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Abstract

We demonstrate how one may identify or constrain possible violation of
CP , T and CPT symmetries in the K0-K0 system in a way as phenomeno-
logical and comprehensive as possibie. For this purpose, we first introduce
parameters which represent violation of these symmetries in mixing parame-
ters and decay amplitudes in a well-defined way. After discussing some char-
acteristics of these parameters, we derive formulae which relate them to the
experimentally measured quantities. We then carry out a numerical analysis
with the help of the Bell-Steinberger relation to derive constraints to these
violating parameters from available experimental data. Finally, we compare
our parametrization and procedure of analysis with those employed in the
recent literature.
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1 Introduction

Although, on the one hand, the standard field theory implies that CPT symme-
try should hold exactly, and, on the other hand, all experimental observations up
to now are perfectly consistent with this symmetry, continued experimental, phe-
nomenological and theoretical studies of this and related symmetries are warrented.

In a series of papers[1-5], we have demonstrated how one may identify or con-
strain possible violation of CP , T and CPT symmetries in the K0-K0 system in a
way as phenomenological and comprehensive as possible. For this purpose, we have
first introduced parameters which represent violation of these symmetries in mixing
parameters and decay amplitudes in a well-defined way and related them to the
experimentally measured quantities. We have then carried out a numerical analysis
with little theoretical input to derive constraints to these violating parameters from
available experimental data. It has been shown among other things that the most
recent results on leptonic asymmetries obtained by the CPLEAR Collaboration[6]
allow one for the first time to constrain to some extent possible CPT violation in
leptonic decay modes.a

As discussed in [1-3], our parametrization is very unique in that it is manifestly
invariant with respect to rephasing of the |K0〉 and |K0〉 states,

|K0〉 → |K0〉′ = |K0〉e−iξK , |K0〉 → |K0〉′ = |K0〉eiξK . (1.1)

It has to be noted however that our parametrization is not invariant with respect
to rephasing of final states |f〉, e.g.

|(2π)I〉 → |(2π)I〉′ = |(2π)I〉e−iξI ,

|ℓ−〉 → |ℓ−〉′ = |ℓ−〉e−iξℓ ,

|ℓ+〉 → |ℓ+〉′ = |ℓ+〉e−iξℓ .

(1.2)

where I = 0 or 2 stands for the isospin of the 2π states, |ℓ−〉 = |π+ℓ−νℓ〉, |ℓ+〉 =
|π−ℓ+νℓ〉 and ℓ = e or µ. We have rather adopted a specific phase convention for
the final states |f〉. Some of the constraints which we have claimed to follow from
CP , T and/or CPT symmetries do depend on this phase convention and have to be
distinguished from those constraints which are phase-convention-independent. We
would like to clarify these points in Sec. 4 of the present work.

The main data we have used in our last analysis[5] are those reported by the
CPLEAR Collaboration [6] and those compiled by the Particle Data Group in [8].
The latter article also contains a number of notes giving definition of parameters,
formulae relevant for data processing and related remarks. In Sec. 7, we would like
to compare our parametrization and procedure of analysis with those given or cited
in [8].

aAfter our last paper[5] being sent to the major high energy physics centers, we became aware
that the CPLEAR Collaboration themselves[7] had also, by an analysis more or less similar to
ours, reached the similar conclusion.
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To be self-contained, we need to recapitulate our parametrization(Sec. 2 and
Sec. 3), formulae(Sec. 5) and main results(Sec. 6). These parts are essentially same
with our previous works[1-5], except that the π+π−γ state is taken into account as
one of intermediate states in the Bell-Steinberger relation.

2 The K0-K0 mixing and the Bell-Steinberger re-

lation

Let |K0〉 and |K0〉 be eigenstates of the strong interaction with strangeness
S = +1 and −1, related to each other by (CP ), (CPT ) and T operations as[1, 2, 9]

(CP )|K0〉 = eiαK |K0〉 , (CPT )|K0〉 = eiβK |K0〉 ,

(CP )|K0〉 = e−iαK |K0〉 , (CPT )|K0〉 = eiβK |K0〉 ,

T |K0〉 = ei(βK−αK)|K0〉 , T |K0〉 = ei(βK+αK)|K0〉 .

