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Abstract

A new method to extract the weak phase γ is suggested by exploiting

B → DK(∗) decay modes that are not Cabibbo suppressed, using the

isospin relations, and ignoring the annihilation diagram as usual. Assum-

ing 3× 108BB̄ pair at B factories, one can determine γ with 3− σ accuracy

for 80o <∼ γ <∼ 150o using B → DK modes and for 50o <∼ γ <∼ 170o using

B → DK∗ modes.
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One of the goals of B factories which will launch its mission at the end of 1999 is to test
the KM paradigm for the CP violation by verifying that the unitary triangle (UT) can be
constructed in a consistent manner [1]. Namely, one measures three sides and three angles
of the unitarity triangle in all possible ways, and examine if a single triangle emerges from
various different measurements. If so, one can verify that CP violations in KL → ππ and B
decays all result from a single KM phase in the CKM matrix [2]. Otherwise, there should
be some new physics which is more exciting from the particle physics point of view. Still, it
is utmostly important to test the KM picture from B decays. As of today, the least known
quantities of the UT are |Vub/Vcb|, and its three angles [3] :

|Vub/Vcb| = 0.080± 0.020, (1)

−1.0 ≤ sin 2α ≤ 1.0, (2)

0.30 ≤ sin 2β ≤ 0.88, (3)

0.27 ≤ sin2 γ ≤ 1.0. (4)

The first quantity is determined from charmless semileptonic B decays (both inclusive and
exclusive), and suffers from intrinsic theoretical uncertainties such as breakdown of the
heavy quark mass expansion near the phase space boundary, or the poorly known B →
π (or ρ) semileptonic form factors. One can estimate the uncertainty in |Vub/Vcb| as ∼ 25%
conservatively. Three angles of the UT can be loosely bounded from various low energy
phenomenology. The angle β(≡ φ1) can be measured in the gold-plated mode, Bd → J/ψKS

without any hadronic uncertainty. The angle α(≡ φ2) can be measured from B → ππ,
but there is some penguin contamination that cannot be too small considering the recent
observation ofB → Kπ at the level of branching ratio of∼ 1.4×10−5 by CLEO Collaboration
[4]. Still, one can hope to perform the isospin analysis and remove the penguin contribution,
thereby being able to extract the α(φ2) with a reasonable accuracy [5]. The most difficult
to measure is the angle γ(≡ φ3). There have been a lot of suggestions and discussions
about how to measure this quantity at B factories (running at the top of Υ(4S) resonance)
[6,7]. Unfortunately there is no best way to determine γ from B decays up to now. Any
method suggested so far has some weak points, e.g., involving measurements of decay modes
that have too low branching ratios. In Ref. [6], the authors proposed to extract γ using
the independent measurements of B → D0K,B → D̄0K and B → DCPK. However the
charged B meson decay mode B− → D̄0K− is experimentally difficult to measure. The
reason is that the final D̄0 meson should be identified using D̄0 → K+π−, but it is difficult
to distinguish it from doubly Cabibbo suppressed D0 → K+π− following color and CKM
allowed B− → D0K−. There are some variant methods to overcome these difficulties. In
Ref. [8], Atwood et al. used different final states into which the neutral D meson decays
to extract information of γ. In Ref. [9], Gronau proposed that the angle γ is determined
only using the color allowed decay modes, B− → D0K−, B− → DCPK

− and their charge
conjugation modes.

In this letter, we suggest another method for extracting γ from Cabibbo allowed B →
DK(∗) decays. We construct three different triangles from various B → DK(∗) decays, each
of which involves decay modes with rather large branching ratios. From these triangles, one
can determine the weak phase γ with a reasonable accuracy if one has 3 × 108BB̄’s at B
factories. Both B → DK modes and the self-tagging modes B → DK∗ are considered with
an assumption that the annihilation diagrams are negligible in both cases. This assumption
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may be questionable for the B → DK∗ decays in light of the recent work by Ali et al. [10],
which claims that the annihilation diagram may not be ignorable in the B → PV channel
for the case of light pseudoscalar (P ) and light vector (V ) mesons. This claim is based on
the generalized factorization approximation. We leave this as an open question here, with
a remark that one can easily test this assumption by measuring the branching ratio for
B− → D−K̄∗0 and comparing it with other decays we use, such as B−(0) → D1K̄

