
ar
X

iv
:h

ep
-p

h/
98

07
51

0v
1 

 2
7 

Ju
l 1

99
8

ELECTROWEAK PHASE TRANSITION IN A STRONG

MAGNETIC FIELD

Vladimir Skalozuba and Michael Bordagb

a Dniepropetrovsk State University, 320625 Dniepropetrovsk, Ukraine
b University of Leipzig, Augustusplatz 10, 04109 Leipzig, Germany

ABSTRACT
Phase transitions induced by high temperatures and strong magnetic

fields are investigated in the Standard model. The consistent effective po-
tential including the one-loop and ring diagram contributions is calculated
and investigated for the wide range of the fields, temperatures and Higgs
boson mass mH . All other particles - fermions and bosons - are taken into
account with actual values of their masses. This effective potential is real
at sufficiently high temperatures . It is shown that symmetry restoration is
a first type phase transition for mH < 70 Gev . For heavier Higgs particles
and the field strengths H > 0.1 · 1024G the local electroweak minimum could
not be realized at all. Hence, the upper limit on the Higgs mass as well as
the limit on the field strengths in the phase transition epoch follow.

1.Introduction

The concept of symmetry restoration at high temperature has been inten-
sively used in studying the evolution of the universe at its early stages. Nowa-
days it gives a possibility to investigate various problems of cosmology and
particle physics [1],[2]. In particular, the type of the electroweak phase tran-
sition and hence a further evolution of the universe depends on the mass mH

of the Higgs boson. Most investigations of the electroweak phase transition
have included into consideration a high temperature environment as the main
ingredient [2], [3]. But in recent a few years cogent arguments followed from
different approaches in favour of the presence of strong magnetic fields at
that stage have appeared [5], [6]( recent survey on the magnetic fields in the
universe is Ref.[7]). So, the phase transition at high temperature and strong
fields has to be of interest . Moreover, at present time when all masses of
fundamental particles, except mH , are known it is possible to investigate in
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details the phase transition as the function of this parameter and to deter-
mine the properties of the vacuum, its structure and to specify a so-called
metastability bound on mH [3],[4].

One of the ways to have strong magnetic fields in the electroweak phase
transition epoch was proposed by Vachaspati [5]. From his analysis it fol-
lows that under very general conditions the fields H ∼ T 2

i in the patches of
sub-horizon scales can be generated during a large class of grand unified tran-
sitions [6],[7], where Ti is transition temperature. The second one is formation
of the Savvidy vacuum magnetic state at high temperature (H ∼ gT 2, g is
gauge coupling constant) [14],[7],[24]. In latter case only the abelian field
configurations could arise spontaneously since they are sourceless. For many
problems it is important to estimate the field strengths presented, but it is
difficult to realize that without detailed investigations within specific models.
Usually, only one type of fields is considered. Therefore, results obtained in
such a way give an upper estimate of the field. This remark is relevant to our
present investigation. In current literature along with usual magnetic field
a hypercharge magnetic field presenting in the restored phase is discussed (
see for example [9]). The latter one is converted into ordinary magnetic field
during the phase transition.

In what follows, we will consider the case when the magnetic field is
presenting in both broken and restored phases. We believe that this is a good
approximation which gives possibility to investigate essential features of the
phase transition. This scenario assumes that the field has been generated
at a GUT scale via the Savvidy mechanism and presented during the phase
transition. Such a picture is likely since, as it follows from our consistent
calculation of the effective potential which found to be real at sufficiently high
temperatures ( and, in particular, in the restored phase), constant magnetic
field is stable. This is the most important point of the present analysis. In
any case, it may have relevance to the description of the phase with broken
symmetry at high temperatures and strong fields.

The discussed ”primordial” fields are usually considered as seed fields
responsible for generation of the observed magnetic fields in galaxies [7].

Various aspects of the phase transitions in magnetic fields at high tem-
perature have been investigated by many authors [8]-[15]. In Refs. [12],[19]
the phase transitions derived with the effective potential (EP) of the bosonic
part of the Salam-Weinberg model and the vacuum structures of the phases
have also been described. In Ref.[15] in addition to the temperature and
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magnetic fields a chemical potential was incorporated. But the role of the
fermions has not been investigated in detail. However, due to a rather heavy
t-quark mass, mt ≃ 175 Gev, an unbounded global minimum of the EP is
produced in addition to the electroweak local one for not very heavy Higgs
scalars [3]. As will be shown, strong magnetic fields influence essentially
the phase transition dynamics realized in this case. Another aspect of the
electroweak phase transition, which also was not investigated but plays an
important role, is the influence of so-called ring diagrams at high tempera-
ture and strong field. At zero field it was investigated in Refs.[16],[17] where
it has been shown the importance of these diagrams for determining the type
of the phase transition. In Ref.[17] the t-quark mass was chosen of order
110Gev. So, taking into account the present day data, it should be consid-
ered as a qualitative estimate of the role of ring diagrams even for zero-field
case.

