoint representation. However the matrices αi as defined in Eq. (15) necessarily have zero
eigenvalues. The number of these zero eigenvalues is genericallyNc−1. Since [αi, αj ] = 0, the same
applies to the matrix α2. The contribution to the trace therefore comes only from the subspace
spanned by the eigenvectors which correspond to nonzero eigenvalues. The dimensionality of this
subspace is N2

c − 1− (Nc − 1) = Nc(Nc − 1).
Integrating Eq. (28) we obtain

xG(Q2) =
Nc(Nc − 1)

2
Q2S ln(1/x) +G0 (29)

This result is very interesting. First it shows a characteristic feature expected of unitarization -
the growth with energy is only logarithmic rather than power like as in the case of a pomeron,
or exp

√
log s as in the case of the doubly logarithmic DGLAP evolution. On the other hand

the gluon density does not completely saturate but keeps growing logarithmically even at high
densities. Similar “partial saturation” was found in the analysis of [10]. and also in the solution
of a nonlinear evolution equation in [12].

Identifying naively the gluon distribution with the total DIS cross section for a probe that
couples directly to gluons10 one would get a logarithmic growth of the cross section on top of
the factor of the geometric area of the hadron. This is perfectly compatible with the Froissart
bound and in fact grows slower than the allowed square of the logarithm if the effective area S in
Eq. (29) grows slower than logarithmically. On the other hand the prefactor depends strongly on
the number of colors and is large at large Nc. This is not what one expects generically from the
unitarized cross section. Once the geometric size has been factored out one does not expect any
other numerical factors. The factor N2

c is of a purely perturbative origin. It counts the number of
perturbative degrees of freedom - gluons that take part in the scattering. This is in accord with the
fact that our approach is indeed perturbative and we therefore can only detect the perturbative
mechanism for unitarization which should be operative in the region where the scattering is mainly
perturbative. Apart from the perturbative component which is described by our present approach
there is also a nonperturbative, low transverse momentum one of the soft pomeron type (see e.g.
the recent analysis in [22]) which is not governed by the evolution we consider here. At very low
values of x it must become leading and eventually the perturbative behavior of Eqs. (28), (29) will
cross over into the real asymptotics which may behave as a square of the logarithm.

4 The Gaussian model.

Eq. (29) represents the asymptotics of the distribution at large values of the density. At small x
one expects the density to be large close to the center of a hadron, at small values of the impact
parameter, but not near the boundary. Eq. (28) therefore can not be quite correct even at small
x. To get a more realistic picture one has to allow for a possibility of a more rapid evolution in
the peripheral regions.

Generically the system of equations Eq. (10) is a coupled system of equations for infinite
number of the multi gluon correlation functions and as such is nontrivial even in the doubly
logarithmic limit. We would like to simplify this system so that it becomes more tractable. One
straightforward possibility is to consider a Gaussian truncation of the original system. What we
mean by this is to assume standard Gaussian factorization of multi particle correlators of the type

< α2n >∼ (2n− 1)!! < α2 >n (30)

10This naive identification has to be taken with a grain of salt. For large values of the gluon density Eq. (29) the
leading twist relation between the cross section and the number of gluons is not valid. One then has to consider the
contribution of higher twist operators directly in the cross section as well as in the evolution of the gluon density.
The following argument should therefore be understood only in illustrative sense.

9



This approximation is in the spirit of the GLR model [9].
Technically this means that we take the statistical weight used for calculation of the averages

on the right hand side of the evolution equation as a Gaussian function of the fields. One should
of course take care to ensure that this Gaussian weight is consistent with the symmetries of the
system and also with the fact that the two spatial components of the chromoelectric field are not
completely independent but rather commute with each other, see Eq. (18). To ensure this, let
us explicitly solve the constraint commutativity imposes on the matrices αi. The quantities to
be averaged all being invariant under global color rotations implies they can only depend on the
eigenvalues of the αi. Since the αi commute, they can be diagonalized simultaneously. We can
therefore take the following explicit representation11

αi = i
∑

A

tAi T
A (31)

