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Abstract

We construct off-diagonal parton distributions defined on the interval 0 ≤ X ≤ 1
starting from the off-forward distributions defined by Ji. We emphasize the partic-
ular role played by the symmetry relations in the “ERBL-like” region. We find the
evolution equations for the off-diagonal distributions which conserve these symme-
tries. We present numerical results of the evolution, and verify that the analytic
asymptotic forms of the parton distributions are reproduced. We also compare the
constructed off-diagonal distributions with the non-forward distributions defined
by Radyushkin and comment on the singularity structure of the basic amplitude
written in terms of the off-diagonal distributions.
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1 Introduction

It is well known that the cross section of hard scattering processes (such as deep inelastic
scattering, the production of large pT jets, etc.) can be written as the sum of parton distri-
butions multiplied by the cross sections of hard subprocesses calculated at the parton level
using perturbative QCD. That is we can factor off the long distance (non-perturbative)
effects into universal, process independent, parton distributions (fi(X, µ

2) with i = q, q̄, g)
specific to the incoming hadrons. X is the longitudinal fraction of the hadron’s momen-
tum that is carried by the parton and µ is a scale typical of the hard subprocess. The
parton distributions are given by the matrix elements 〈P |Ô|P 〉 where Ô is a twist-2 quark
or gluon operator, and P represents the full set of quantum numbers of the hadron. To
be specific we will be concerned with a proton taking part in unpolarised reactions. Thus
P will represent the 4-momentum of the proton.

Calculating the parton distributions from first principles is one of the most challenging
problems in non-perturbative QCD. The most promising approach is lattice QCD, but
much remains to be done. On the other hand, from a practical viewpoint, the parton
distributions of the proton are determined with good precision from global analyses of deep
inelastic and related hard scattering data. The distributions fi(X, µ

2) are parametrized
as a function of X at some starting scale µ2

0 and then evolved using the DGLAP equations
of perturbative QCD to higher µ2 values relevant to the data to be fitted.

Recently [1]–[9] there has been much interest in off-diagonal (also called off-forward
by Ji [1] or non-forward by Radyushkin [4]) distributions which are given by matrix ele-
ments 〈P ′|Ô|P 〉 in which the momentum of the outgoing proton is not the same as that
of the incoming proton. For example, the amplitudes for processes such as deeply virtual
Compton scattering (γ∗p→ γp) or vector particle electroproduction (γ∗p→ Zp or J/ψp)
depend on off-diagonal distributions. Since P 6= P ′ the parton returning to the proton
has a different momentum to the one which is outgoing, and so we need two momentum
variables to specify the off-diagonal distributions. The Ji and Radyushkin distributions,
which are denoted by H(x, ξ) and Fζ(X) respectively, differ in their choice of the defining
four vector. Ji chooses the momentum fractions x and ξ with respect to the average of the
incoming and outgoing proton momenta P̄ = 1

2
(P + P ′), whereas Radyushkin defines X

and ζ with respect to the incoming proton momentum P . The former has the important
advantage that it is easier to impose the symmetry requirements, while the latter has the
advantage that it is close to the definition used for the conventional (diagonal) distribu-
tions. Our aim is to clarify the relation between the two formulations. We find that they
are not equivalent unless specific conditions are imposed on Radyushkin’s non-forward
distributions. We show this by a direct construction of distributions defined in the range
0 ≤ X ≤ 1 which are equivalent to Ji’s off-forward distributions.

Let us neglect, for the moment, the gluon distribution. The quark distribution
Hq(x, ξ), defined by Ji, covers the interval −1 ≤ x ≤ 1 and generates two distinct distribu-

tions which we denote2 by F̂q(X, ζ) and F̂q̄(X, ζ) with 0 ≤ X ≤ 1. Over the region X > ζ

2For the reasons given below we must use a notation which distinguishes between the distributions
F̂(X, ζ) constructed from H and the non-forward distributions Fζ(X) defined by Radyushkin.
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the two functions F̂q and F̂q̄ are independent. On the other hand in the region X < ζ they
are related to each other, with the consequence that the non-singlet and singlet combina-
tions possess a symmetry about X = ζ/2. We obtain evolution equations for F̂ starting
from the evolution equations for the off-forward distributions H . We find that they differ
from the evolution equations for the non-forward distributions [5, 9] by additional terms
which are essential to preserve the symmetry properties in the ERBL-like region. We
also found that the basic amplitude for deeply virtual Compton scattering (DVCS) has a
different singularity structure to that given by the non-forward distributions F .

The outline of the paper is as follows. To establish notation we quickly review in
Section 2 the salient features of the conventional (diagonal) parton distributions H(x)
with support −1 ≤ x ≤ 1. Section 3 reviews the extension of these ideas to the off-
diagonal distributions H(x, ξ) that were introduced by Ji [1]. In Section 4 we transform
the distributions H(x, ξ) into distributions F̂(X, ζ) with 0 ≤ X ≤ 1, and demonstrate
that F̂ must satisfy symmetry relations for X < ζ . In Section 5 we give the evolution
equations for the F̂(X, ζ) and present numerical solutions. The complete form of the
evolution equations is given in the Appendix. In Section 6 we discuss the relation between
the distributions F̂ and the non-forward distributions F of Radyushkin. In the same spirit
we discuss the differences in the singularity structure of the DVCS amplitude. Finally
Section 7 contains our conclusions.