In the present paper we study the electroweak phase transition at high
temperatures and constant strong magnetic fields H . We calculate and
investigate the one-loop effective potential(EP) and the contributions of ring
diagrams. In contrast to previous considerations we include the content
of all bosons and fermions with the corresponding masses. So, the only
free parameter remains the mass mH . The role of ring diagrams is of great
importance because they contain the terms which cancel out the imaginary
part of the one-loop EP. The total EP is real at sufficiently high temperatures
and suitable for investigations of symmetry behaviour. As it will be shown,
the influence of fermions (mainly heavy quarks) is very essential. For values of
mass mH < 70Gev and weak field strengths the electroweak phase transition
is of the first type one. It is turned out that the magnetic field stimulates
either the generation of the electroweak minimum and tends to remove the
potential barrier separating this metastable state from the unbounded global
minimum produced due to heavy fermions. At any high temperature there
exists the corresponding field strength H at which the metastable vacuum
could not be produced at all. This property can be used to find an upper limit
on H at the transition epoch. The paper is organized as follows. In Sects.2,3
the one-loop contributions of bosons and fermions to the EPV (1)(T,H, φc) are
calculated in the form convenient for numerical study. In Sect.4 we compute
the contributions of ring diagrams. Further in Sect.5 symmetry behaviour
is investigated for a number of values of mH and H . For comparison, we
consider separately the cases when only the one-loop EP is taken into account
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and when the ring diagrams are included. Discussion of the results obtained
is given in Sect.6.

2. Boson contributions to V (1)(T,H, φc)

The Lagrangian of the boson sector of the Salam-Weinberg model is

L = −1

4
F a
µνF

µν
a − 1

4
GµνG

µν + (DµΦ)
+(DµΦ)

+
m2

2
(Φ+Φ)− λ

4
(Φ+Φ)2, (1)

where the standard notations are introduced

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gεabcAb

µA
c
ν ,

Gµν = ∂µBν − ∂νBµ,

Dµ = ∂µ +
1

2
igAa

µτ
a +

1

2
ig′Bµ. (2)

The vacuum expectation value of the field Φ is

< Φ >=
1√
2

(

0
φc

)

. (3)

The fields corresponding to the W -,Z-bosons and photons, respectively, are

W±
µ =

1√
2
(A1

µ ± iA2
µ),

Zµ =
1√

g2 + g′2
(gA3

µ − g′Bµ),

Aµ =
1√

g2 + g′2
(g′A3

µ + gBµ). (4)

The external electromagnetic field is introduced by splitting the potential
in two parts: Aµ = Āµ + AR

µ , where AR describes a radiation field and
Ā = (0, 0, Hx1, 0) corresponds to the constant magnetic field directed along
the third axis. We make use of the gauge- fixing conditions [23]

∂µW
±µ ± ieĀµW

±µ ∓ i
g2φ2

4ξ
φ± = C±(x), (5)
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∂µZ
µ − i

ξ′
(g2 + g′2)1/2φz = Cz, (6)

where e = gsinθw, tangθw = g′/g, φ±, φz are the Goldstone fields, ξ, ξ′ are
the gauge fixing parameters, C±, Cz are arbitrary functions and φc is a scalar
condensate value. In what follows, all calculations will be done in the gen-
eral relativistic renormalizable gauge (5),(6) and after that we set ξ, ξ′ = 0
choosing the unitary gauge.

To compute the EP V (1) in the background magnetic field let us introduce
the proper time,s, representation for the Green functions

Gab = −i

∞
∫

0

ds exp(−isG−1ab) (7)

and use the method of Ref.[18], allowing in a natural way to incorporate the
temperature into this formalism. A basic formula of Ref.[18] connecting the
Matsubara Green functions with the Green functions at zero temperature is
needed,

Gab
k (x, x′;T ) =

+∞
∑

−∞
(−1)(n+[x])σkGab

k (x− [x]βu, x′ − nβu), (8)

where Gab
k is the corresponding function at T = 0, β = 1/T, u = (0, 0, 0, 1),

the symbol [x] means an integer part of x4/β, σk = 1 in the case of physical
fermions and σk = 0 for boson and ghost fields. The Green functions in the
right-hand side of formula (8) are the matrix elements of the operators Gk

computed in the states | x′, a) at T = 0, and in the left-hand side the oper-
ators are averaged in the states with T 6= 0. The corresponding functional
spaces U0 and UT are different but in the limit of Tß0 UT transforms into
U0.

The one-loop contribution into EP is given by the expression

V (1) =
1

2
Tr logGab, (9)

where Gab stands for the propagators of all the quantum fields W±, φ±, ... in
the background magnetic field H . In the s- representation the calculation of
the trace can be done in accordance with formula [21]

Tr logGab = −
∞
∫

0

ds

s
tr exp(−isG−1

ab ) (10)
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Details of calculations based on the s-representation and the formula (8) can
be found, for example,in Refs.[18],[19],[24]. The terms with n = 0 in Eqs.(8),
(9) give zero temperature expressions for Green’s functions and effective po-
tential V (1), respectively. They are the only terms possessing divergences.
To eliminate them and uniquely fix the potential we use the following renor-
malization conditions at H, T = 0[19]:

∂2V (φ,H)

∂H2
|H=0,φ=δ(0)=

1

2
, (11)

∂V (φ,H)

∂φ
|H=0,φ=δ(0)= 0, (12)

∂2V (φ,H)

∂φ2
|H=0,φ=δ(0)=| m2 |, (13)

where V (φ,H) = V (0) + V (1) + · · · is the expansion in a number of loops and
δ(0) is the vacuum value of a scalar field determined in a tree approximation.

It is convenient for what follows to introduce the dimensionless quantities:
h = H/H0(H0 = M2

w/e), φ = φc/δ(0), K = m2
H/M

2
w, B = βMw, τ = 1/B =

T/Mw,V = V/H2
0 and Mw = g√

2
δ(0).