(2.1)

Note here that, given the first two where αK and βK are arbitrary real parameters,
the rest follow from (CP )T = T (CP ) = (CPT ) and anti-linearity of T and (CPT ).

When the weak interaction Hw is switched on, the K0 and K0 states decay into
other states and become mixed. The time evolution of the arbitrary state

|Ψ(t)〉 = c1(t)|K0〉+ c2(t)|K0〉

is described by a Schrödinger-like equation[10]

i
d

dt







c1(t)

c2(t)





 = Λ







c1(t)

c2(t)





 . (2.2)

Λ = (Λij) is a 2× 2 matrix related to Hw, e.g.

Λ12 =
∑

f

〈K0|Hw|f〉〈f |Hw|K0〉/(mK − Ef + iε) ,

and may be written as

Λ = M − i
Γ

2
, (2.3)

M(Γ) being an hermitian matrix called mass (decay) matrix. The two eigenstates
of Λ and their respective eigenvalues may be written as

|KS〉 =
1

√

|pS|2 + |qS|2
(

pS|K0〉+ qS|K0〉
)

, (2.4a)

|KL〉 =
1

√

|pL|2 + |qL|2
(

pL|K0〉 − qL|K0〉
)

; (2.4b)
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λS = mS − i
γS
2

, (2.5a)

λL = mL − i
γL
2

. (2.5b)

λS, λL, qS/pS and qL/pL are related to Λij , and mS,L = Re(λS,L) and γS,L =
−2Im(λS,L) are the mass and the total decay width of the KS,L state respectively.
Parametrizing qS/pS and qL/pL as

qS
pS

= eiαK 1− εS
1 + εS

,

qL
pL = eiαK 1− εL

1 + εL
,

(2.6)

one may express |KS〉 and |KL〉 as

|KS〉 =
1

√

2(1 + |εS|2)

{

(1 + εS)e
−iαK/2|K0〉+ (1− εS)e

iαK/2|K0〉
}

=
1

√

1 + |εS|2
(|K1〉+ εS|K2〉) , (2.7a)

|KL〉 =
1

√

2(1 + |εL|2)

{

(1 + εL)e
−iαK/2|K0〉 − (1− εL)e

iαK/2|K0〉
}

=
1

√

1 + |εL|2
(|K2〉+ εL|K1〉) , (2.7b)

where

|K1,2〉 =
1√
2

(

e−iαK/2|K0〉 ± eiαK/2|K0〉
)

(2.8)

are CP eigenstates with CP = ±1. Note that the overall phases of |K1,2〉 and |KS,L〉
are chosen in such a way as[1]

CPT |K1,2〉 = ±eiβK |K1,2〉 ,

|KS,L〉 → |K1,2〉 as εS,L → 0 .

εS,L will further be parametrized as

εS,L = ε± δ . (2.9)

From the eigenvalue equation of Λ, one may readily derive the well-known Bell-
Steinberger relation[11]:

[

γS + γL
2

− i∆
]

〈KS|KL〉 = 〈KS|Γ|KL〉 , (2.10)
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where
〈KS|Γ|KL〉 = 2π

∑

f

〈KS|Hw|f〉〈f |Hw|KL〉δ(mK − Ef) , (2.11)

∆ = mS −mL . (2.12)

One may further verify[3, 4]

ε‖ ≡ Re[ε exp(−iφSW )] ≃ −2Im(M12e
iαK )

√

(γS − γL)2 + 4∆2
, (2.13a)

ε⊥ ≡ Im[ε exp(−iφSW )] ≃ Im(Γ12e
iαK )

√

(γS − γL)2 + 4∆2
, (2.13b)

δ‖ ≡ Re[δ exp(−iφSW )] ≃ (Γ11 − Γ22)

2
√

(γS − γL)2 + 4∆2
, (2.14a)

δ⊥ ≡ Im[δ exp(−iφSW )] ≃ (M11 −M22)
√

(γS − γL)2 + 4∆2
, (2.14b)

where

φSW = tan−1

(

−2∆

γS − γL

)

(2.15)

is the so-called superweak phase.