2 Conventional parton distributions

In order to introduce off-diagonal distributions it is most convenient to first recall the
definition of the conventional (diagonal) parton distributions in terms of light-cone coor-
dinates (x± = (x0±x3)/

√
2, x1, x2) and in the light-cone gauge (A+ = 0) [10]. For instance

the quark distribution Hq(x) is given in terms of the matrix element of a light-cone bilocal
operator

Hq(x) =
1

2

∫ dy−

2π
e−ixP+y− 〈P |ψ̄q(0, y

−/2, 0) 1
2
γ+ ψq(0,−y−/2, 0) |P 〉. (1)

Note that the matrix element is diagonal in the four momentum P of the proton. For
simplicity we do not show either here, or throughout the paper, the renormalization scale
dependence of Hq and of the other parton distributions that we discuss.

To see the parton content of the distribution Hq we make a Fourier expansion of
(the light-cone-plus or ‘good’ component) ψ+ of the quark field, in terms of the quark
annihilation operator b and the antiquark creation operator d†. Similarly ψ̄+ is expanded
in terms of b† and d, and then the integration over y− in (1) is performed. It is found
that Hq is only non-vanishing in the interval −1 ≤ x ≤ 1 with the term b†b contributing
for x > 0 and dd† contributing for x < 0 [11]

Hq(x) =
1

2P+

∫

d2kT
2x(2π)3

∑

λ

[

〈P |b†λ(xP+,kT ) bλ(xP
+,kT )|P 〉 θ(x)

(2)

−〈P |d†λ(−xP+,kT ) dλ(−xP+,kT )|P 〉 θ(−x) ,
]
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where λ is the helicity of the quarks. The b†b term corresponds to the emission of a
quark (carrying a fraction x of the proton’s momentum) and its subsequent reabsorption
within the proton. Similarly the d†d contribution describes the emission and subsequent
reabsorption of an antiquark. The two possibilities are sketched in Fig. 1. Thus the single
distribution Hq with support in the interval −1 ≤ x ≤ 1 embodies both the familiar q
and q̄ distributions, defined on the interval 0 ≤ x ≤ 1, which thus are identified with the
two terms accompanying the theta functions in (2) in the following way

Hq(x) =











q(x) for x > 0

−q̄(−x) for x < 0.
(3)

We may form the valence and singlet quark distributions in terms of Hq

q(x) − q̄(x) = Hq(x) + Hq(−x) ≡ HV
q (x)

(4)
∑

q

[q(x) + q̄(x)] =
∑

q

[Hq(x) − Hq(−x)] ≡ HS(x) ,

where the sum is over the quark flavours. Clearly over the full interval −1 ≤ x ≤ 1 the
valence and singlet quark distributions satisfy the symmetry relations

HV
q (x) = HV

q (−x)
(5)

HS(x) = −HS(−x) .

In a similar way we may introduce Hg(x) ≡ xg(x) where g(x) is the familiar gluon
distribution. In the light-cone gauge

Hg(x) =
1

P+

∫ dy−

2π
e−ixP+y− 〈P |F+ν(0, y−, 0) F+

ν (0, 0, 0)|P 〉 , (6)

where F µν is the gluon field strength tensor and where the summation over the colour
label has been suppressed. Due to Bose symmetry we have

Hg(x) = Hg(−x) . (7)

3 Off-diagonal distributions

The distributions Hq introduced in (1) may be generalized to allow for matrix elements
which are off-diagonal in the four momentum of the proton [1]–[3]

Hq(x, ξ, t) =
1

2

∫ dy−

2π
e−ixP̄+y− 〈P ′|ψ̄q(0, y

−/2, 0) 1
2
γ+ψq(0,−y−/2, 0)|P 〉 , (8)

where we consider only the distributions which conserve the proton helicity and which
describe unpolarized quarks. Since ∆ ≡ P − P ′ 6= 0 the distribution Hq(x, ξ, t) now
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contains two extra scalar variables, in addition to the Bjorken x variable. The variable t
is the usual t-channel invariant, t = ∆2, and the variable ξ is defined by

ξP̄+ =
1

2
∆+ , (9)

where P̄ = 1
2
(P + P ′). This choice of variables3 is due to Ji [1]–[3] and enables symmetry

to be imposed between the incoming and outgoing proton. That is Ji uses the symmetric
combination P̄ of their momenta as the defining direction, and calls the Hq off-forward
distributions. The distributions Hq are real, and the symmetric choice of variables has
the considerable advantage that, due to time-reversal invariance and hermiticity, the dis-
tributions are even functions of ξ [3]

Hq(x, ξ, t) = Hq(x,−ξ, t) . (10)

Since we will perform our analysis for fixed t, concentrating on the x and ξ dependence,
we shall omit the t dependence from now on.

To see the physical content of the off-diagonal distributionsHq we again Fourier expand
ψ and ψ̄ in terms of the quark creation and annihilation operators. Since the distributions
are even in ξ we may take ξ > 0. In this way we obtain the generalization of eq. (2) [3]

Hq(x, ξ) =
1

2P̄+

∫

d2kT

2
√

|x2 − ξ2|(2π)3
(11)

∑

λ

[

〈P ′|b†λ ((x− ξ)P̄+,kT −∆T ) bλ ((x+ ξ)P̄+,kT )|P 〉 θ(x ≥ ξ)

+ 〈P ′|dλ ((−x+ ξ)P̄+,−kT +∆T ) b−λ ((x+ ξ)P̄+,kT )|P 〉 θ(−ξ < x < ξ)

− 〈P ′|d†λ ((−x− ξ)P̄+,kT −∆T ) dλ ((−x+ ξ)P̄+,kT )|P 〉 θ(x ≤ −ξ)
]

.