After reparametrization the scalar field potential is directly expressed in
terms of the ratio K,

V(0) =
h2

2
+K(−φ2

4
+

φ4

8
). (14)

The renormalized one-loop EP is given by the sum of the functions

V1 = V(0) + V(1)(φ,H,K) + ω(1)(φ, h,K, τ), (15)

where V(1) is the one-loop EP at T = 0, which has been studied already in
Ref.[23]. It has the form:

V(1) = V(1)
w,z + V(1)

φ , (16)

where

V(1)
w,z =

3α
π

[h2LogΓ1(
1

2
+

φ2

2h
) + h2ζ

′

(−1) +
1

16
φ4 − 1

8
φ4log

φ2

2h
+

1

24
h2
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− 1

24
h2log(2h)]

+
α

2π
[−2h2 + (h2 + hφ2)log(h+ φ2) + (h2 − hφ2)log | h− φ2 |]

+ i
1

2
αh(φ2 − h)θ(h− φ2), (17)

V(1)
φ = K sin2θw(−φ2 +

1

2
φ4)

+
3α

4π
(1 +

1

2cos2θ
)(
1

2
φ4logφ2 − 3

4
φ4 + φ2)

+
αK2

32π
[(
9

2
φ4 − 3

4
φ2 +

1

2
)log | 3φ

2 − 1

2
| −27

4
φ4 +

21

2
φ2] (18)

and ω(1) is the temperature dependent contribution to the EP determined by
the terms of formulae (8),(9) with n 6= 0.

We outline the used calculation procedure considering the W -boson con-
tribution as an example [24],

ω(1)
w =

α

2π

∞
∫

0

ds

s2
e−is(φ2/h)

[1 + 2 cos 2s

sin s

]

∞
∑

1

exp(ihB2n2/4s). (19)

As Eq.(17), this expression contains an imaginary part for h > φ2 appeared
due to the tachyonic mode ε2 = p23+M2

w−eH in the W -boson spectrum [23].
It can be explicitly calculated by means of an analytic continuation taking
into account the shift sßs − i0 in the s- plane. Fixing φ2/h > 1 one can
rotate clockwise the integration contour in the s-plane and direct it along
the negative imaginary axis. Then, using the identity

1

sinh s
= 2

∞
∑

p=0

e−s(2p+1) (20)

and integrating over s in accordance with the standard formula

∞
∫

0

dssn−1 exp(−b

s
− as) = 2(

a

b
)n/2Kn(2

√
ab), (21)
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a, b > 0, one can represent the expression (19) in the form

Reω(1)
w = −4

α

π

h

B
(3ω0 + ω1 − ω2), (22)

where

ω0 =
∞
∑

p=0

∞
∑

n=1

xp

n
K1(nBxp); xp = (φ2 + h+ 2ph)1/2 (23)

ω1 =
∞
∑

n=1

y

n
K1(nBy), y = (φ2 − h)1/2 (24)

and in the region of parameters φ2 < h after analytic continuation

ω1 = −π

2

∞
∑

n=1

| y |
n

Y1(nB | y |), (25)

ω2 =
∞
∑

n=1

z

n
K1(nBz), z = (φ2 + h)1/2, (26)

and Kn(x), Yn(x) are the Macdonald and Bessel functions, respectively. The
imaginary part of ω(1)

w is given by the expression

Imω2 = −2α
h

B

∞
∑

n=1

| y |
n

J1(nB | y |), (27)

Jn(x)is Bessel function. As is well known, the imaginary part of EP is sig-
naling the instability of a system [21]. In what follows we shall consider
mainly the symmetry behaviour described by the real part of the EP . As
the imaginary part is concern, it will be cancelled in consistent calculation
including the one-loop and ring diagram contributions to the EP.

Carrying out similar calculations for the Z- and Higgs bosons, we obtain
[12]:

ωz = −6
α

π

∞
∑

n=1

φ2

cos2 θwn2B2
K2(

nBφ

cos θ
) (28)

Reωφ =
{ −2α

π

∑ t2

B2n2K2(nBt)

α
∞
∑

n=1

|t|2
n2B2Y2(nB | t |)

}

. (29)
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where the variable t = [Kw(
3φ2−1)

2
)]1/2 at 3φ2 > 1 and series with the function

Y2(x) has to be calculated at 3φ2 < 1. The corresponding imaginary part is
also cancelled as it will be shown below.

The above expressions (16),(22),(28),(29) will be used in numerical study-
ing of the symmetry behaviour at different H, T . There is a cancellation of a
number of terms from the zero-temperature contributions given Eqs.(16) and
T -depended ones. This fact has a general character and was used in checking
of the correctness of calculations.