3 Decay amplitudes

The K0 and K0 (or KS and KL) states have many decay channels, among which
we concentrate on the following four relevant modes.

3.1 2π modes

We parametrize amplitudes for K0 and K0 to decay into (2π)I as[1]

〈(2π)I |Hw|K0〉 = FI(1 + yI)e
iαK/2 ,

〈(2π)I |Hw|K0〉 = F ∗
I (1− y∗I )e

−iαK/2 ,
(3.1)

and further introduce

zI =
Im(FI)

Re(FI)
. (3.2)

The experimentally measured quantities are η+− and η00 defined by

η+− = |η+−|eiφ+− =
〈π+π−, outgoing|Hw|KL〉
〈π+π−, outgoing|Hw|KS〉

, (3.3a)
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η00 = |η00|eiφ00 =
〈π0π0, outgoing|Hw|KL〉
〈π0π0, outgoing|Hw|KS〉

. (3.3b)

Defining

ηI =
〈(2π)I |Hw|KL〉
〈(2π)I |Hw|KS〉

, (3.4)

ω =
〈(2π)2|Hw|KS〉
〈(2π)0|Hw|KS〉

, (3.5)

one gets

η+− =
η0 + η2ω

′

1 + ω′
, (3.6a)

η00 =
η0 − 2η2ω

′

1− 2ω′
, (3.6b)

where

ω′ =
1√
2
ωei(δ2−δ0) , (3.7)

δI being the S-wave ππ scattering phase shift for the isospin I state at an energy of
the rest mass of K0. ω is a measure of deviation from the ∆I = 1/2 rule, and may
be inferred, for example, from

r ≡ γS(π
+π−)− 2γS(π

0π0)

γS(π+π−) + γS(π0π0)

=
4Re(ω′)− 2|ω′|2

1 + 2|ω′|2 . (3.8)

Here and in the following, γS,L(f) denotes the partial width for KS,L to decay into
the final state f .

3.2 3π and π+π−γ modes

The experimentally measured quantities are

η+−0 =
〈π+π−π0, outgoing|Hw|KS〉
〈π+π−π0, outgoing|Hw|KL〉

, (3.9a)

η000 =
〈π0π0π0, outgoing|Hw|KS〉
〈π0π0π0, outgoing|Hw|KL〉

, (3.9b)

η+−γ =
〈π+π−γ, outgoing|Hw|KL〉
〈π+π−γ, outgoing|Hw|KS〉

. (3.10)

We shall treat the 3π (π+π−γ) states as purely CP -odd (CP -even).
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3.3 Leptonic modes

We parametrize amplitudes for K0 and K0 to decay into |ℓ+〉 = |π−ℓ+νℓ〉 and
|ℓ−〉 = |π+ℓ−νℓ〉, where ℓ = e or µ, as[1, 12, 13]

〈ℓ+|Hw|K0〉 = Fℓ(1 + yℓ)e
iαK/2 ,

〈ℓ−|Hw|K0〉 = F ∗
ℓ (1− y∗ℓ )e

−iαK/2 ,

〈ℓ+|Hw|K0〉 = xℓ+Fℓ(1 + yℓ)e
−iαK/2 ,

〈ℓ−|Hw|K0〉 = x∗
ℓ−F

∗
ℓ (1− y∗ℓ )e

iαK/2 .