Fig. 2 gives a pictorial description of the content of (11). Diagrams (a) and (c), which
arise from the b†b and d†d terms in ψ̄ψ, generalize Figs. 1(a) and (b) respectively. For
example the first diagram corresponds to the emission of a quark of momentum k from
the proton followed by its absorption with momentum k−∆. Thus for x > ξ and x < −ξ
the off-diagonal distribution Hq generalizes the familiar quark and antiquark distributions
and will evolve according to modified DGLAP equations. Diagram (b), corresponding to
the middle region, −ξ < x < ξ, does not have a counterpart in Fig. 1. This diagram,
which arises from the db term in ψ̄ψ, corresponds to the emission of a quark-antiquark
pair. In this region Hq is a generalization of the proton form factor and will evolve
according to modified ERBL equations [12]. Thus in this domain Hq may be regarded as
a generalization of the probability distribution amplitude which occurs in hard exclusive
processes.

Just as for the diagonal case, we introduce valence and singlet quark distributions
analogous to (4)

HV
q (x, ξ) ≡ Hq(x, ξ) + Hq(−x, ξ) = HV

q (−x, ξ) , (12)

3Note that Ji defines ∆ = P ′ − P .

4



HS(x, ξ) ≡
∑

q

[Hq(x, ξ) − Hq(−x, ξ)] = −HS(−x, ξ) . (13)

Thus in addition to the symmetry under ξ → −ξ, the distributions have symmetry or
antisymmetry under x → −x. Also, in analogy to (7), the off-diagonal gluon distribution
satisfies

Hg(x, ξ) = Hg(−x, ξ) . (14)

The distributions (12)-(14) are identical to those introduced by Ji [2, 3]4 except that

Hg(x, ξ) = xHJi
g (x, ξ). (15)

On account of the extra factor x, the gluon distribution (15) is not required to be zero at
x = 0, unlike the situation for HJi

g (see also [5] for a relevant discussion).

4 Off-diagonal distributions on the interval [0, 1]

So far we have considered the off-diagonal distributions Hq(x, ξ), introduced by Ji [1, 2],
and defined on the interval −1 < x < 1. As noted above P + P ′ is taken as the defining
direction, so that symmetry is imposed between the incoming (P ) and outgoing (P ′)
proton momenta. This variable ξ was defined in (9) by

∆ ≡ (P − P ′) = ξ(P + P ′) , (16)

where for simplicity we have omitted the light-cone plus superscript (see (9)).

To make direct contact with conventional partons we may introduce alternative off-
diagonal distributions F̂q(X, ζ) defined on the interval 0 ≤ X ≤ 1 such that the initial
parton carries a positive fraction X of the proton’s longitudinal momentum. That is we
take P as the defining direction. Thus the counterpart to (16) is

∆ = ζP (17)

with 0 ≤ ζ ≤ 1. This is exactly analogous to the approach introduced by Radyushkin [4, 5]
in the construction of the non-forward distributions Fζ(X). However our construction of

the distributions F̂q(X, ζ) presented below is different to that of [4, 5]. From (16) and
(17) it follows that

ξ =
ζ

2− ζ
. (18)

4.1 The relation between the distributions H and F̂

In this subsection we first define the off-diagonal distributions F̂q(X, ζ) with X in the
interval [0,1] starting from Ji’s distributions Hq(x, ξ) with x in the range [-1,1]. Then we

explore the symmetry relations satisfied by the F̂q(X, ζ).

4Note that in going from Ref. [2] to Ref. [3] Ji has redefined ξ/2 by ξ.
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If we compare the momentum fraction carried by the emitted parton in Fig. 3 with
those in Figs. 2(a) and 2(c), then we see that two different transformations are relevant in
reducing the interval −1 ≤ x ≤ 1 covered by Hq(x, ξ) to the interval 0 ≤ X ≤ 1 covered

by F̂q(X, ζ). First, from Fig. 2(a), we have the transformation

X1 =
x1 + ξ

1 + ξ
, (19)

which takes the interval x1 ∈ [−ξ, 1] into X1 ∈ [0, 1]. Simultaneously ξ is transformed
into ζ . Secondly, from Fig. 2(c), we have the transformation

X2 =
ξ − x2
1 + ξ

, (20)

which takes x2 ∈ [−1, ξ] into X2 ∈ [0, 1]. Now, −ξ is transformed into ζ . In this way we
introduce two distinct off-diagonal distributions F̂q and

F̂q(X1, ζ) =
1

1− ζ/2
Hq(x1, ξ)

(21)

F̂q̄(X2, ζ) =
−1

1− ζ/2
Hq(x2, ξ) ,

where ξ = ζ/(2− ζ) and the inverse relations

x1 =
X1 − ζ/2

1− ζ/2
, x2 =

ζ/2−X2

1− ζ/2
(22)

follow from (18–20). We stress that as X1,2 cover the range [0, 1], the corresponding x1
and x2 cover respectively the ranges [−ξ, 1] and [−1, ξ], as shown schematically in Fig. 4.
The factors ±(1− ζ/2)−1 in (21) arise from the translation of the measure dx to dX .

In the limit that ζ (and ξ) → 0 we have from (3)

F̂q(X, 0) = Hq(X, 0) = q(X)

(23)

F̂q̄(X, 0) = −Hq(−X, 0) = q̄(X) ,

which is an additional motivation for using the quark and antiquark subscripts to differ-
entiate between the two functions F̂q and F̂q̄.