∗−(0) and
B̄0 → D1K̄

∗0.
The recent CLEO measurement of Br(B+ → D̄0K−) = (2.57 ± 0.65 ± 0.32) × 10−4

[11] gives light on the determination of one angle γ of unitary triangle. Let us begin with
B → DK and define their amplitudes as follows,

A(B− → D0K−) = Aλ3 B1e
iδ1 = Aλ3 (T + C)

A(B̄0 → D+K−) = 1
2
Aλ3 (B1e

iδ1 − B0e
iδ0) = Aλ3 T

A(B̄0 → D0K̄0) = 1
2
Aλ3 (B1e

iδ1 +B0e
iδ0) = Aλ3 C

A(B− → D̄0K−) = 1
2
Aλ3Rbe

−iγ (B′
1e

iδ′
1 +B′

0e
iδ′

0) = Aλ3Rbe
−iγ (C ′ + A′)

A(B− → D−K̄0) = 1
2
Aλ3Rbe

−iγ (B′
1e

iδ′
1 − B′

0e
iδ′

0) = Aλ3Rbe
−iγ (−A′)

A(B̄0 → D̄0K̄0) = Aλ3Rbe
−iγ B′

1e
iδ′

1 = Aλ3Rbe
−iγ C ′.

(5)

where we use the Wolfenstein parametrization of CKM matrix elements, and Rb ≡
√
ρ2 + η2.

B
(′)
I denotes the amplitude for the isospin I state. The first equalities are written in terms

of the isospin amplitudes, whereas the second ones are written in terms of diagramatic
representations (T means a tree diagram, C means a color-suppressed diagram, and so on).
The above equations give two isospin relations,

A(B− → D0K−) = A(B̄0 → D+K−) + A(B̄0 → D0K̄0) (6)

A(B− → D̄0K−) = −A(B− → D−K̄0) + A(B̄0 → D̄0K̄0).

Using the definition of mass eigenstates ofD mesons, D1(2) =
1√
2
(D0±D̄0), and neglecting

the D0 − D̄0 mixing, we obtain

A(B− → D1K
−) = A(B̄0 → D1K̄

0) +
1√
2

[

A(B̄0 → D+K−)− A(B− → D−K̄0)
]

(7)

A(B− → D2K
−) = A(B̄0 → D2K̄

0) +
1√
2

[

A(B̄0 → D+K−) + A(B− → D−K̄0)
]

.

If we neglect A(B− → D−K̄0) which is CKM suppressed and has only the annihilation
diagram contribution, we get ( from now, we only consider final D1 states )

A(B− → D1K
−) = A(B̄0 → D1K̄

0) +
1√
2
A(B̄0 → D+K−) (8)

A(B+ → D1K
+) = A(B0 → D1K

0) +
1√
2
A(B0 → D−K+).

The mixing of the neutral B meson has to be considered in order to obtain the magnitudes of
A(B0 → D1K

0) and A(B̄0 → D1K̄
0). The time dependent decay rate of neutral B mesons

whose initial states are B0 and B̄0 are given by
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Γ(B0
phys(t) → f) =

1

2
|Af |2e−Γt

[

(1 + |ξ|2) + (1− |ξ|2) cos(∆m t)− 2(Imξ) sin(∆m t)
]

, (9)

Γ(B̄0
phys(t) → f) =

1

2
|Af |2e−Γt

[

(1 + |ξ|2)− (1− |ξ|2) cos(∆m t) + 2(Imξ) sin(∆m t)
]

.

Here, ξ is

ξ = e−2iφM
Āf

Af

, (10)

where A ≡ A(B0 → f), Ā ≡ A(B̄0 → f), f = D1(2)KS, and φM is the B0 − B̄0 mixing
phase. It is possible to get |A(B̄0 → D1K̄

0)| and |A(B0 → D1K
0)| from the coefficients of

the constant and cos(∆m t) terms and using |A(B0 → D1(2)K
0)| = |1/

√
2A(B0 → D1(2)KS)|

and |A(B̄0 → D1(2)K̄
0)| = |1/

√
2A(B̄0 → D1(2)KS)|.