3. Fermion contributions to V (1)(H, T, φc)

To find the explicit form of the fermion contribution to the EP let us consider
the standard unrenormalized expression written in the s -representation [22]:

V
(1)
f = − 1

8π2

∞
∑

n=−∞
(−1)n

+∞
∫

−∞

ds

s3
e−(m2s+β2n2/4s)(eHs)cotheHs, (30)

m is a fermion mass. Here, we have incorporated the equation (8) to include
a temperature dependence. In what follows, we shall take into account the
contributions of all fermions - leptons and quarks - with their masses known
at present time. Usually, considering a symmetry behaviour without field
one restricts himself by a t-quark contribution only. But in the case of an
external field applied this is not a good idea, since the dependence of V (1) on
H is a complicated function of the ratio m2

f/eH . So, at some fixed values of
H, T different dependencies on H will contribute for fermions with different
masses. Hence, a very complicate dependence on the field takes place in
general. We include this in a total, carrying out a numerical calculations
and summing up over all the fermions. Now, separating a zero temperature

contribution by means of the relation
+∞
∑

−∞
= 1 + 2

∞
∑

1
and introducing the

parameter Kf = m2
f/M

2
w = 2G2

Y ukawa/g
2, we obtain for the zero temperature

fermion contribution to the dimensionless EP ,

Vf (h, φ) =
α
4π

∑

f

K2
f (−2φ2 +

3

2
φ4 − φ4logφ2)

− α

π

∑

f

(q2f
h2

6
log

2 | qf | h
Kf

)

9



− α

π

∑

f

[2q2fh
2 log Γ1(

Kfφ
2

2 | qf | h) + (2ζ ′(−1)− 1

6
)q2fh

2

+
1

8
K2

fφ
4 + (

1

4
K2

fφ
4 − 1

2
Kf | qf | hφ2) log

2 | qf | h
Kfφ2

]

(31)

where qf is a fermion electric charge, the sum
∑

f
=

3
∑

f=1
(leptons)+3

3
∑

f=1
(quarks)

counts the contributions of leptons and quarks with their electric charges.
The Γ1 function is defined as follows (see, for example, survey [23]):

log Γ1(x) =

x
∫

0

dy log Γ(y) +
1

2
x(x− 1)− 1

2
x log(2π). (32)

The finite temperature part can be calculated in a way, described in the
previous section. In the dimensionless variables it looks as follows:

ωf = −4
α

π

∑

f

{

∞
∑

p=0

∞
∑

n=1

(−1)n
[(2ph+Kfφ

2)1/2h

Bn
K1((2ph+Kfφ

2)1/2Bn)

+
(2p+ 2)h+Kfφ

2)1/2

Bn
hK1(((2p+ 2)h+Kfφ

2)1/2Bn)
]}

(33)

Again, a number of terms from Eqs.(31) and (33) are cancelled being summed
up, as in the bosonic sector.

These two expressions and the boson contributions obtained in Sect.2 will
be used in numerical investigations of symmetry behaviour. More precise, we
consider the difference V ′(H, T, φ) = ReV (H, T, φ)−ReV (H, T, φ = 0) giving
possibility to determine the symmetry restoration. We will investigate the
EP of two types - the one-loop contribution and the sum of that and the ring
diagrams which are the next to leading order corrections at high temperature.

4. Contribution of ring diagrams

It was shown by Carrington [17] that at T 6= 0 a consistent calculation of the
EP based on generalized propagators, which include the polarization opera-
tor insertions, requires that ring diagrams have to be added simultaneously
with the one-loop contributions. These diagrams essentially affect the phase
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transition at high temperature and zero field [16],[17]. Their importance at
T and H 6= 0 was also pointed out in literature [14],[15] but, as far as we
know, this part of the EP has not been calculated, yet.

As is known [16], the sum of ring diagrams describes a dominant contri-
bution of great distances. It differs from zero only in the case when massless
states appear in a system. So, this type of diagrams has to be calculated when
a symmetry restoration is investigated. To find the correction Vring(H, T ) at
high temperature and magnetic field the polarization operators of the Higgs
particle, photon and Z-boson at the considered background have to be calcu-
lated. Just these calculations have been announced in Refs.[14], [15]. Then,
Vring(H, T ) is given by series depicted in figures 1,2.

+ + + . . .

Figure 1: Scalar field ring diagrams giving contribution to the effective po-
tential

+ + + . . .

Figure 2: Photon and Z-boson ring diagrams giving contribution to the
effective potential

Here, a dashed line describes the Higgs particles, the wavy lines represent
photons and Z-bosons, the blobs represent the polarization operators in the
limit of zero momenta. As also is known [17], in order to calculate the contri-
bution of ring diagrams not the complete polarization operators Πµν(k, T,H)
but only their limiting expressions at zero momenta, Π00(k = 0, T,H), are
sufficient. This limit, named the Debye mass, can be calculated from the EP
of the special type. This fact considerably simplifies our task.

Now, let us turn to calculations of Vring(H, T ). It is given by the standard
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expression [16],[17],[14]:

Vring = − 1

12πβ
Tr{[M2(φ) + Π00(0)]

3/2 −M3(φ)}, (34)

where trace means the summation over all the contributing states, M(φ) is a
tree mass of corresponding state and Π00(0) = Π(k = 0, T,H) for the Higgs
particle and Π00(0) = Π00(k = 0, T,H) are the zero-zero components of the
polarization operators in the magnetic field taken at zero momenta. The
above contribution has order ∼ g3(λ3) in coupling constant whereas the two-
loop terms are to be of order ∼ g4. As Π00(0) the high temperature limits
of polarization functions have to be substituted which have the order ∼ T 2

for leading terms and ∼ gφcT, (gH)1/2T, φc, (gH)1/2/T << 1 for subleading
ones.