(3.11)

xℓ±, which measure deviation from the ∆S = ∆Q rule, are further parametrized as

xℓ± = xℓ ± x′
ℓ . (3.12)

Rather than the well measured time-independent asymmetry parameter

dℓL =
γL(π

−ℓ+νℓ)− γL(π
+ℓ−νℓ)

γL(π−ℓ+νℓ) + γL(π+ℓ−νℓ)
, (3.13a)

the CPLEAR Collaboration[6] have for the first time measured two kinds of time-
dependent asymmetry parameters

dℓ1(t) =
|〈ℓ−|Hw|K0(t)〉|2 − |〈ℓ+|Hw|K0(t)〉|2
|〈ℓ−|Hw|K0(t)〉|2 + |〈ℓ+|Hw|K0(t)〉|2

, (3.13b)

dℓ2(t) =
|〈ℓ+|Hw|K0(t)〉|2 − |〈ℓ−|Hw|K0(t)〉|2
|〈ℓ+|Hw|K0(t)〉|2 + |〈ℓ−|Hw|K0(t)〉|2

. (3.13c)

4 Conditions imposed by CP , T and/or CPT sym-

metries

Although our amplitude parameters Ff and yf as well as our mixing parameters
ε and δ are all invariant with respect to rephasing of the |K0〉 and |K0〉 states,
Eq.(1.1), Ff and yf are not invariant with respect to rephasing of the final state |f〉,
Eq.(1.2). So are the relative CP phase αℓ between |ℓ+〉 and |ℓ−〉 and the relative
CPT phase βf between |f〉 and |f〉 defined in such a way as

CP |ℓ+〉 = eiαℓ |ℓ−〉 , CPT |f〉 = eiβf |f〉 , (4.1)

where αℓ and βf are arbitrary real parameters and it is understood that |f〉 = |f〉
for |f〉 = |(2π)I〉 and |π+π−γ〉 and |f〉 = −|f〉 for |f〉 = |π+π−π0〉 and |π0π0π0〉.
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One may verify that CP , T and CPT symmetries impose such conditions asb

CP symmetry : Im(Fℓ)/Re(Fℓ) = − tanαℓ/2 ; (4.2a)

T symmetry : 2Im(yf)/(1− |yf |2) = tan(βf − βK) , (4.2b)

Im[(1 + izI)
2(1− y2I )] = 0 , (4.2c)

Im[F 2
ℓ (1− y2ℓ ) exp(iαℓ)] = 0 ; (4.2d)

CPT symmetry : Im(yf) = tan(βf − βK)/2 , (4.2e)

in addition to

CP symmetry : ε = 0, δ = 0, zI = 0, Re(yf) = 0, Im(xℓ) = 0, Re(x′
ℓ) = 0 ;

T symmetry : ε = 0, Im(xℓ) = 0, Im(x′
ℓ) = 0 ;

CPT symmetry : δ = 0, Re(yf) = 0, Re(x′
ℓ) = 0, Im(x′

ℓ) = 0 .
(4.3)

One sees from Eqs.(4.2a,b,d,e) that, since αℓ and βf are completely arbitrary, Im(Fℓ)
and Im(yf) remain unconstrained even if one impose CP , T and/or CPT symme-
tries. It can be shown[14] however that it is possible by a choice of phase convention
to setc

Im(Fℓ) = 0 , Im(yf) = 0 . (4.4)

Eq.(4.2c) then gives
T symmetry : zI = 0 . (4.5)

5 Formulae relevant for numerical analysis

We shall adopt a phase convention which gives Eq.(4.4). Observed and expected
smallness of violation of CP , T and CPT symmetries and of the ∆S = ∆Q rule

bIn our previous papers[2-4], having adopted from the outset the phase convention

αℓ = 0 , βf = βK , (4.6)

we are led to claim that Eq.(4.4), too, would follow from CP , T and/or CPT symmetries and hence
include Im(Fℓ) and Im(yf ) in our list of symmetry-violating parameters. Also, our classification
of ε and δ as indirect parameters and of zI , Re(yf ), Im(xℓ) and x′

ℓ (and, erroneously, Im(Fℓ) and
Im(yf ) as well) as direct parameters is not very consistent, since non-vanishing of the latter set of
parameters will in general result in non-vanishing of the former set of parameters. More consistent
is to refer to ε‖ and δ⊥, which are related exclusively to the mass matrix, as indirect parameters
and all the others, which are related to decay amplitudes or decay matrix, as direct parameters.