From Eq. (5), we get other relations for A(B− → D1K
−) and its charge conjugate,

A(B− → D1K
−) =

1√
2
A(B− → D0K−) +

Aλ3Rb

2
√
2
Bei(δ−γ) (11)

A(B+ → D1K
+) =

1√
2
A(B− → D0K−) +

Aλ3Rb

2
√
2
Bei(δ+γ)

where B is given by Beiδ ≡ B′
1e

iδ′
1+B′

0e
iδ′

0 and the last terms in Eq.(11) are only 1√
2
A(B− →

D̄0K−) and 1√
2
A(B+ → D0K+).

The strategy to determine γ is as follows :

• Using the first equation of Eq.(6), we can draw a triangle and fix 1√
2
A(B− → D0K−).

The bottom side of the triangle is 1√
2
|A(B̄0 → D+K−)| = 1√

2
|A(B0 → D−K+)|.

• Using Eq.(8), we can draw two triangles whose bottom side is 1√
2
|A(B̄0 → D+K−)| =

1√
2
|A(B0 → D−K+)| and fix A(B− → D1K

−) and A(B+ → D1K
+).

• Using three fixed amplitudes, 1√
2
A(B− → D0K−), A(B− → D1K

−) and A(B+ →
D1K

+), the angle 2γ is determined by Eq.(11) up to some discrete ambiguities (see
Fig. 1).

In Fig. 1, we show three triangles that can be constructed from our strategy. The thick
solid sides are exactly what were problematic in the GLW method [6], since it is almost
impossible to experimentally measure those sides. In our case, we use only B decay modes
with relatively large branching ratios so that one can avoid the difficulties encountered in
the GLW method. The question still remains whether one can extract 2γ from Fig. 1 with
a reasonable accuracy by measuring various sides of three triangles, which we would like to
address in the following.

Let us estimate the uncertainty in the determination of the weak phase γ by the method
suggested in this letter, assuming that 3 × 108 and 1011 BB̄’s are available at the Υ(4S)
resonance (B factories using e+e− annihilation) and hadron colliders (such as BTeV or
LHCB), respectively. The observed number of events for each mode is

Nobs = Ntot × Br × f × ǫ,
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where Ntot, Br, f and ǫ are the total number of B− B̄ events, branching ratios, observation
fractions and detector efficiencies, respectively. From Nobs one can determine the uncertainty
∆Nobs of the branching ratio. The K0 is identified by the KS → π+π− mode and using
the fact that the half of KS is K0. The K∗0, K̄∗0 mesons are distinguished using K∗0 →
K+π− and K̄∗0 → K−π+ modes and they are also used for self-tagging of B0 and B̄0

respectively. In D0, D̄0 meson tagging, we add the D0 → K−π+π0 mode to the D0 →
K−π+, D0 → K−π+π+π− modes to increase the observation rate. In Table 1, the tagging
modes, observation rate and detector efficiencies are summarized. For each collider, we
assume the same detection efficiencies as Dunietz’s work [7]. From the experimental value
for Br(B+ → D0K−) ∼ 2.6 × 10−4, one can extract the size of |T + C|. Assuming that
|C/T | ≈ |C ′

/T | ≈ λ = 0.22 as in Ref. [12], and allowing C and C
′

to have phases δC and δC′

relative to the T amplitude, one can estimate the branching ratios of other decay modes that
participate in the triangles shown in Fig. 1. Then the uncertainty of the amplitude A =

√
Br

is determined by ∆A/A = (1/2)(∆Br/Br) ≈ 1/(2
√
Nobs). Using this information, we

investigate the possibility of the determination of γ from three triangles and its uncertainty.
The results are shown in Fig. 2 (a) and (b), where the horizontal and the vertical axes

represent γ and ∆γ (in degrees), respectively. Since the phases δC and δC′ are unknown,
we considered four different cases with a fixed δC = 10o : (i) δC′ = δC (the real curve), (ii)
δC′ = −2δC (the dashed curve), (iii) δC′ = 0 (the dotted curve), and (iv) δC′ = +2δC (the
dashed-dotted curve). We observe some dependence of ∆γ on the phases δC and δC′ through
the branching ratios. Our method can provide a good determination of γ for 80◦ <∼ γ <∼ 150◦

or so. One can achieve an accuracy of better than 3-σ for this range of γ. For small γ, our
method fails and one has to resort to other methods.