For the next step of calculation, we remind that the effective potential
is the generating functional of the one-particle irreducible Green functions
at zero momenta transferred. So, to have Π(0) we can just calculate the
second derivative with respect to φ of the potential V (1)(H, T, φ) in the limit
of high temperature ,T >> φ, (eH)1/2 and then set φ = 0. This limit can be
calculated by means of the Mellin transformation technique (see for example
[24]) and the result looks as follows:

V (1)(H, φ, Tß∞) = [
(Cf

12
φ2
c +

απ

2cos2θw
φ2
c +

g2

16
φ2
c

)

T 2 ]

+ [
απ

6
(3λφ2

c − δ2(0))T 2 − α

cos3θ
φ3T

− α

3
(
3λφ2

c − δ2(0)

2
)3/2T ]

− 1

2π
(
1

4
φ2
c + gH)3/2T +

1

4π
eHT (

1

4
φ2
c + eH)1/2

+
1

2π
eHT (

1

4
φ2
c − eH)1/2. (35)

The parameter Cf =
3
∑

i=1
G2

il + 3
3
∑

i=1
G2

iq determines the fermion contribution

of the order ∼ T 2 having relevance to our problem. We also omitted ∼ T 4

contributions to the EP. The terms of the type ∼ log[T/f(φ,H)] cancel the
logarithmic terms in the temperature independent contributions (15),(30).

12



Considering the high temperature limit we restrict ourselves by linear and
quadratic in T terms, only.

Now, differentiating this expression twice with respect to φ and setting
φ = 0, we obtain

Πφ(0) =
∂2V (1)(φ,H, T )

∂φ2
|φ=0

=
1

24β2

(

6λ+
6e2

sin2 2θw
+

3e2

sin2 θw

)

+
∑

f

2G2
f/β

2

+
(eH)1/2

8π sin2 θwβ
e2(3

√
2ζ(−1

2
,
1

2
)− 1). (36)

The terms ∼ T 2 in Eq.(36) give standard contributions to temperature mass
squared coming from the boson and fermion sectors. The H-dependent term
is negative since the difference in the brackets is 3

√
2ζ(−1

2
, 1
2
)− 1 ≃ −0, 39.

Formally, this may result in the negativeness of the Π(0)φ for very strong
fields (eH)1/2 > T . But this happens in the range of parameters where
asymptotic expansion is not valid. Substituting expression (36) into Eq.(34)
we obtain (in the dimensionless variables),

Vφ
ring = − 1

12B

{

(
3φ2 − 1

2
K +Πφ(0)

}3/2
+

α

3B
K(

3φ2 − 1

2
)3/2. (37)

As is seen, the last term of this expression cancels the fourth term in Eq.(35),
which becomes imaginary at 3φ2 < 1. This is the important cancellation
preventing the infrared instability at high temperature.

Before to proceed, let us note that Eq.(35) contains other term (the last
one) which becomes imaginary for strong magnetic fields or small φ2. It
reflects the known instability in the W -boson spectrum which is discussed for
many years in literature (see papers [19],[14],[15], [24] and references therein).
But it also will be cancelled out when the contribution of ring diagrams with
the unstable mode is added.

To find the H-dependent Debye masses of photons and Z-bosons the
following procedure will be used. We calculate the one-loop EP of the W -
bosons and fermions in a magnetic field and some ”chemical potential”,µ,
which plays the role of an auxiliary parameter. Then, by differentiating
them twice with respect to µ and setting µ = 0 the mass squared m2

D will
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be obtained. Let us demonstrate that in more detail for the case of fermion
contributions where the result is known.

The temperature dependent part of the one-loop EP of constant mag-
netic field and a non-zero chemical potential induced by an electron-positron
vacuum polarization is [22]:

V
(1)
ferm. = − 1

4π2

∞
∑

l−1

(−1)l+1

∞
∫

0

ds

s3
exp(

−β2l2

4s
−m2s)eHscoth(eHs)cosh(βlµ),

(38)
where m is the electron mass, e = gsinθw is electric charge and a proper-time
representation is used. Its second derivative with respect to µ taken at µ = 0
can be written in the form,

∂2V
(1)
ferm.

∂µ2
=

eH

π2
β2 ∂

β2

∞
∑

l=1

(−1)l+1

∞
∫

0

ds

s
exp(−m2s− β2l2/4s)coth(eHs). (39)

Expanding coth(eHs) in series and integrating over s in accordance with
formula (21) we obtain in the limit of T >> m, (eH)1/2:

∞
∑

l=1

(−1)l+1[
8m

βl
K1(mβl) +

2

3

(eH)2lβ

m
K1(mβl) + · · ·] (40)

Series in l can easily be calculated by means of the Mellin transformation
(see Refs.[24],[15]). To have the Debye mass squared it is necessary to dif-
ferentiate Eq.(39) with respect to β2 and to take into account the relation of
the parameter µ with the zero component of the electromagnetic potential :
µßieA0 [14]. In this way we obtain finally,

m2
D = g2sin2θw(

T 2

3
− 1

2π2
m2 +O((mβ)2, (eHβ2))). (41)

This is the well known result calculated from the photon polarization operator
[20]. As one can see, the dependence on H appears in the order ∼ T−2. To
find the total fermion contribution to m2

D one should sum up expression (41)
over all fermions and substitute their electric charges.