Finally, due to the symmetry relation (14), the gluon distribution may be defined in
the range 0 ≤ X ≤ 1 by either of the transformations (22). That is we have

F̂g(X, ζ) =
1

1− ζ/2
Hg

(

X − ζ/2

1− ζ/2
, ξ

)

=
1

1− ζ/2
Hg

(

ζ/2−X

1− ζ/2
, ξ

)

. (24)
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4.2 Symmetry relations

From Fig. 4 we see that in the DGLAP-type regions (x > ξ or x < −ξ) Hq is transformed

respectively into independent functions F̂q(X) and F̂q̄(X) with X > ζ . On the other hand

in the ERBL-type region (−ξ < x < ξ) the distribution Hq generates functions F̂q(X)

and F̂q̄(X) with X < ζ which are no longer independent. Indeed for X < ζ we have

F̂q(ζ −X) =
1

1− ζ/2
Hq

(

ζ −X − ζ/2

1− ζ/2

)

=
1

1− ζ/2
Hq

(

ζ/2−X

1− ζ/2

)

= −F̂q̄(X) , (25)

where for simplicity we do not indicate the additional explicit ζ or ξ dependence of the
distributions.

Eq. (25) is the basic symmetry relation for the off-diagonal quark distributions which
indicates that in the ERBL-like region the quark and antiquark distributions are not
independent, unlike the case in the DGLAP-like region. The physical reason for this can
easily be understood by looking at Fig. 2b. In the ERBL-like region we can define the
off-diagonal distributions with respect to the first emitted parton being either the quark
with momentum x + ξ or the antiquark with momentum ξ − x. The latter possibility
corresponds to the exchange of the annihilation operators in eq. (11), which is the origin
of the − sign in relation (25).

We may form the non-singlet and singlet combinations of the quark and antiquark
distributions. From (12) we have

F̂V
q (X) =

1

1− ζ/2
HV

q

(

X − ζ/2

1− ζ/2

)

= F̂q(X)− F̂q̄(X) ,

(26)

F̂S(X) =
1

1− ζ/2
HS

(

X − ζ/2

1− ζ/2

)

=
∑

q

[

F̂q(X) + F̂q̄(X)
]

,

which in the region X < ζ satisfy symmetry relations resulting from (25)

F̂V
q (ζ −X) = F̂V

q (X) ,

(27)

F̂S(ζ −X) = −F̂S(X) .

It is straightforward to show for X < ζ that the gluon distribution (24) satisfies a similar
relation

F̂g(ζ −X) = F̂g(X) . (28)

These properties are well-illustrated by Fig. 5. The upper plot shows an example of the
off-diagonal distribution Hq(x, ξ) with x ∈ [−1, 1], for ξ = 0.5. The middle plot shows the

transformation of this distribution into the two functions F̂q(X, ζ) and F̂q̄(X, ζ) of (21)
with X ∈ [0, 1]. Their behaviour shows that the symmetry relation (25) is clearly satisfied
in the region 0 ≤ X ≤ ζ . Finally, the lower plot shows the behaviour of the non-singlet
F̂V

q and the singlet F̂S combinations. The symmetry of F̂V
q and antisymmetry of F̂S,

about the point X = ζ/2, are clearly evident in the region 0 ≤ X ≤ ζ .
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5 Evolution equations

Just as we constructed F̂ directly from the off-forward distributions H of Ji, so we start
with the evolution equations [2] for H(x, ξ) with x ∈ [−1, 1] and use transformations (21)
and (24) to rewrite them in terms of the distributions F̂(X, ζ) with X ∈ [0, 1].

In the DGLAP-like regionX > ζ (which corresponds to x > ξ or x < −ξ) the equations
that we obtain for F̂ are equivalent to those given for the non-forward distributions of
Radyushkin [5, 9]. Their full form can be found in the Appendix. Moreover in the limit
ζ → 0 they reduce to the familiar DGLAP evolution equations.

However in the ERBL-like region X < ζ (corresponding to −ξ < x < ξ) the equations
obtained for F̂ are different to those given in [5, 9] for the non- forward distributions.
They have the following forms

µ
∂

∂µ
F̂V

q (X, ζ) = PQQ ⊗ F̂V
q

+
αSCF

π

∫ 1

ζ

dZ

Z

[

Z

X − ζ + Z
− X

ζ

]

F̂V
q (Z, ζ) (29)

µ
∂

∂µ
F̂S(X, ζ) = PQQ ⊗ F̂S + PQG ⊗ F̂g

− αSCF

π

∫ 1

ζ

dZ

Z

[

Z

X − ζ + Z
− X

ζ

]

F̂S(Z, ζ) (30)

+
αSNf

π

∫ 1

ζ

dZ

Z

(1− ζ/2)(ζ −X)

ζ2

[

4X

ζ
+

2X − ζ

Z

]

F̂g(Z, ζ)

µ
∂

∂µ
F̂g(X, ζ) = PGQ ⊗ F̂S + PGG ⊗ F̂g

− αSCF

π

∫ 1

ζ

dZ

Z

(ζ −X)2

ζ(1− ζ/2)
F̂S(Z, ζ) (31)

+
αSNc

π

∫ 1

ζ

dZ

Z

(ζ −X)2

Z

[

1

X − ζ + Z
+

2Z

ζ2

(

1 +
2X

ζ
+
X

Z

)]

F̂g(Z, ζ) ,

where the scale µ is implicit in the distributions F̂ . The full forms of the equations
are given in the Appendix. Here it is sufficient to note that the convolutions shown
symbolically as P ⊗ F̂ are identical to those given in [5, 9]. However the new evolution
equations contain several additional terms, each being a convolution integral over the
range [ζ, 1]. These extra terms are essential to preserve the symmetry properties (27) and
(28) of F̂ during the evolution. We note that in the limit ζ → 1 the additional terms are
to equal zero and that (29) - (31) reduce to the ERBL evolution equations [12] for the
distribution amplitudes.