cSee Ref.[12, 13] for related discussion on (non)observability of Im(yℓ).
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allows us to treat all our symmetry-violating parameters (i.e. those implicit in

Eqs.(4.3) and (4.5)), and Re(xℓ) as well, as small, d and, to the leading order, one
finds

ω ≃ Re(F2)

Re(F0)
, (5.1)

ηI ≃ ε− δ + Re(yI) + izI , (5.2a)

η2 − η0 ≃ Re(y2 − y0) + i(z2 − z0) , (5.2b)

dℓ1(t ≫ 1/γS) ≃ −4Re(ε)− 2Re(yℓ − x′
ℓ) , (5.3a)

dℓ2(t ≫ 1/γS) ≃ −4Re(δ) + 2Re(yℓ − x′
ℓ) . (5.3b)

Furthermore, by taking 2π, 3π, π+π−γ and πℓνℓ intermediate states into account
in the Bell-Steinberger relation, Eq.(2.10) with Eq.(2.11), one may, with the help of
Eqs.(2.7a,b) and (2.9), express Re(ε) and Im(δ) in terms of the measured quantities:

Re(ε) ≃ 1
√

γ2
S + 4∆2 + 4 cosφSW

∑

ℓ γL(πℓνℓ)
×

[

γS(π
+π−)|η+−| cos(φ+− − φSW )

+ γS(π
0π0)|η00| cos(φ00 − φSW )

+ γS(π
+π−γ)|η+−γ| cos(φ+−γ − φSW )

+ γL(π
+π−π0){Re(η+−0) cosφSW − Im(η+−0) sinφSW}

+ γL(π
0π0π0){Re(η000) cosφSW − Im(η000) sinφSW}

+
∑

ℓ

γL(πℓνℓ){(2Re(x′
ℓ)− dℓ1(t ≫ 1/γS)) cosφSW

−2Im(x′
ℓ) sinφSW}

]

, (5.4)

Im(δ) ≃ 1
√

γ2
S + 4∆2

×
[

− γS(π
+π−)|η+−| sin(φ+− − φSW )

− γS(π
0π0)|η00| sin(φ00 − φSW )

− γS(π
+π−γ)|η+−γ| sin(φ+−γ − φSW )

+ γL(π
+π−π0){Re(η+−0) sinφSW + Im(η+−0) cosφSW}

+ γL(π
0π0π0){Re(η000) sinφSW + Im(η000) cosφSW}

+ 2
∑

ℓ

γL(πℓνℓ){Re(yℓ) sinφSW + Im(x′
ℓ) cosφSW}

]

. (5.5)

In deriving these equations, use has been made of the fact γS ≫ γL .

dAs a matter of fact, we have already assumed that CP , T and CPT violations are small in
deriving Eqs.(2.13a) ∼ (2.14b).
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6 Numerical results

As the first set of input data, we use the PDG-1996 data[8] as far as available
(except those on η+−0 and η000) and supplement them by Chell-Olsson’s value[15]
on δ2 − δ0 and CPLEAR’s results[6] on η+−0, η000, d

ℓ
1(t ≫ 1/γS) and dℓ2(t ≫ 1/γS).

As the second set, we use the CPLEAR data[6] as far as available and supplement
them by Gasser-Meissner’s value[16] on δ2 − δ0 and the PDG-1996 data[8] for the
rest. All the relevant data are recapitulated in Table 1.