Here TA are the diagonal Cartan subalgebra generators of the SU(N) group in the adjoint repre-
sentation, tAi are real coefficients and the index A takes values from 1 to Nc − 1. The coefficients
tAi are completely independent and the Gaussian weight for the averaging can be taken as

< ... >=

(

(Nc − 1)

αsxg

)N−1 ∫

Πi,Adt
A
i ... exp

{

−π(Nc − 1)

αsxg
tAi t

A
i

}

(32)

The meaning of the parameter g is made clear by calculating the glue–glue correlator

< αa
i α

a
i >=

αs

π
xg . (33)

The quantity g is therefore the local partonic density. Just as the field itself it is of course a slowly
varying function of the impact parameter, and is related to the gluon distribution by

G(x,Q2) =

∫

d2b⊥g(x, b⊥, Q
2) (34)

Fourier transforming Eq. (21) and taking trace we get for the right hand side

4αs

N2
c−1
∑

n=1

<
tAi t

B
i r

A
n r

B
n

Q2 + 2tCj t
D
j rCn r

D
n

> (35)

where rAn is the n-th eigenvalue of the A-th Cartan subalgebra generator in the adjoint represen-
tation. The Nc − 1 dimensional vectors rn are the root vectors of SU(N) and have the following
important properties

r2n = 0, n = 1, ..., Nc − 1 (36)

r2n = 1, n = Nc, ..., N
2
c − 1

Therefore only the terms n = Nc, ..., N
2
c − 1 contribute to the sum. In each one of these non

vanishing terms one can perform an orthogonal rotation of the coefficients tAi → sAi such that

s1i = tAi r
A
n (37)

The possibility of such an orthogonal rotation is assured by the fact that the root vectors are
properly normalized. The expression in Eq. (35) then simplifies to

4Nc(Nc − 1)2

xg

∫

dsi exp

{

−π(Nc − 1)

αsxg
s2i

}

s2i
Q2 + 2s2i

(38)

=
πNc(Nc − 1)2Q2

xg

∫ ∞

0

ds

[

s

1 + s

]

exp

{

−π(Nc − 1)Q2

2αsxg
s

}

11The most general matrix αi has the form iU
∑

A
tA
i
TAU†, with U an adjoint representation SU(N) matrix.

However, as noted before any SU(N) invariant quantity does not depend on U and we therefore omit it in all the
following formulae.
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The evolution equation then becomes

∂2

∂ζ∂ lnQ2
xg(x,Q, b⊥) (39)

=
Nc(Nc − 1)

2
Q2

[

1 +
π(Nc − 1)Q2

2αsxg
exp

{

π(Nc − 1)Q2

2αsxg

}

Ei

(

−π(Nc − 1)Q2

2αsxg

)]

where Ei(x) is the integral exponential function defined as

Ei(x) = −
∫ ∞

−x

dt
e−t

t
, x < 0 (40)

We stress that the factorization assumed in Eq. (32) is motivated only to the extent that it
leads to a closed evolution equation for the gluon density. One can think of it as a mean field
approximation for the true weight function for the averaging over fields αi. One certainly expects
this approximation to be valid at small xg where it is equivalent to the steepest descent integration
over αi’s. Additionally at large xg the asymptotics of Eq. (39) reduces to the exact asymptotics
of the original equation (21) and is independent of the form of the weight function. It is therefore
reasonable to expect that this simple model provides a sensible interpolation of the evolution
between the weak and strong density regimes.

Note that Eq. (39) governs the evolution of the gluon density xg(b) and is local in the impact
parameter space. It therefore contains more information on the structure of the hadron state
than just the gluon distribution xG(x,Q2). To determine the evolution of the gluon distribution
xG(x,Q2) one has to integrate the solution of Eq. (39) over the impact parameter b. To write
down a closed equation directly for xG one would have once again to resort to modeling. This
time one needs a model of the gluon density as a function of the impact parameter. Models of
this kind have indeed been used in the literature. One usually assumes a simple factorizeable
structure [12] g(x,Q2, b) = G(x,Q2)S−1(b). The resulting equation for G then depends on the
form of S(b) one takes in this ansatz. For example for a simple homogeneous disk model S−1(b) =
(πR2)−1θ(R2 − b2), Eq. (39) with the substitution Q2 → Q2πR2 governs the evolution of xG.