8



5.1 Numerical results of the evolution

To illustrate how the off-diagonal distributions F̂ evolve with increasing renormalization
scale µ we constructed a computer programme based on the equations given in the Ap-
pendix. For the initial input at the starting scale µ = 1 GeV we adopt the following
strategy. We start with given input forms for the off-forward distributions Hq,g(x, ξ),
which are even in ξ. An example for the quark distribution is shown in Fig. 5(a). Then
using prescriptions (21) and (24) we transform Hq,g(x, ξ) into the distributions F̂q,q̄,g(X, ζ)
which satisfy the symmetry relations (27) and (28). The initial distributionHq(x, ξ) shown
in Fig. 5(a) is only meant to illustrate the general features of the adopted strategy. The
detailed properties of more realistic initial distributions will be discussed in a separate
paper.

The results that are obtained by evolving F̂V , F̂S and F̂g to higher scales are shown
in the three plots of Fig. 6. In each plot the dashed curve is the input at µ = 1 GeV, while
the dot-dashed curve shows the effect of evolution up to µ = 10 GeV. It is evident that
evolution does indeed preserve the symmetry properties in the ERBL-like region, X < ζ .

The continuous curves in Fig. 6 are the results of evolving all the way up to µ → ∞.
These asymptotic forms are identical with the analytic asymptotic solutions [5, 6] of the
evolution equations for the distributions F̂ given in the Appendix

F̂V
q (X, ζ) ∼ X

ζ

(

1− X

ζ

)

F̂S(X, ζ) ∼ X

ζ

(

1− X

ζ

)(

2X

ζ
− 1

)

(32)

F̂g(X, ζ) ∼
(

X

ζ

)2 (

1− X

ζ

)2

.

A remarkable property [5] is evident from Fig. 6. We see that the distributions are swept
from the DGLAP-like to the ERBL-like region as µ increases. Indeed the asymptotic
forms show that they are finally entirely contained in the ERBL-like region with X < ζ .

6 Relation to the non-forward distributions

The off-diagonal distributions F̂(X, ζ), constructed in the previous section, are equivalent
to the off-forward distributions H(x, ξ) defined by Ji. They are also closely related to,
but not the same as, the non-forward distributions Fζ(X) introduced by Radyushkin5.
The difference between them occurs in the ERBL-like region (X < ζ).

5We thank A.V. Radyushkin for helpful comments on the subject of this section.
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The non-forward distributions F q,q̄
ζ (X) are related to the off-forward distributions

Hq(x, ξ) in the following way (see Section IX of Ref. [5] for a detailed discussion)

(1 + ξ) Hq(x, ξ) =































F q
ζ (X) if x > ξ

F q
ζ (X)− F q̄

ζ (ζ −X) if −ξ < x < ξ

−F q̄
ζ (ζ −X) if x < −ξ ,

(33)

where X = (x+ξ)/(1+ξ) and ζ = 2ξ/(1+ξ). Notice that while in the DGLAP-like regions
(x > ξ or x < −ξ) there is a one-to-one correspondence between the two distributions,
in the ERBL-like region (−ξ < x < ξ) Ji’s distribution Hq only determines a specific
combination of Radyushkin’s distributions F q,q̄. This is in contrast to the distributions
defined by eqs. (21) which are in one-to-one correspondence with Hq.

Comparing eqs. (33) with eqs. (21) we see that the off-diagonal distributions F̂ are
identical to the non-forward distributions F in the DGLAP-like region (X > ζ). However
in the ERBL-like region there are different. To be precise, for X < ζ , we have

F̂q(X, ζ) = F q
ζ (X) − F q̄

ζ (ζ −X)

(34)

F̂q̄(X, ζ) = F q̄
ζ (X) − F q

ζ (ζ −X) .

The main difference between the distributions F̂(X, ζ) and the non-forward distributions
Fζ(X) is that the latter do not obey the symmetry properties (25) and (27)-(28). These
properties are essential for our distributions. They result from the construction which
ensures the equivalence of the distributions F̂ to Ji’s distributions H . The physical
reason for the symmetries was discussed in Section 4.2. An important consequence of the
symmetry relations is that in the ERBL-like region the quark and antiquark off-diagonal
distributions are not independent, see relation (25).

This should be contrasted to the case of the non-forward distributions of Radyushkin.
They are are obtained through the integration of “double distributions” F which are
universal ζ-independent functions. The double distributions are separated into two inde-
pendent components (which are denoted by Fq and Fq̄) according to the sign of x in the
exponential. As a result the corresponding non-forward distributions F q and F q̄ are also
independent in the ERBL-like region, see [6] for more details. Thus there are twice as
many quark “degrees of freedom” in the ERBL-like region as in our case.

A similar comparison can be done for the non-singlet, singlet and gluon distributions.
As a result we find the following relations for X < ζ

F̂V (X, ζ) = FV
ζ (X) + FV

ζ (ζ −X)

F̂S(X, ζ) = FS
ζ (X)− FS

ζ (ζ −X) (35)

F̂ g(X, ζ) = F g
ζ (X) + F g

ζ (ζ −X) .
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Thus we see that the distributions F̂ are equal to symmetric or antisymmetric combina-
tions of the corresponding non-forward distributions F in the ERBL-like region. These
combinations of the non-forward distributions were used in [5] in the description of the
ERBL-like region. However the further analysis in Ref. [5] was done in terms of the

unsymmetrized non-forward distributions F (V,S,g)
ζ (X).