Quantity PDG-1996 CPLEAR Unit
1/γS 0.8927± 0.0009 10−10s
1/γL 5.17± 0.04 10−8s
−∆ 0.5304± 0.0014 0.5292± 0.0019 1010s−1

2π γS(π
+π−)/γS 68.61± 0.28 %

γS(π
0π0)/γS 31.39± 0.28 %
|η+−| 2.285± 0.019 2.316± 0.039 10−3

φ+− 43.7± 0.6 43.5± 0.8 ◦

|η00| 2.275± 0.019 2.49± 0.46 10−3

φ00 43.5± 1.0 51.7± 7.3 ◦

3π γL(π
+π−π0)/γL 12.56± 0.20 %

γL(π
0π0π0)/γL 21.12± 0.27 %

Re(η+−0) −0.004± 0.008
Im(η+−0) −0.003± 0.010
Re(η000) 0.15± 0.30
Im(η000) 0.29± 0.40

πℓν
∑

ℓ γL(πℓν)/γL 65.96± 0.30 %
Re(xℓ) 0.006± 0.018 0.0085± 0.0102
Im(xℓ) −0.003± 0.026 0.0005± 0.0025
dℓL 3.27± 0.12 10−3

dℓ1(t ≫ 1/γS)/4 −1.57± 0.70 10−3

dℓ2(t ≫ 1/γS)/4 −0.07± 0.70 10−3

π+π−γ γS(π
+π−γ)/γS 0.178± 0.050 %
|η+−γ| 2.35± 0.07 10−3

φ+−γ 44± 4 ◦

Chell-Olsson Gasser-Meißner
2π δ2 − δ0 −42± 4 −45± 6 ◦

Table 1: Input data.

Our analysis goes as follows.
First, assuming ω being real (see Eq.(5.1)), we use Eqs.(3.8) to find ω. Equations

(3.6a,b) are then used to estimate η0 and η2−η0. The value of φSW is obtained from
Eq.(2.15). The results are shown in Table 2.
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Quantity PDG-1996 CPLEAR Unit
ω 2.814± 0.357 2.961± 0.455 10−2

φSW 43.44± 0.08 43.38± 0.11 ◦

Re(η0) 1.652± 0.018 1.632± 0.124 10−3

Im(η0) 1.575± 0.018 1.709± 0.136 10−3

Re(η2 − η0) −0.121± 0.765 5.55± 5.13 10−3

Im(η2 − η0) 0.173± 0.446 −2.387± 7.238 10−3

Table 2: Intermediate results.

Next, we use Eqs.(5.3a) and (5.4) to estimate Re(ε) and Re(yℓ). For this purpose,
in view of lack of accurate independent data on xℓ+ and xℓ−[6], we shall unwillingly
neglect possible violation of CPT symmetry in the ∆S 6= ∆Q amplitudes and
assume

x′
ℓ = 0 . (6.1)

By combining with Eqs.(5.2a), (5.3b) and (5.5), one may further estimate Re(δ),
Im(δ), Re(y0) and Im(ε)+z0. Equation (5.2b) gives Re(y2−y0) and z2−z0 directly.
All the results are compiled in Table 3, where the values of δ‖ and δ⊥ are also shown.

PDG-1996 CPLEAR Remark
CP/T Re(ε) 1.639± 0.098 1.695± 0.141 ×10−3

Violating Im(ε) + z0 1.647± 0.102 1.707± 0.182 ×10−3

z2 − z0 0.173± 0.446 −2.38± 7.24 ×10−3

Im(xℓ) −0.3 ± 2.6 0.05± 0.25 ×10−2; input
CP/CPT Re(δ) 0.01± 9.94 −0.55± 9.99 ×10−4

Violating Im(δ) 0.73± 1.01 −0.02± 1.21 ×10−4

δ‖ 0.51± 7.25 −0.42± 7.31 ×10−4

δ⊥ 0.52± 6.87 0.36± 6.92 ×10−4

Re(y0) 0.01± 1.00 −0.12± 1.02 ×10−3

Re(y2 − y0) −0.121± 0.765 5.55± 5.13 ×10−3

Re(yℓ) −0.13± 1.41 −0.25± 1.42 ×10−3

Re(x′
ℓ) 0 0 assumed

T/CPT Violating Im(x′
ℓ) 0 0 assumed

Table 3: Experimental constraints to the symmetry-violating parameters.
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7 Comparison with other analyses

If one treats |ω′| as a small quantity, one gets from Eq.(3.6a,b)

η+− ≃ η0 + ε′ , (7.1a)