Now, let us repeat the same analysis for the self-tagging modes, B → DK∗. The advan-
tage of these self-tagging modes is that the number of available B decays become doubled
compared to the B → DK modes and the time dependent analysis is unnecessary. As
before, we can define several amplitudes similarly to Eqs. (5) by K → K∗. Then the same
equations as (6),(8) and (11) can be obtained. One thing to be kept in mind is the adequacy
of neglecting the amplitude for B− → D−K̄∗0 and its charge conjugate, which are Cabibbo
suppressed and generated by the annihilation diagram at the quark level. Usually such
annihilation diagrams are neglected, since they are suppressed by fB/mB relative to other
diagrams. However this may not be true for the case of B → PV modes as recently discussed
by Ali et al. in the context of the generalized factorization approach [10]. They claim that
the annihilation branching ratio might be an order of magnitude higher than that of the
penguin diagram only. One can verify the usual assumption of neglecting the annihilation
diagram in B → DK∗ only through the experimental measurement of the branching ratio
for B− → D−K̄∗0.

With this point kept in mind, we may proceed as before to construct three triangles as
shown in Fig. 1, and determine γ. For the estimate of the uncertainties, let us assume that
the branching ratio for B0 → D−K∗+ is about 4× 10−4 adopting the results of Neubert and
Stech based on the factorization approximation for B decays into heavy and light mesons
[13]. Then, assuming the same relation between T, C and C

′

and their relative phases as
before (B → DK), one can estimate the uncertainties in the sides of three triangles in Fig. 1
(with K → K∗) and the weak phase γ. The results are shown in Fig. 2 (c) and (d). As
before, we can determine γ with 3-σ precision if 50◦ <∼ γ <∼ 170o. This range of γ covers
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substantial part of γ that is allowed in Eq. (4). The uncertainty in γ is about 5◦ − 20◦ in
this range of γ, and we achieve a better determination of γ from the self-tagging B → DK∗

decay modes.
In conclusion, we considered a new method to extract the weak phase γ using the triangles

shown in Fig. 1. If one has 3× 108 BB̄ pairs at the Υ(4S) resonance, or 1011 B’s at hadron
colliders, one can determine γ with 3-σ precision or better for 80o(50◦) <∼ γ <∼ 150o(170o)
from B → DK(∗) decays that are not Cabibbo suppressed. This range of γ covers substantial
part of γ that is allowed in Eq. (4). One can also repeat for the D2K

(∗) modes instead
of D1K

(∗) modes, which will provide independent informations on γ. For smaller γ, the
uncertainty in γ is so large that our method is no longer useful in extracting γ. Also our
method fails if there is no/little strong phase difference δ. One has to resort to some other
methods in these cases.

Note Added

While we were finishing this paper, we received the paper by M. Gronau and J.L. Rosner
[14], who arrive at the same conclusion as our work.
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TABLES

TABLE I. The tagging and detection efficiencies (f ’s and ǫ’s) assumed to estimate the ∆γ. See

the text for the details. Numerical values are for hadron collider ( Υ(4S) ).

particles tagging modes observation rate ( f ) efficiency ( ǫ )

K0, K̄0 KS → π+π− 1/3 ( 1/3 ) 0.1 ( 1.0 )

K∗0, K̄∗0 K∗0 → K+π− 2/3 ( 2/3 ) 0.1 ( 1.0 )

K∗± K∗+ → K0π+ 5/9 ( 5/9 ) 0.1 ( 1.0 )

K∗+ → K+π0

D0, D̄0 D0 → K−π+ 0.25 ( 0.25 ) 0.1 ( 1.0 )

D0 → K−π+π+π−

D0 → K−π+π0

D± D+ → K−π+π+ 0.91 ( 0.91 ) 0.1 ( 1.0 )

D1 D0 → π+π− 5.85 × 10−3(5× 10−2) 0.1 ( 1.0 )

D0 → K+K−
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FIGURES

FIG. 1. Three triangles constructed from various B → DK modes
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FIG. 2. The ∆γ ( error ) plot in the determination of γ assuming 1011 B’s at the hadron

machines and 3× 108 B’s at B factories : (a) hadron machines and B → DK, (b) B factories and

B → DK, (c) hadron machines and B → DK∗ and (d) B factories and B → DK∗. ( δC = 10o

fixed, real line : δC′ = −2δC , dashed line : δC′ = 0, dotted line : δC′ = δC , dashed-dotted line :

δC′ = 2δC .)
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