To calculate m2
D for Z-bosons it is sufficient to take into account the

fermion couplings with Z-field. It can be done by substituting µßi(g/2cosθw+
gsin2θw) and the result differs from Eq. (41) by the coefficient at the
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bracket in the right-hand side which have to be replaced, g2sin2θßg2( 1
4cos2θw

+

tang2θw). One also should add the terms coming due to the neutral currents
and the part of fermion-Z-boson interaction which is not reproduced by the
above substitution:

m2′

D =
g2

8cos2θw
(1 + 4sin4θw)T

2. (42)

Now, let us apply this procedure for the case of theW -boson contribution.
The corresponding EP (temperature dependent part) calculated at non-zero
T, µ in the unitary gauge looks as follows,

V (1)
w = − eH

8π2

∞
∑

l=1

∞
∫

0

ds

s2
exp(−m2s−l2β2/4s)[

3

sinh(eHs)
+4sinh(eHs)]cosh(βlµ).

(43)
All the notations are obvious. The first term in the squared brackets gives the
triple contribution of the charged scalar field and the second one is due to the
interaction with a W -boson magnetic moment. Again, after differentiation
twice with respect to µ and setting µ = 0 it can be written as

∂2V (1)
w

∂µ2
=

eH

2π2
β2 ∂

∂β2

∞
∑

l=1

∞
∫

0

ds

s
exp(−m2s

eH
− l2β2eH

4s
)[

3

sinh(eHs)
+4sinh(eHs)].

(44)
Expanding sinh−1s in series over Bernoulli’s polynomials,

1

sinhs
=

e−s

s

∞
∑

k=0

Bk

k!
(−2s)k, (45)

and carrying out all the calculations described above, we obtain for the W -
boson contribution to m2

D of the electromagnetic field,

m2
D = 3g2sin2θw[

1

3
T 2 − 1

2π
T (m2 + gsinθwH)1/2 − 1

8π2
(gsinθwH)

+O(m2/T 2, (gsinθwH/T 2)2)]. (46)

Hence it follows that spin does not contribute to the Debye mass in the
leading order. Other interesting point is that the next to leading terms are
negative.

15



The contribution of the W -boson sector to the Z-boson mass m2
D is given

by expression (46) with the replacement g2sin2θwßg
2cos2θw.

Summing up the expressions (41) and (46) and substituting them in
Eq.(34), we obtain the photonic part V γ

ring where it is necessary to express
masses in terms of the vacuum value of the scalar condensate φc. In the same
way the contribution of Z-bosons V z

ring can be calculated. The only difference
is an additional mass term of Z -field and the additional term in the Debye
mass due to the neutral current ∼ ν̄γµνZmu . These three fields - φ, γ, Z
,- which becomes massless in the restored phase, contribute into Vring(H, T )
in the presence of the magnetic field. At zero field there is also a term due
to the W -boson loops in Figs.1,2 . But when H 6= 0 the charged particles
acquire ∼ eH masses. The corresponding fields remain short-range ones in
the restored phase of the vacuum and therefore do not contribute.

A separate consideration should be spared to the tachyonic (unstable)
mode in the W -boson spectrum: p20 = p23 + M2

w − eH . First of all we note
that this mode is produced due to a spin interaction and it does not influence
the G00(k) component of the W -boson propagator. Secondly, in the fields
eH ∼ M2

w the mode becomes a long range state. Therefore it should be
included in Vring(H, T ) side by side with other considered neutral fields. But
in this case it is impossible to take advantage of formula (34) and one has to
return to the initial EP with generalized propagators .

For our purpose it will be convenient to use the expression for the general-
ized EP written as a sum over the modes in external magnetic field [14],[15]:

V (1)
gen =

eH

2πβ

+∞
∑

l=−∞

+∞
∫

−∞

dp3
2π

∞
∑

n=0,σ=0,±1

log[β2(ω2
l + ǫ2n,σ,p3 +Π(T,H))], (47)

where ωl =
2πl
β

, ǫ2n = p23 +M2
w + (2n+ 1− 2σ)eH and Π(H, T ) is the Debye

mass of W -bosons in a magnetic field. Denoting as D−1
0 (p3, H.T ) the sum

ω2
l + ǫ2, one can rewrite eq. (47) as follows:

V (1)
gen =

eH

2πβ

+∞
∑

−∞

+∞
∫

−∞

dp3
2π

∑

n,σ

log[β2D−1
0 (p3, H, T )]

+
eH

2πβ

+∞
∑

−∞

+∞
∫

−infty

dp3
2π

{log[1 + (ω2
l + p23 +M2

w − eH)−1Π(H, T )]
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+
∑

n 6=0,σ 6=+1

log[1 +D0(ǫ
2
n, H, T )Π(H, T )]}. (48)

Here, the first term is just the one-loop contribution of W -bosons, the second
one gives the sum of ring diagrams of the unstable mode ( as it can easily be
verified by expanding the logarithm into a series ).The last term describes
the sum of the short range modes and should be omitted.

Thus, to find V unstable
ring one has to calculate the second term in Eq. (48).

In the high temperature limit we obtain:

V unstable
ring =

eH

2πβ
{(M2

w − eH +Π(H, T ))1/2 − (M2
w − eH)1/2}. (49)

By summing up the one-loop EP and all the terms Vring , we arrive at the
total consistent in leading order effective potential.