η00 ≃ η0 − 2ε′ , (7.1b)

where

ε′ =
1√
2
(η2 − η0)ω exp(i(δ2 − δ0)) . (7.2)

If one further assumes CPT symmetry, one has, from Eqs.(5.2a,b),

η0 = ε+ iz0 , (7.3a)

ε′ =
1√
2
i(z2 − z0)ω exp(i(δ2 − δ0)) . (7.3b)

In a note [17] cited in [8], assuming CPT symmetry, the mixing parameter is
parametrized as

q

p
=

1− ε̃

1 + ε̃
, (7.4a)

and the 2π decay amplitude is simply denoted as

〈(2π)I |Hw|K0〉 = AI . (7.4b)

Comparing with Eqs.(2.6), (3.1), (3.2) and (5.1) and with the help of Eqs.(2.13b)
and (2.15), one may verify[2] that

ε̃ =
ε cosαK/2− i sinαK/2

cosαK/2− iε sinαK/2

=
2Re(ε)− i{(1− |ε|2) sinαK − 2Im(ε) cosαK}
1 + |ε|2 + (1− |ε|2) cosαK + 2Im(ε) sinαK

, (7.5a)

Re(A2)

Re(A0)
=

ω(cosαK/2− z2 sinαK/2)

cosαK/2− z0 sinαK/2
, (7.5b)

Im(AI)

Re(AI)
=

zI cosαK/2 + sinαK/2

cosαK/2− zI sinαK/2
. (7.5c)

Im(ε̃) and Im(AI) are not small in general. If, and only if, one restricts himself to
the case in which αK is allowed to be treated as small as our ε and zI , one has

ε̃ ≃ ε− iαK/2 , (7.6a)

Re(A2)

Re(A0)
≃ ω , (7.6b)

Im(AI)

Re(AI)
≃ zI + αK/2 , (7.6c)
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and η0 and ε′ may be expressed as

η0 ≃ ε̃+ i
Im(A0)

Re(A0)
, (7.7a)

ε′ ≃ i√
2

Re(A2)

Re(A0)

[

Im(A2)

Re(A2)
− Im(A0)

Re(A0)

]

exp(i(δ2 − δ0)) . (7.7b)

The parameters ε̃ and AI are not invariant under the rephasing of the |K0〉 and
|K0〉 states, Eq.(1.1), and it is possible by a choice of phase convention to set αK

or Im(A0) or Im(A2) or Im(ε̃) to 0. If one adopts the choice Im(A0) = 0 (i.e. the
Wu-Yang phase convention[18]), one will have

η0 = ε̃ , (7.8a)

ε′ =
i√
2

Im(A2)

Re(A0)
exp(i(δ2 − δ0)) . (7.8b)

Note however that the choice Im(A0) = 0 is, as seen from Eq.(7.5c) or (7.6c),
equivalent to the choice z0 = − tanαK/2 or αK ≃ −2z0 and hence Eqs.(7.6a,c)
give

ε̃ ≃ ε+ iz0 , (7.9a)

Im(A2)

Re(A2)
≃ z2 − z0 . (7.9b)

Inserting Eqs.(7.6b) and (7.9a,b) into Eqs.(7.8a,b), one goes back to Eqs.(7.3a,b).e

Such an approximate relation as

ε′

ε̃
≃ Re

(

ε′

ε̃

)

≃ 1

3

(

1−
∣

∣

∣

∣

∣

η00
η+−

∣

∣

∣

∣

∣

)

, (7.10)

is used to estimate ε′/ε̃ (or ε′/η0 in our notation) in [8, 17]. On the other hand,
from Eqs.(7.1a,b) and the first set of the data in Table 1, 2 and 3, we find

Re
(

ε′

η0

)

= (1.5± 5.5)× 10−3 ,

Im
(

ε′

η0

)

= (1.2± 5.5)× 10−3 .