6.1 Comparison of the two sets of evolution equations

The evolution equations for the non-forward distributions F (V,S,g) of Refs. [5, 9] do not
obey the symmetry properties (27) and (28) in the ERBL- like region. One may try,
however, to write down the evolution equations for the combinations on the right hand
side of eqs. (35), starting from the equations given in [5, 9] for the full non-forward
distributions

Fζ(X) ≡ F (sym)
ζ (X) + F (asym)

ζ (X)

(36)

= 1
2
[Fζ(X) + Fζ(ζ −X)] + 1

2
[Fζ(X)−Fζ(ζ −X)]

Not surprisingly these “symmetrized” evolution equations are almost identical to the
evolution equations for the distributions (29)–(31). The integrals over [ζ, 1], indicated
explicitly in (29)–(31), appear in the “symmetrized” equations as a result of the sym-
metrization procedure. The only difference appears in the “symmetrized” gluon equation
which additionally contains a term proportional to the integral over the full non-forward
singlet distribution

∫ 1

0
dZ FS

ζ (Z) =
∫ ζ

0
dZ FS(sym)

ζ (Z) +
∫ 1

ζ
dZ FS

ζ (Z) . (37)

Since the “symmetrized” gluon equation should contain only the asymmetric singlet com-
bination FS(asym)

ζ , the above term mixes the symmetric and antisymmetric components of
the singlet distribution, and thus violates the symmetry properties (27) and (28) for the
singlet and gluon distributions. The only case when it does not happen is if the integral
(37) is equal to zero due to initial conditions. The value of this integral is conserved by
the evolution equations [5, 9] for the full non-forward distributions6. Only in this case
may the non-forward distributions of Radyushkin be equivalent to the off-diagonal distri-
butions of Ji. This can be done by taking into account only one of the two parts in the
decomposition (36) — symmetric for the non- singlet and gluon, and antisymmetric for
the singlet, distributions.

6We were informed by A.V. Radyushkin that the above mentioned problem with the integral (37) can
be solved if one uses the kernel PGQ in the evolution equations of Ref. [5] in the form originally obtained
by Chase [13]. The method used in Ref. [5] cannot unambiguously fix this kernel.
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6.2 The singularity structure of the basic amplitude

For the purpose of illustration we may consider the classic process of deeply virtual Comp-
ton scattering. The invariant amplitude for the process has the generic form [2]

T ∼
∫ 1

−1
dx

[

1

x− ξ + iε
+

1

x+ ξ − iε

]

Hq(x, ξ). (38)

If the amplitude is translated into a form involving the distributions F̂q(X, ζ) defined on
the interval 0 ≤ X ≤ 1, then (38) becomes

T ∼
∫ 1

0
dX

F̂q(X, ζ) + F̂q̄(X, ζ)

X − ζ + iε
+
∫ 1

ζ

dX

X

[

F̂q(X, ζ) + F̂q̄(X, ζ)
]

. (39)

We see that (39) contains only one singularity at X = ζ , which results from the quark
propagator, and is regularized by the +iε prescription and assuming that F̂q,q̄(X, ζ) are
continuous at X = ζ . Note that there is no singularity at X = 0 since the second integral
is bounded by ζ > 0 from below.

This is in contrast to the amplitude derived using the non-forward distributions F q
ζ (X)

[4, 5]. Then T contains a second singularity at X = 0, since in this case the second
integral in (39) goes from 0 to 1. The result can be derived by substituting relations
(34) into (39). This additional (end-point) singularity is removed by assuming that the
non-forward distributions F q,q̄

ζ (X) vanish as X → 0. Looking at eq. (33) we see that this

assumption is equivalent to the continuity of H(x, ξ) at x = ±ξ (or F̂(X, ζ) at X = ζ)7.
Such assumption is not required for our off-diagonal distributions F̂(X, ζ), see eq. (39).
Indeed, if present, it would clearly violate their continuity at X = ζ , or their symmetry
about X = ζ/2, see Fig. 5.

7 Conclusions

In this paper we have transformed the off-forward parton distributions H(x, ξ) defined
by Ji, in which the defining direction is the average between the incoming and outgoing
proton momenta and x ∈ [−1, 1], into off-diagonal distributions F̂(X, ζ), in which the
defining direction is the incoming proton momentum and X ∈ [0, 1]. These off-diagonal
distributions F̂(X, ζ) therefore have a close identification with conventional (diagonal)
distributions. Moreover, by construction, they are fully equivalent to the off-forward
distributions of Ji.

In the ERBL-like domain (X < ζ) they satisfy the symmetry relations

F̂(ζ −X, ζ) = ±F̂(X, ζ) (40)

where the + sign applies to the gluon and quark non-singlet distributions, and the − sign
applies to the quark singlet. We presented the evolution equations satisfied by the F̂(X, ζ)

7We thank A.V. Radyushkin for this remark
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and gave numerical results (Figs. 5 and 6) to illustrate the properties of the distributions.
We found that asymptotically (µ → ∞) the distributions evolve to the known analytic
asymptotic forms. Indeed as µ increases the distributions are swept from the DGLAP-like
domain to lie entirely within the ERBL-like region, as illustrated by the example shown
in Fig. 6. The symmetry relations (40) are preserved at each stage of the evolution.