More commonly one uses the Gaussian type distribution S−1(b) = (πR2)−1e−
b2

2R2 . Any specific
ansatz of this type introduces a new phenomenological parameter R into the equation which has
the meaning of an effective radius of the gluon distribution in the hadron. The same kind of
parameter appears in the GLR equation [9, 21].

It would be interesting to study equation (39) numerically to find out how the effective area in
which the partonic density is high (S in Eqs. (28), (29)) depends on the rapidity. This we intend
to do in a future publication.

5 Discussion

We have considered the doubly logarithmic limit of the low x nonlinear evolution equations derived
in [1]. The most salient feature in this regime is the appearance of a dynamically induced mass
which leads to the slowdown of the evolution as the partonic density becomes larger. In particular
we have shown that at small impact parameters the gluon density grows as a logarithm of energy
rather than following the much faster growth pattern predicted by DGLAP evolution. To study
the crossover between these two regimes in detail one has to analyze the set of equations (10) for
the evolution of multi gluon correlators. This is still a formidable problem, although in the doubly
logarithmic limit the equations are much simpler than the general evolution equations of [1].

We have discussed an approximation in which a closed equation Eq. (39) for the gluon density
arises. This approximation imposes Gaussian factorization of multi particle operators in terms
of the gluon density and is similar in spirit to the approximation used to write down the GLR
equation in [9] and [21].

We note that the local equation for the gluon density Eq. (39) is qualitatively similar to the
equation suggested in [12]. The authors of [12] suggested the following equation on the basis of
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reinterpretation of the Glauber formula for multiple scattering of [10]

∂2

∂ζ∂ lnQ2
xg =

2Q2

π3

{

1− e
−

Ncαsπ2

2Q2 xg
}

(41)

Although the functional form of this equation looks somewhat different from our Eq. (39) the
main features are the same12. Both reduce to the DGLAP equation in the limit of small density.
Asymptotically at low x, where the density is high the solution to both equations behaves as
Q2ln1/x.

There are however also important differences between the two equations. At large densities
the correction to the asymptotic solution of Eq. (41) is exponentially small. On the other hand
expanding Eq. (39) to order 1/xg we find

∂2

∂ζ∂ lnQ2
xg(x,Q, b) =

Nc(Nc − 1)

2
Q2

[

1− π(Nc − 1)Q2

2αsxg
ln

2αsxg

π(Nc − 1)Q2

]

(42)

So the correction here is a power enhanced by a logarithmic factor. The approach to the asymp-
totics is therefore much slower than in Eq. (41). Since the correction term is negative it is clear
that the solution to Eq. (39) has a slower growth at low x. That is to say, at low densities solutions
of both Eq. (41) and Eq. (39) start growing according to the double logarithmic DGLAP equation

xg ∝ e
√

ᾱs ln 1/x (neglecting the running of αs). This growth however is tempered faster in the
solution of Eq. (39) than in Eq. (41). One could wonder perhaps whether the existence of power
corrections at large density in Eq. (39) is an artifact of the Gaussian truncation of the infinite set
of equations Eq. (10). It is easy to see that this is not the case. The reason is that the mechanism
of screening in our approach is the appearance of the effective mass proportional to the intensity
of the chromoelectric field in Eq. (20). This type of screening with necessity gives power like
preasymptotic corrections. It would be very interesting to understand better the relation between
our present approach and the approach of [12].

Finally we note that in a recent very interesting paper [23] Makhlin and Surdutovich also
considered the appearance of effective mass in the context of nuclear collisions. Their approach
physically is complementary to ours. They consider the emission in the final state in a nuclear
collision. In this situation the large transverse momentum modes are emitted first whereas the
low transverse momenta are then emitted and propagate not in the vacuum but in the background
of these hard modes. The propagation of soft modes in the preexisting hard mode background
is then characterized by an effective mass. We on the other hand consider fast, large transverse
momentum fluctuations in the hadron which develop on the background of a slower, smaller
transverse momentum fields. At large fields the fluctuations are inhibited and this is the origin
of the effective mass in our approach. It characterizes the emission of hard fluctuations in the
preexisting soft field background.
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