Let us note the most important features of the above expression. It is
seen that the last term in Eq.(49) exactly cancels the dangerous term in
Eq.(35). So, no instabilities appear at sufficiently high temperatures when
Π(H, T ) > M2

w − eH and the EP is real.To make a quantitative estimate
of the range of validity of the total EP it is necessary to calculate the mass
operator of W -boson in a magnetic field at finite temperature and hence to
find Π(H, T ) . This is a separate and enough complicated problem which will
not be solved here completely. Instead that below we restrict ourselves by
the contribution to Π(T ) of the neutral Higgs particles only which can easily
be calculated to give Π(T )Higgs =

1
12
g2T 2. Since other particles have also to

contribute into the temperature mass in leading T 2 order, the obtained mass
to be lower value which can be substituted into V unstable

ring . Just this value will
be used in the following estimations.

5. Symmetry behaviour in a magnetic field at high tem-

perature

Having obtained the one-loop EP described by formulae (16),(22), (28)-(33)
and the ring diagram contributions Vring we are going to investigate symmetry
behaviour at high temperature and strong magnetic fields. We shall present
the results in two steps. First, we consider the sum of the tree and one-
loop effective potentials as the function of φ2 at various fixed H , T and K
. Then, we shall add the term Vring and calculate symmetry behaviour for
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the total EP at the same fixed H, T,K. This will help to clarify the role
of the plasmon contributions. Since constructed EP includes as an input all
fundamental particles, we shall obtain new information about the electroweak
phase transition. The one-loop EP contains the imaginary parts in some
domains of φ2. But these terms occur to be cancelled by the corresponding
ones from Vring. Thus, only the real part,ReV (1), is of interest.

As usually [23], to investigate symmetry behaviour let us consider the
difference V ′

= Re[V(h, φ,K,B) − V(h, φ = 0, B)] which gives information
about the symmetry restoration. Below, we consider the case when the mass
mH is equal to Mw. Typical curves for small fields h and different values of
B are plotted in Fig.3.

It is seen that the well known symmetry restoration (for the heavy fermion
case) takes place. There are two minima - local, produces due to the Higgs
mechanism, and and global one, generated by heavy fermion contributions.
At low temperatures (big B), the local metastable minimum is disposed near
the value φ2 = 1 that corresponds to the spontaneously broken symmetry.
With a temperature increasing the local minimum becomes shallower and at
B ∼ 0.1 removes to the value φ2 = 0 that signals the symmetry restoration.
We see that typical second type phase transition takes place for K = 1. At
the same time, the barrier separating two minima is increasing in height and
width and so a tunneling to the global unbounded from below minimum is
suppressed.

In Fig.4 we present the influence of the field on the symmetry behaviour
at low temperature. As is seen, an increase in h leads to the getting deeper
of the local minimum and to the growing up the barrier which separates
the minima. In this way the magnetic field prevents tunneling to the global
unbounded minimum.

Now, let us investigate symmetry behaviour at high temperature and
strong magnetic fields. The result of calculations is shown in Fig.5. From
the plot it follows that the field tends to decrease the temperature and stim-
ulates the symmetry breaking. First the metastable vacuum is generated
with the field increasing. As is seen, this is a homogeneous transition. When
the strength h is growing further the potential barrier separating the local
and global vacua is diminishing and the depth of the former one is getting
shallower. At h ≥ 2 the electroweak minimum disappears at all. This pic-
ture is typical and realized at any high temperature. Therefore, it is possible
to obtain an upper limit on the magnetic field strength requiring that the
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electroweak vacuum must be a long living state. From the above analysis
one could conclude that the fields H ≥ 2H0 = M2/e ∼ 2 · 1024G had not
been generated in the early universe. In the opposite case our world would
never been realized and the system from the very beginning suppose to be in
the global unbounded minimum. Similar symmetry behaviour (with slightly
different values of h,B) has also been determined for K = 2.

Fore completeness, let us describe the symmetry behaviour for the EP
without the fermion contributions. In this case the symmetry restoration (
for K = 1, 2) is also realized by the second type phase transition but typical
temperatures to be of order B ∼ 0.5 − 0.6. Naturally, no global minimum
exists, so no limits on the magnetic field strength can be derived.

To summarize the above results we stress that fermions affect in a very
essential way the symmetry behaviour in the field H . We also recall that our
consideration was based on the one-loop EP only.

Now, let us include in our consideration the contribution of Vring . In Fig.
6 we show the plot of Vring . It represents a complicated dependence on h
and this contribution for strong fields acts to remove the separation barrier
and stimulate the transition to the global vacuum state.

In Figs.7 ,8 and 9, 10 the influence of the ring diagrams is represented for
small B , weak fields h ∼ 0.01−0.1 and K = 0.5, 0.75 ,respectively. To better
clarify their role we show the plots in parallel for chosen K. As is seen, with
Vring included symmetry behaviour is considerably changed as compare with
results presented in Fig. 5. Most important fact is that For K = 1 the local
minimum is not realized at all even for weak field strengths. Actually, the
value of K = 0.75 corresponding mH ∼ 70Gev is a bound value for the mass
mH and the field strengths H ∼ 0.01 − 0.1M2

w/e = 0.01 − 0.1 · 1024 G give
upper limits on the magnetic fields in the phase transition epoch. Stronger
fields stimulates straight transition to the global minimum.Thus we see that
due to Vring term the upper limit on the magnetic field is decreased from
2 · 1024G derived with the EP V (1) to 0.1 · 1024G. Moreover, they restrict the
Higgs boson mass: mH < 70Gev, otherwise the local electroweak minimum
is not produced. We also observe that the phase transition is to be of the
first type one.