The distributions F̂(X, ζ) are analogous to, but not the same as, the non-forward
distributions Fζ(X) introduced by Radyushkin [4]. The difference lies in the ERBL-like
region, since the non-forward distributions do not obey the symmetry relations (40). As a
result the non-forward distributions Fζ(X) are not in general equivalent to the off-forward
distributions H(x, ξ) of Ji. We stressed that this happens only in the ERBL-like region.
We discussed conditions under which Fζ(X) would become equivalent to H(x, ξ) (and

F̂(X, ζ)). We also commented on the singularity at X = 0 of the basic DVCS amplitude
at tree level when written in terms of Fζ(X), which requires Fζ(X) to vanish as X → 0.

The distributions F̂(X, ζ), which we defined, have the advantage that they do not lead
to such a singularity.
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Appendix

Here we present for reference the full form of the evolution equations for our non-singlet
F̂V

q (X, ζ, µ), singlet F̂S(X, ζ, µ) and gluon F̂g(X, ζ, µ) distributions defined in the range
0 ≤ X ≤ 1 by eqs. (26) and (24). The asymmetry parameter ζ lies in the range [0, 1].

We use the following notation X ′ ≡ X − ζ and Z ′ ≡ Z − ζ and suppress the renor-
malization scale µ among the arguments of our distributions. In the DGLAP-like region
X > ζ we have the following evolution equations

µ
∂

∂µ
F̂V

q (X, ζ, µ) =
αS

π
CF

{ 1
∫

X

dZ

X − Z

[(

X

Z
+
X ′

Z ′

)

F̂V
q (X, ζ)−

(

1 +
XX ′

ZZ ′

)

F̂V
q (Z, ζ)

]

+ F̂V
q (X, ζ)

[

3

2
+ ln

(1−X)2

1− ζ

]

}

,

µ
∂

∂µ
F̂S(X, ζ, µ) =

αS

π
CF

{ 1
∫

X

dZ

X − Z

[(

X

Z
+
X ′

Z ′

)

F̂S(X, ζ)−
(

1 +
XX ′

ZZ ′

)

F̂S(Z, ζ)
]

+ F̂S(X, ζ)
[

3

2
+ ln

(1−X)2

1− ζ

]

}

+
αS

π
Nf

1
∫

X

dZ

ZZ ′

(

1− ζ

2

) [(

1− X

Z

)(

1− X ′

Z ′

)

+
XX ′

ZZ ′

]

F̂g(Z, ζ) ,

µ
∂

∂µ
F̂g(X, ζ, µ) =

αS

π
CF

1
∫

X

dZ
[(

1− X

Z

)(

1− X ′

Z ′

)

+ 1
] F̂S(Z, ζ)

1− ζ/2

+
αS

π
Nc

{ 1
∫

X

dZ
[

2

Z

(

1 +
XX ′

ZZ ′

)(

1− X ′

Z ′

)

F̂g(Z, ζ)

+
[(X/Z) + (X ′/Z ′)] F̂g(X, ζ)− [(X/Z)2 + (X ′/Z ′)2] F̂g(Z, ζ)

X − Z

]

+ F̂g(X, ζ)
[

11− (2Nf)/3

2Nc

+ ln
(1−X)2

1− ζ

]

}

, (41)

where CF = 4/3 and Nc = 3, and Nf is the number of active flavours. In the limit ζ = 0
the above equations become the familiar DGLAP evolution equations.

The equations in the ERBL-like region X < ζ are more complicated since they involve
integration with different kernels in the intervals [0, X ] and [X, 1]. We have
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µ
∂

∂µ
F̂V

q (X, ζ, µ) =
αS

π
CF

{ X
∫

0

dZ
(

X ′

Z ′

) [F̂V
q (Z, ζ)

ζ
+

F̂V
q (Z, ζ)− F̂S(X, ζ)

X − Z

]

+

1
∫

X

dZ
(

X

Z

)[F̂V
q (Z, ζ)

ζ
+

F̂V
q (Z, ζ)− F̂S(X, ζ)

Z −X

]

+ F̂V
q (X, ζ, µ)

[

3

2
+ ln

X(1−X)

ζ

]

+
∫ 1

ζ

dZ

Z

[

Z

X − ζ + Z
− X

ζ

]

F̃V
q (Z, ζ)

}

µ
∂

∂µ
F̂S(X, ζ, µ) =

αS

π
CF

{ X
∫

0

dZ
(

X ′

Z ′

) [F̂S(Z, ζ)

ζ
+

F̂S(Z, ζ)− F̂S(X, ζ)

X − Z

]

+

1
∫

X

dZ
(

X

Z

)[F̂S(Z, ζ)

ζ
+

F̂S(Z, ζ)− F̂S(X, ζ)

Z −X

]

+ F̂S(X, ζ)
[

3

2
+ ln

X(1−X)

ζ

]

−
∫ 1

ζ

dZ

Z

[

Z

X − ζ + Z
− X

ζ

]

F̃S(Z, ζ)

}

+
αS

π
Nf

{ X
∫

0

dZ

ζ2

(

1− ζ

2

) (

X ′

Z ′

)[

4
X

ζ
+

2X − ζ

ζ − Z

]

F̂g(Z, ζ)

−
1
∫

X

dZ

ζ2

(

1− ζ

2

) (

X

Z

)[

4
(

1− X

ζ

)

+
ζ − 2X

Z

]

F̂g(Z, ζ)

+
∫ 1

ζ

dZ

Z

(1− ζ/2)(ζ −X)

ζ2

[

4X

ζ
+

2X − ζ

Z

]

F̃g(Z, ζ)

}

µ
∂

∂µ
F̂g(X, ζ, µ) =

αS

π
CF

{ X
∫

0

dZ
(

X ′

Z ′

)(

1− X

ζ

) F̂S(Z, ζ)