(7.11)

It appears therefore that the second (first) near equality in Eq.(7.10) is (may not

be) justifiable.f

eWe expect that Eqs.(7.1a,b) with η0 and ε′ given either by Eqs.(7.7a,b) or Eqs.(7.8a,b) should
coincide exactly with Eqs.(4a,b) and (5) derived in [17]. It seems to us that a term propotional to
Im(A0) is missing in their Eqs.(4a,b) or has to be omitted from their Eq.(5). See also Eqs.(13.4a,b,c)
of [19] in this respect.

fIt is argued that the first near equality in Eq.(7.10) follows, since

The phase of ε̃ in the Wu-Yang phase convention ≃ φSW , (7.12)

and since φSW is accidentally close to the phase of ε′, δ2 − δ0 + π/2. Note however that Eq.(7.12)
holds only when direct CP violation (i.e. CP violation in decay amplitudes and decay matrix)
is negligible (see Eqs.(2.13b), (2.15) and (7.9a)) and that ε′ is a quantity related to direct CP
violation.
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In [8],

ζ =
mK0 −m

K0

mK0

, (7.13a)

is quoted as a typical quantity which signals CPT violation. ζ is related to our
parameters defined in Eq.(2.14b) as

ζ =
δ⊥
√

γ2
S + 4∆2

mK0

, (7.13b)

and it is true that ζ 6= 0 would imply violation of both CP and CPT symmetries. It
seems however that δ⊥ itself (rather than ζ) is better to be regarded as a parameter
which characterizes symmetry violation[13, 20]. In [21] cited in [8], a couple of
assumptions and approximations are made to relate δ⊥ directly to the measured
quantities such as η+−, η00 and φSW . Among the asumptions is direct CPT violation
being negligible, which would however at the same time lead to δ‖ = 0. It appears
that, in view of our numerical results shown in Table 3, such an assumption may
not be justifiable. g

8 Concluding remarks

We have introduced a set of parameters to describe possible violation of CP , T and
CPT symmetries and of the ∆S = ∆Q rule in the K0-K0 system in a well-defined
way and attempted to derive constraints to these parameters from the presently
available experimental data in a way as phenomenological and comprehensive as
possible.

From our numerical results shown in Table 3, it is seen that, in contrast to Re(ε)
and Im(ε) + z0, which are definitely non-vanishing and are of the order of 10−3,
all the other symmetry-violating parameters are consistent with being vanishing
and are at most of the order of 10−3. This implies, on the one hand, that all the
present observations are consistent with no CPT violation and no direct CP and
T violations, and, on the other hand, that CPT violation and direct CP and T
violations up to a level comparable to that of indirect CP and T violations are
at present not excluded. It is therefore not advisable to neglect direct symmetry
violation in phenomenological analyses.

We have to admit that our analysis is not totally free from theoretical prejudices
and is subject heavily to experimental uncertainties, among which we mention:

(1) We have unwillingly accepted Eq.(6.1). In this respect, we would like to stress
that measurements on various leptonic asymmetries without this or that theoretical
inputs are highly desirable and that Im(x′

ℓ) is the only parameter which characterizes
T and CPT violation but has nothing to do with CP violation.

(2) We have treated the 3π (π+π−γ) state as purely CP -odd (CP -even) and
taken these states into account when using the Bell-Steinberger relation to estimate

gA similar remark was also raised in [22].
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Re(ε) and Im(δ). As a result, our final numerical results are subject to uncertainties
which come largely from experimental errors on η+−0, η000 and η+−γ. It is hoped that,
in the near future, more abundant and accurate data on these and other relevant
quantities will become available and enable one to identify and/or constrain CP , T
and/or CPT violations in a more precise way.

(3) The Bell-Steinberger relation has played a very important role in our analysis.
It is to be noted in this respect that fully time-dependent measurements on leptonic
asymmetries of various types will allow one to identify or constrain Re(ε) and Im(δ)
and thereby test this relation itself[12, 14].

Finally, as mentioned earlier, our parametrization is not fully rephasing invariant.
A more thorough discussion of phase ambiguities associated with final state as well
as the K0 and K0 states will be given elsewhere[14].
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