It is very important that the described minima of the EP are stable
at high temperatures even for strong fields h. Really, typical value of B
when the symmetry restoration happens for K ∼ 1 is B ∼ 0.1 . For the
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calculated lower temperature mass we have 1
12
g2/B2 ∼ 3. Hence we find that

the effective mass of the unstable mode φ2 − h + 1
12
g2/B2 is positive for all

values of h considered. Thus, one has to conclude that classical constant
magnetic field must be stable in the electroweak phase transition epoch. No
W - and Z-boson condensates can be produced at high temperatures. These
condensates would be realized at lower temperatures as the intermediate
states of the vacuum.

6. Discussion

Let us discuss the vacuum stability in a magnetic field. This problem is
of interest because of the presence in the W -boson spectrum the mode
p20 = M2

w − eH which becomes unstable for H > M2
w/e. The evolution

of this state and its consequences have been investigated in various aspects
by many authors [25],[23],[13]. At high temperatures, it was studied for the
case when only the bosonic part of the electroweak theory has been included
[12],[19],[13]. In Refs. [13] the classical equations of W,Z and φ fields were
solved and the results that at high temperature the symmetry is restored and
the magnetic field is screened by theW - boson and Z-boson condensates have
been elaborated. The key point in this analysis is the assumption that sym-
metry restoration is the second type phase transition which can be taken into
account by adding the term ∼ φ2T 2 in the field equations. For these results
it was also important that the Higgs boson mass equals to mZ . From the
point of view of the present investigation the described approach is not trusty
because it does not take into account the vacuum polarization which is very
important at high temperature and strong fields. In fact, this is the only one
term produced by the vacuum polarization and other relevant contributions
must be included. Exactly the polarization effects produce the temperature
masses which stabilize the vacuum. So, no conditions for generation of the
W - and Z-boson condensates exist. These condensates could be realized in
strong magnetic fields at intermediate temperatures when imaginary part of
the EP is nonzero. But in any case, to have a consistent picture the vacuum
polarization should be taken into account because of a complicated behaviour
of the EP in an intermediate range of T,H [12],[19].

The present investigation carried out on the base of the complete EP
with fermions included shown that at weak magnetic fields the symmetry
restoration is to be the first type phase transition ( for the values of K
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considered ,mH < Mw ). For strong fields our metastable vacuum could never
be realized. But at any fixed temperature T there exists a corresponding
magnetic field strength at which a metastable vacuum with positive energy
and non-zero scalar field is produced . This picture may be of interest for
cosmology.

As follows from the results of Sect.5 , the role of fermions is very essen-
tial in the symmetry dynamics. Actually, their contribution determines the
properties of the phase transition due to magnetic field. We have seen that
at low temperature the field acts to prevent the phase transition from the
metastable to stable minimum of the EP. Since the charged fermions and
gauge bosons oppositely influence the symmetry behaviour in a magnetic
field, for the actual values of particle masses these two contributions com-
pensate each other and the metastable minimum position remains near the
initial point φ2 = 1 for any values of h. The influence of the field is expressed
in the change of the potential barrier separating two minima. As is also oc-
curred, at high temperatures the role of the ring diagrams is important (as
also takes place at h = 0 [16],[17]). Thus, we conclude that the EW phase
transition in a magnetic field acquires substantial changes. For its detailed
investigation it is necessary to calculate the bubble nucleation parameters,
the metastability bound on mH , etc.

We would like to complete our discussion with a few remarks concerning
the magnetic field in the restored phase. As was mentioned in the Intro-
duction, in current literature a hypercharge magnetic field is discussed as a
relevant one there [9]. There is an important difference between this field and
ordinary magnetic field investigated in the present paper. The former field
is an abelian one and requires an external source to maintain it in space. On
the contrary, ordinary magnetic field may be considered as the projection of a
nonabelian field produced spontaneously at high temperatures via Savvidy’s
mechanism. Investigation of the state was given in Refs.[7],[14],[24]. A final
conclusion about this phenomenon can be done when the complete temper-
ature mass of the unstable mode Π(H, T ) will be calculated. This work is in
progress now.
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Institute of Theoretical physics University of Leipzig for hospitality and the
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Figure 3: Symmetry restoration at high temperatures and small magnetic
fields determined by the one-loop effective potential V (φ2, h, B,K).
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Figure 4: Symmetry behaviour at zero temperature and strong magnetic
fields determined by the one-loop effective potential V (φ2, h,K).

Figure 5: Symmetry behaviour at fixed high temperature and a number of
values h described by the one-loop efective potential V (φ2, h, B,K).
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Figure 6: The Vring curves as the functions of φ2 for fixed temperature and
a number of h.

Figure 7: Symmetry behaviour at high temperature and ’weak’ magnetic
fields determined within the one-loop effective potential V = V(0) + V(1) for
K = 0.5.

25



Figure 8: Symmetry behaviour at high temperature and ’weak’ magnetic
fields determined within the total effective potential V = V(0) + V(1) + Vring

for K = 0.5.

Figure 9: Symmetry behaviour at high temperature and ’weak’ magnetic
fields determined within the total effective potential V = V(0) + V(1) + Vring

for K = 0.75.
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Figure 10: Symmetry behaviour at high temperature and ’weak’ magnetic
fields determined within the total effective potential V = V(0) + V(1) + Vring

for K = 0.75.
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