1− ζ/2
+

1
∫

X

dZ
(

2− X2

Zζ

) F̂S(Z, ζ)

1− ζ/2

−
∫ 1

ζ

dZ

Z

(ζ −X)2

ζ(1− ζ/2)
F̂S(Z, ζ)

}

+
αS

π
Nc

{ X
∫

0

dZ
(

X ′

Z ′

) [

2

ζ

(

1− X

ζ

)(

1 + 2
X

ζ
+

X

ζ − Z

)

F̂g(Z, ζ)
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+
(X ′/Z ′) F̂g(Z, ζ)− F̂g(X, ζ)

X − Z

]

+

1
∫

X

dZ
(

X

Z

)[

2X

ζ2

(

3− 2
X

ζ
+
ζ −X

Z

)

F̂g(Z, ζ)

+
(X/Z)F̂g(Z, ζ)− F̂g(X, ζ)

Z −X

]

+ F̂g(X, ζ)
[

11− (2Nf )/3)

2Nc

+ ln
X(1−X)

ζ

]

(42)

+
∫ 1

ζ

dZ

Z

(ζ −X)2

Z

[

1

X − ζ + Z
+

2Z

ζ2

(

1 +
2X

ζ
+
X

Z

)]

F̂g(Z, ζ)

}

.

For ζ = 1 the above equations reduce to the ERBL evolution equations for the distribution
amplitudes. It is also instructive to check that both set of equations, (41) and (42), lead
to the same limiting set of equations when X → ζ from both sides.

The equations for the singlet F̂S and the gluon F̂ g distributions form a coupled set
of equations which, in general, need to be solved simultaneously in both the ERBL- and
DGLAP-like regions. However for X > ζ it is sufficient to solve the equations only in
the DGLAP-like region since the integration in (41) involves only parton distributions for
values of Z > X (as is true for the DGLAP equations in the limit ζ = 0). This is not
the case if X < ζ . Then the solutions depend on the values of the parton distributions in
the full interval [0, 1], and so both the set of equations, (41) and (42), have to be solved
simultaneously.
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b b†

x x

1 1

(a)  x>0:  q(x) = Hq(x)

d d†

-x -x

1 1

(b)  x<0:   q(-x) = -Hq(x)

Figure 1: Schematic diagrams showing the contributions to Hq(x) with x > 0 and x < 0
respectively, which can be identified with the familiar quark and antiquark distributions.
b, b† are the quark annihilation and creation operators and d, d† are those for the antiquark.
The momentum fractions refer to the plus light-cone component of the incoming proton
momentum P .
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b b†

x+ξ x-ξ

1+ξ 1-ξ

(a)  x>ξ:  DGLAP-type region for
                    the quark distribution

b d

x+ξ ξ-x

1+ξ 1-ξ

(b)  -ξ<x<ξ:  ERBL-type probability
                         amplitude

d d†

ξ-x -(x+ξ)

1+ξ 1-ξ

(c)  x<-ξ:  DGLAP-type region for 
                     the antiquark distribution

 
Figure 2: Schematic diagrams of the off-diagonal distribution Hq(x, ξ), in the three
distinct kinematic regions. The proton and quark momentum fractions refer to P̄+, where
P̄ is the average of the incoming and outgoing proton four momentum. Note that the
four momentum transfer satisfies ∆+ = 2ξP̄+ and that x covers the interval [−1, 1].

19



X X-ζ

1 1-ζ

 

Figure 3: The proton and quark momentum fractions with respect to the initial pro-
ton momentum P corresponding to the off-diagonal distributions F̂(X, ζ) defined in the
domain 0 ≤ X ≤ 1. The four momentum transfer satisfies ∆+ = ζP+.

0 Fq(X,ζ)^ ζ 1
X

Hq(x,ξ)
x

-1 -ξ ξ 1

Fq(X,ζ)^

X
1 ζ 0

 

Figure 4: A sketch showing how the support −1 ≤ x ≤ 1 of the off-diagonal distribution
Hq is translated into the regions 0 ≤ X ≤ 1 of the two functions F̂q and F̂q̄. The
translations are given by (19) and (20), or by the inverse relations (22).
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x

Hq(x,ξ)

-ξ ξ

(a)

X

F
∧
(X,ζ)

ζ/2 ζ

q

q

(b)

X
ζ/2 ζ

F
∧ V(X,ζ)

F
∧ S(X,ζ) (c)

-1

0

1

-1 0 1

-2

0

2

0 1

-2

0

2

0 1

Figure 5: (a) An example of the off-diagonal distribution Hq(x, ξ) with ξ = 0.5; (b) the

distributions F̂q(X, ζ) and F̂q̄(X, ζ) generated from Hq(x, ξ), and (c) the resulting non-

singlet F̂V
q and singlet F̂S distributions showing their symmetry and antisymmetry in the

ERBL-like region X < ζ .
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ζ/2 ζ

ERBL-like DGLAP-like
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∧ V
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∞

X
ζ/2 ζ

F
∧ S

X
ζ/2 ζ

F
∧
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0 1

-10
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0

5
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0 1
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4
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Figure 6: Evolution of the non-singlet F̂V
q , singlet F̂S and gluon F̂g distributions defined

in the range [0, 1] from initial input at µ = 1 GeV (dashed curves). The asymmetry
parameter ζ = 0.5. The dotted and continuous curves correspond to µ = 10 GeV and
µ → ∞ respectively. The latter curves are identical to the analytic asymptotic solutions
given in (32).
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